Skip to main content

Advertisement

Log in

The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Medeiros B, Allan AL. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives. Int J Mol Sci. 2019;20(9):2272.

    Article  CAS  PubMed Central  Google Scholar 

  2. Cai Y-D, et al. Identification of genes associated with breast cancer metastasis to bone on a protein–protein interaction network with a shortest path algorithm. J Proteome Res. 2017;16(2):1027–38.

    Article  CAS  PubMed  Google Scholar 

  3. Obenauf AC, Massagué J. Surviving at a distance: organ-specific metastasis. Trends Cancer. 2015;1(1):76–91.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yazici H, Akin B. Molecular genetics of metastatic breast cancer. In: Tumor progression and metastasis. London: IntechOpen; 2019.

    Google Scholar 

  5. Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    Article  CAS  PubMed  Google Scholar 

  6. Budczies J, et al. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015;6(1):570–83.

    Article  PubMed  Google Scholar 

  7. Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neurooncol. 2005;75(1):5–14.

    Article  PubMed  Google Scholar 

  8. Mujoomdar A, et al. Clinical predictors of metastatic disease to the brain from non-small cell lung carcinoma: primary tumor size, cell type, and lymph node metastases. Radiology. 2007;242(3):882–8.

    Article  PubMed  Google Scholar 

  9. Yousefi M, et al. Lung cancer-associated brain metastasis: molecular mechanisms and therapeutic options. Cell Oncol. 2017;40(5):419–41.

    Article  CAS  Google Scholar 

  10. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989;8(2):98–101.

    CAS  PubMed  Google Scholar 

  11. Lorusso G, Rüegg C. New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol. 2012;22(3):226–33.

    Article  CAS  PubMed  Google Scholar 

  12. Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev. 2006;17(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  13. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749–59.

    Article  CAS  PubMed  Google Scholar 

  14. Hsing CH, et al. Upregulated IL-19 in breast cancer promotes tumor progression and affects clinical outcome. Clin Cancer Res. 2012;18(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  15. Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):153–62.

    Article  PubMed  Google Scholar 

  16. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tauro M, Lynch CC. Cutting to the chase: how matrix metalloproteinase-2 activity controls breast-cancer-to-bone metastasis. Cancers. 2018;10(6):185.

    Article  PubMed Central  CAS  Google Scholar 

  18. Bell R, Barraclough R, Vasieva O. Gene expression meta-analysis of potential metastatic breast cancer markers. Curr Mol Med. 2017;17(3):200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blanco MA, Kang Y. Signaling pathways in breast cancer metastasis - novel insights from functional genomics. Breast Cancer Res. 2011;13(2):206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng Y, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Welch DR, Steeg PS, Rinker-Schaeffer CW. Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res. 2000;2(6):408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cominetti MR, Altei WF, Selistre-de-Araujo HS. Metastasis inhibition in breast cancer by targeting cancer cell extravasation. Breast Cancer (Dove Medical Press). 2019;11:165–78.

    CAS  Google Scholar 

  23. Li Z, et al. Methylation-associated silencing of MicroRNA-335 contributes tumor cell invasion and migration by interacting with RASA1 in gastric cancer. Am J Cancer Res. 2014;4(6):648–62.

    PubMed  PubMed Central  Google Scholar 

  24. Zhao W, et al. Mutations of BRAF and KRAS in gastric cancer and their association with microsatellite instability. Int J Cancer. 2004;108(1):167–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zandvakili I, et al. Loss of RhoA exacerbates, rather than dampens, oncogenic K-Ras induced lung adenoma formation in mice. PLoS ONE. 2015;10(6):e0127923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim H, Choi JA, Kim JH. Ras promotes transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition via a leukotriene B4 receptor-2-linked cascade in mammary epithelial cells. J Biol Chem. 2014;289(32):22151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilhooly EM, Rose DP. The association between a mutated ras gene and cyclooxygenase-2 expression in human breast cancer cell lines. Int J Oncol. 1999;15(2):267–70.

    CAS  PubMed  Google Scholar 

  28. Kim MS, et al. p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res. 2003;63(17):5454–61.

    CAS  PubMed  Google Scholar 

  29. Shin I, et al. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem. 2005;280(15):14675–83.

    Article  CAS  PubMed  Google Scholar 

  30. Yoon SO, Shin S, Mercurio AM. Ras stimulation of E2F activity and a consequent E2F regulation of integrin alpha6beta4 promote the invasion of breast carcinoma cells. Cancer Res. 2006;66(12):6288–95.

    Article  CAS  PubMed  Google Scholar 

  31. Ono M, et al. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J Bone Miner Res. 2011;26(1):193–208.

    Article  CAS  PubMed  Google Scholar 

  32. Sieuwerts AM, et al. Progressive APOBEC3B mRNA expression in distant breast cancer metastases. PLoS ONE. 2017;12(1):e0171343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Maruyama W, et al. Classical NF-κB pathway is responsible for APOBEC3B expression in cancer cells. Biochem Biophys Res Commun. 2016;478(3):1466–71.

    Article  CAS  PubMed  Google Scholar 

  34. Chizzolini C, et al. Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1 (MMP-1) while decreasing MMP-9 production by granulocyte-macrophage colony-stimulating factor-differentiated human monocytes. J Immunol. 2000;164(11):5952–60.

    Article  CAS  PubMed  Google Scholar 

  35. Lagow EL, Carson DD. Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. J Cell Biochem. 2002;86(4):759–72.

    Article  CAS  PubMed  Google Scholar 

  36. Banno T, Gazel A, Blumenberg M. Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem. 2004;279(31):32633–42.

    Article  CAS  PubMed  Google Scholar 

  37. Tang LY, et al. Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction. Mol Cell Proteomics. 2007;6(11):1952–67.

    Article  CAS  PubMed  Google Scholar 

  38. Madu CO, et al. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer. 2020;11(15):4474–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clark KL, et al. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993;364(6436):412–20.

    Article  CAS  PubMed  Google Scholar 

  40. Korver W, et al. The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics. 1997;46(3):435–42.

    Article  CAS  PubMed  Google Scholar 

  41. Wang IC, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25(24):10875–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laoukili J, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  43. Pilarsky C, et al. Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia. 2004;6(6):744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bektas N, et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer. 2008;8:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chen YJ, et al. A conserved phosphorylation site within the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1. J Biol Chem. 2009;284(44):30695–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fu Z, et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol. 2008;10(9):1076–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park HJ, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. Embo J. 2009;28(19):2908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaudhary A, et al. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell. 2012;21(2):212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen D, et al. ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Can Res. 2013;73(18):5821–33.

    Article  CAS  Google Scholar 

  50. Kang Y, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA. 2005;102(39):13909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div. 2010;5:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zanin R, et al. HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1. J Exp Clin Cancer Res. 2019;38(1):313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Shah SN, et al. HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. PLoS ONE. 2013;8(5):e63419–e63419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martin, T.A., et al., Cancer invasion and metastasis: molecular and cellular perspective. In Madame Curie Bioscience Database [Internet]. 2013, Landes Bioscience.

  55. Vervoort SJ, et al. Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. Elife. 2018;7:e27706.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kaur T, et al. Identification of functional SNPs in human LGALS3 gene by in silico analyses. Egypt J Med Hum Genet. 2017;18(4):321–8.

    Article  Google Scholar 

  57. Ruvolo PP. Galectin 3 as a guardian of the tumor microenvironment. Biochim Biophys Acta. 2016;1863(3):427–37.

    Article  CAS  PubMed  Google Scholar 

  58. Ochieng J, et al. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochem Biophys Acta. 1998;1379(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  59. Balan V, et al. Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): a pilot study. Can Res. 2008;68(24):10045–50.

    Article  CAS  Google Scholar 

  60. Pachmayr E, Treese C, Stein U. Underlying mechanisms for distant metastasis - molecular biology. Visc Med. 2017;33(1):11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xie HY, Shao ZM, Li DQ. Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chin J Cancer. 2017;36(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen Y, Olopade OI. MYC in breast tumor progression. Expert Rev Anticancer Ther. 2008;8(10):1689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tuo Y, An N, Zhang M. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods. Mol Med Rep. 2018;17(3):4281–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Barber E, et al. Orbital metastases from breast cancer with BRCA2 mutation: a case report and literature review. Case Rep Oncol. 2018;11(2):360–4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017. https://doi.org/10.15761/ICST.1000228.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tsai MS, et al. Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. Cancer Res. 2000;60(20):5603–7.

    CAS  PubMed  Google Scholar 

  67. Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence. Breast. 2016;30:156–71.

    Article  PubMed  Google Scholar 

  68. Khoshakhlagh M, et al. Therapeutic potential of pharmacological TGF-β signaling pathway inhibitors in the pathogenesis of breast cancer. Biochem Pharmacol. 2019;164:17–22.

    Article  CAS  PubMed  Google Scholar 

  69. Chen L-C, et al. Human breast cancer cell metastasis is attenuated by lysyl oxidase inhibitors through down-regulation of focal adhesion kinase and the paxillin-signaling pathway. Breast Cancer Res Treat. 2012;134(3):989–1004.

    Article  CAS  PubMed  Google Scholar 

  70. Erler JT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440(7088):1222–6.

    Article  CAS  PubMed  Google Scholar 

  71. Müller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  PubMed  Google Scholar 

  72. Singh AK, et al. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev. 2013;24(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  73. Mareel M, et al. E-cadherin/catenin/cytoskeleton complex: a regulator of cancer invasion. J Cell Physiol. 1997;173(2):271–4.

    Article  CAS  PubMed  Google Scholar 

  74. Vermeulen SJ, et al. Transition from the noninvasive to the invasive phenotype and loss of alpha-catenin in human colon cancer cells. Cancer Res. 1995;55(20):4722–8.

    CAS  PubMed  Google Scholar 

  75. Frixen UH, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113(1):173–85.

    Article  CAS  PubMed  Google Scholar 

  76. Martin T, et al. Cancer invasion and metastasis: molecular and cellular perspective. Austin: Landes Bioscience; 2013. p. 135–68.

    Google Scholar 

  77. Chiang SPH, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol. 2016;311(1):C1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Qian Y, Shi L, Luo Z. Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front Med. 2020;7(902):612393.

    Article  Google Scholar 

  79. Patsialou A, et al. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells. Oncogene. 2015;34(21):2721–31.

    Article  CAS  PubMed  Google Scholar 

  80. Giampieri S, et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Keklikoglou I, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene. 2012;31(37):4150–63.

    Article  CAS  PubMed  Google Scholar 

  82. Dangi-Garimella S, et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 2009;28(4):347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Frankenberger C, et al. Metastasis suppressors regulate the tumor microenvironment by blocking recruitment of prometastatic tumor-associated macrophages. Can Res. 2015;75(19):4063–73.

    Article  CAS  Google Scholar 

  84. Deryugina EI, et al. Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Can Res. 2005;65(23):10959–69.

    Article  CAS  Google Scholar 

  85. Bekes EM, et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 2011;179(3):1455–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation-and metastasis-sustaining neovasculature. Matrix Biol. 2015;44:94–112.

    Article  PubMed  CAS  Google Scholar 

  87. Chabottaux V, et al. Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumour vascular architecture. J Cell Mol Med. 2009;13(9B):4002–13.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chou CH, et al. MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis. Oncogene. 2012;31(4):458–68.

    Article  CAS  PubMed  Google Scholar 

  89. Kubala MH, DeClerck YA. The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer Metastasis Rev. 2019;38(3):483–92.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahmed H, AlSadek DMM. Galectin-3 as a potential target to prevent cancer metastasis. Clinical medicine insights. Oncology. 2015;9:113–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu K, et al. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem. 2015;290(15):9842–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brosnan EM, Anders CK. Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. Ann Transl Med. 2018;6(9):163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dunn LK, et al. Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS ONE. 2009;4(9):e6896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wendel C, et al. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS ONE. 2012;7(1):e30046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Padua D, et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13(12):858–70.

    Article  CAS  PubMed  Google Scholar 

  98. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20):6243s–9s.

    Article  PubMed  Google Scholar 

  99. Tahara RK, et al. Bone metastasis of breast cancer. Adv Exp Med Biol. 2019;1152:105–29.

    Article  CAS  PubMed  Google Scholar 

  100. Parfitt A. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002;30(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  101. Xiong J, O’Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012;27(3):499–505.

    Article  CAS  PubMed  Google Scholar 

  102. Fu Q, Manolagas SC, O’Brien CA. Parathyroid hormone controls receptor activator of NF-κB ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol. 2006;26(17):6453–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tatsumi S, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75.

    Article  CAS  PubMed  Google Scholar 

  104. Mathot L, Stenninger J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci. 2012;103(4):626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia. 2005;10(2):169–80.

    Article  PubMed  Google Scholar 

  106. Coleman, R.E. and J.J. Seaman. The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. in Seminars in oncology. 2001. Elsevier.

  107. Chirgwin JM, Guise TA. Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Exp. 2000;10(2):159–78.

    Article  CAS  Google Scholar 

  108. Onishi T, et al. Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol. 2010;7(11):641.

    Article  CAS  PubMed  Google Scholar 

  109. Guise TA. The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact. 2002;2(6):570–2.

    CAS  PubMed  Google Scholar 

  110. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  111. Theriault RL, Theriault RL. Biology of bone metastases. Cancer Control. 2012;19(2):92–101.

    Article  PubMed  Google Scholar 

  112. Simonet W, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  113. Clines G, Guise T. Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer. 2005;12(3):549–83.

    Article  CAS  PubMed  Google Scholar 

  114. Yoo B, Fuchs BC, Medarova Z. New directions in the study and treatment of metastatic cancer. Front Oncol. 2018;8:258–258.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fazilaty H, et al. Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumor Biol. 2013;34(4):2019–30.

    Article  CAS  Google Scholar 

  116. Chelouche Lev D, Price JE. Therapeutic intervention with breast cancer metastasis. Crit Rev Eukaryot Gene Expr. 2002;12(2):137–50.

    Article  PubMed  Google Scholar 

  117. Kawalec P, Łopuch S, Mikrut A. Effectiveness of targeted therapy in patients with previously untreated metastatic breast cancer: a systematic review and meta-analysis. Clin Breast Cancer. 2015;15(2):90-100.e1.

    Article  CAS  PubMed  Google Scholar 

  118. Pottier C, et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers. 2020;12(3):731.

    Article  CAS  PubMed Central  Google Scholar 

  119. Butti R, et al. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018;17(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Yang X, Wu D, Yuan S. Tyrosine kinase inhibitors in the combination therapy of HER2 positive breast cancer. Technol Cancer Res Treat. 2020;19:1533033820962140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer. 2002;38(Suppl 5):S3-10.

    Article  PubMed  Google Scholar 

  122. Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D. 2011;11(2):113–26.

    Article  PubMed  Google Scholar 

  123. Rugo HS, et al. Randomized, placebo-controlled, double-blind, phase II study of axitinib plus docetaxel versus docetaxel plus placebo in patients with metastatic breast cancer. J Clin Oncol. 2011;29(18):2459–65.

    Article  CAS  PubMed  Google Scholar 

  124. Wilmes LJ, et al. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2007;25(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  125. Gunnarsson O, et al. Evaluating the safety and efficacy of axitinib in the treatment of advanced renal cell carcinoma. Cancer Manag Res. 2015;7:65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Facchini G, et al. Second line therapy with axitinib after only prior sunitinib in metastatic renal cell cancer: Italian multicenter real world SAX study final results. J Transl Med. 2019;17(1):296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Hu-Lowe DD, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14(22):7272–83.

    Article  CAS  PubMed  Google Scholar 

  128. Wehland M, et al. Target-based anti-angiogenic therapy in breast cancer. Curr Pharm Des. 2012;18(27):4244–57.

    Article  CAS  PubMed  Google Scholar 

  129. Isaacs C, et al. Phase I/II study of sorafenib with anastrozole in patients with hormone receptor positive aromatase inhibitor resistant metastatic breast cancer. Breast Cancer Res Treat. 2011;125(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  130. Dattachoudhury S, et al. Sorafenib inhibits proliferation, migration and invasion of breast cancer cells. Oncology. 2020;98(7):478–86.

    Article  CAS  PubMed  Google Scholar 

  131. Reddy S, Raffin M, Kaklamani V. Targeting angiogenesis in metastatic breast cancer. Oncologist. 2012;17(8):1014–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zafrakas M, Papasozomenou P, Emmanouilides C. Sorafenib in breast cancer treatment: a systematic review and overview of clinical trials. World J Clin Oncol. 2016;7(4):331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tolaney SM, et al. Cabozantinib for metastatic breast carcinoma: results of a phase II placebo-controlled randomized discontinuation study. Breast Cancer Res Treat. 2016;160(2):305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yakes FM, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.

    Article  CAS  PubMed  Google Scholar 

  135. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mundhenke C, Strauss A, Schem C. Significance of tyrosine kinase inhibitors in the treatment of metastatic breast cancer. Breast care (Basel, Switzerland). 2009;4(6):373–8.

    Article  Google Scholar 

  137. Burstein HJ, et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2008;26(11):1810–6.

    Article  CAS  PubMed  Google Scholar 

  138. Wang D, et al. Sunitinib facilitates metastatic breast cancer spreading by inducing endothelial cell senescence. Breast Cancer Res. 2020;22(1):103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chaffer CL, Weinberg RA. How does multistep tumorigenesis really proceed? Cancer Discov. 2015;5(1):22–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hare SH, Harvey AJ. MTOR function and therapeutic targeting in breast cancer. Am J Cancer Res. 2017;7(3):383–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Masoud V, Pagès G. Targeted therapies in breast cancer: new challenges to fight against resistance. World J Clin Oncol. 2017;8(2):120–34.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vinayak S, Carlson RW. mTOR inhibitors in the treatment of breast cancer. Oncology (Williston Park). 2013;27(1):38–44.

    Google Scholar 

  143. Steelman LS, et al. The therapeutic potential of mTOR inhibitors in breast cancer. Br J Clin Pharmacol. 2016;82(5):1189–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Miller K, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76.

    Article  CAS  PubMed  Google Scholar 

  145. Torrisi R, et al. Preoperative bevacizumab combined with letrozole and chemotherapy in locally advanced ER- and/or PgR-positive breast cancer: clinical and biological activity. Br J Cancer. 2008;99(10):1564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Reardon DA, Cheresh D. Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes Cancer. 2011;2(12):1159–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Bäuerle T, et al. Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer. 2011;128(10):2453–62.

    Article  PubMed  CAS  Google Scholar 

  148. Gutheil JC, et al. Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin ανβ3. Clin Cancer Res. 2000;6(8):3056–61.

    CAS  PubMed  Google Scholar 

  149. Castañeda-Gill JM, Vishwanatha JK. Antiangiogenic mechanisms and factors in breast cancer treatment. J Carcinogen. 2016;15:1–1.

    Article  Google Scholar 

  150. Falardeau P, et al. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol. 2001;28(6):620–5.

    Article  CAS  PubMed  Google Scholar 

  151. Weber MH, Lee J, Orr FW. The effect of Neovastat (AE-941) on an experimental metastatic bone tumor model. Int J Oncol. 2002;20(2):299–303.

    CAS  PubMed  Google Scholar 

  152. Gill AL, Bell CN. Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM. 2004;97(7):385–95.

    Article  CAS  PubMed  Google Scholar 

  153. Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer–a review. Target Oncol. 2012;7(4):233–42.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yttersian Sletta K, et al. Oxygen-dependent regulation of tumor growth and metastasis in human breast cancer xenografts. PLoS ONE. 2017;12(8):e0183254–e0183254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Mast JM, Kuppusamy P. Hyperoxygenation as a therapeutic supplement for treatment of triple negative breast cancer. Front Oncol. 2018;8:527.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ceci C, et al. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients. 2018;10(11):1756.

    Article  PubMed Central  CAS  Google Scholar 

  157. Saleem A, et al. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit. J Ethnopharmacol. 2002;81(3):327–36.

    Article  CAS  PubMed  Google Scholar 

  158. Shi L, et al. Ellagic acid enhances the efficacy of PI3K inhibitor GDC-0941 in breast cancer cells. Curr Mol Med. 2015;15(5):478–86.

    Article  CAS  PubMed  Google Scholar 

  159. Wang N, et al. Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res Treat. 2012;134(3):943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Holen I, Coleman RE. Bisphosphonates as treatment of bone metastases. Curr Pharm Des. 2010;16(11):1262–71.

    Article  CAS  PubMed  Google Scholar 

  161. Rogers MJ, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer Interdiscip Int J Am Cancer Soc. 2000;88(S12):2961–78.

    CAS  Google Scholar 

  162. van der Pluijm G, et al. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Investig. 1996;98(3):698–705.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Boissier S, et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Can Res. 2000;60(11):2949–54.

    CAS  Google Scholar 

  164. Daubiné F, et al. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst. 2007;99(4):322–30.

    Article  PubMed  CAS  Google Scholar 

  165. Senaratne S, et al. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer. 2000;82(8):1459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maniar A, et al. Human γδ T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Benzaïd I, et al. High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vγ9Vδ2 T-cell chemotaxis and cytotoxicity in vivo. Can Res. 2011;71(13):4562–72.

    Article  CAS  Google Scholar 

  168. Syddall SP, Ottewell PD, Holen I. Combined therapies of bone disease with bisphosphonates. Curr Pharm Des. 2010;16(27):2988–97.

    Article  CAS  PubMed  Google Scholar 

  169. Lipton A, et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol. 2007;25(28):4431–7.

    Article  CAS  PubMed  Google Scholar 

  170. Canon JR, et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 2008;25(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  171. Stopeck AT, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.

    Article  CAS  PubMed  Google Scholar 

  172. Mossing MC, Record MT Jr. Upstream operators enhance repression of the lac promoter. Science. 1986;233(4766):889–92.

    Article  CAS  PubMed  Google Scholar 

  173. Henry DH, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  174. Lipton A, et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer. 2012;48(16):3082–92.

    Article  CAS  PubMed  Google Scholar 

  175. Henry D, et al. Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: an analysis of data from patients with solid tumors. Support Care Cancer. 2014;22(3):679–87.

    Article  PubMed  Google Scholar 

  176. Wang X, et al. Comparison of the efficacy and safety of denosumab versus bisphosphonates in breast cancer and bone metastases treatment: a meta-analysis of randomized controlled trials. Oncol Lett. 2014;7(6):1997–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wong MH, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2012. https://doi.org/10.1002/14651858.CD003474.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Bora RS, et al. RNA interference therapeutics for cancer: challenges and opportunities (review). Mol Med Rep. 2012;6(1):9–15.

    CAS  PubMed  Google Scholar 

  179. Tao W, et al. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell. 2005;8(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  180. Santel A, et al. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin Cancer Res. 2010;16(22):5469–80.

    Article  CAS  PubMed  Google Scholar 

  181. Liu X. Targeting polo-like kinases: a promising therapeutic approach for cancer treatment. Transl Oncol. 2015;8(3):185–95.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Takai N, et al. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24(2):287–91.

    Article  CAS  PubMed  Google Scholar 

  183. Guan R, et al. Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res. 2005;65(7):2698–704.

    Article  CAS  PubMed  Google Scholar 

  184. Spänkuch B, et al. Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst. 2004;96(11):862–72.

    Article  PubMed  CAS  Google Scholar 

  185. Yang G, et al. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 2004;279(6):4339–45.

    Article  CAS  PubMed  Google Scholar 

  186. Liang Z, et al. Silencing of CXCR4 blocks breast cancer metastasis. Can Res. 2005;65(3):967–71.

    Article  CAS  Google Scholar 

  187. Huynh A, Madu CO, Lu Y. siRNA: a promising new tool for future breast cancer therapy. Oncomedicine. 2018;3:74–81.

    Article  Google Scholar 

  188. Tian X, et al. CRISPR/Cas9: an evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol. 2019;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine. 2020;7:1849543520983196.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Liu J, et al. Differential effects of estrogen receptor β isoforms on glioblastoma progression. Cancer Res. 2018;78(12):3176–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pranavathiyani G, et al. Integrated transcriptome interactome study of oncogenes and tumor suppressor genes in breast cancer. Genes & diseases. 2018;6(1):78–87.

    Article  CAS  Google Scholar 

  192. Wang H, Sun W. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett. 2017;385:137–43.

    Article  CAS  PubMed  Google Scholar 

  193. Guo P, et al. Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel. Proc Natl Acad Sci U S A. 2019;116(37):18295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chen D, et al. Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Res. 2018;6:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Schuijers J, et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 2018;23(2):349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fallah Y, et al. MYC-driven pathways in breast cancer subtypes. Biomolecules. 2017;7(3):53.

    Article  PubMed Central  CAS  Google Scholar 

  197. Sun H, et al. SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell proliferation, migration, and invasion. Onco Targets Ther. 2018;11:3959–68.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol Med. 2019;25(11):1039–49.

    Article  CAS  PubMed  Google Scholar 

  199. Xu K, et al. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep. 2017;7:41718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jin K, Pandey NB, Popel AS. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget. 2017;8(36):60210.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhang S, et al. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev. 2017;31(19):1939–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang M, et al. Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of triple-negative breast cancer cells. Onco Targets Ther. 2019;12:3849–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hazafa A, et al. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020;263:118525–118525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Høye AM, et al. Tumor endothelial marker 8 promotes cancer progression and metastasis. Oncotarget. 2018;9(53):30173–88.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Welch DR, Steeg PS, Rinker-Schaeffer CW. Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res. 2000;2(6):1–9.

    Article  Google Scholar 

  206. Calvo A, et al. Identification of VEGF-regulated genes associated with increased lung metastatic potential: functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene. 2008;27(40):5373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gilkes DM, Semenza GL. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol. 2013;9(11):1623–36.

    Article  CAS  PubMed  Google Scholar 

  208. Lee JY, et al. Gene expression profiling of breast cancer brain metastasis. Sci Rep. 2016;6(1):1–10.

    CAS  Google Scholar 

  209. Estiar MA, Mehdipour P. ATM in breast and brain tumors: a comprehensive review. Cancer Biol Med. 2018;15(3):210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Sirkisoon SR, et al. EGFR and HER2 signaling in breast cancer brain metastasis. Front Biosci. 2016;8:245.

    Article  Google Scholar 

  211. Bektas N, et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer. 2008;8(1):1–9.

    Article  CAS  Google Scholar 

  212. Salhia, B., et al., Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PLoS ONE, 2014. 9(1): p. e85448.

  213. Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin. 2008;29(11):1275–88.

    Article  PubMed  CAS  Google Scholar 

  214. Mustafa DA, et al. T lymphocytes facilitate brain metastasis of breast cancer by inducing guanylate-binding protein 1 expression. Acta Neuropathol. 2018;135(4):581–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fan W, et al. RUVBL1-ITFG1 interaction is required for collective invasion in breast cancer. Biochem Biophys Acta. 2017;1861(7):1788–800.

    Article  CAS  Google Scholar 

  216. Zanin R, et al. HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1. J Exp Clin Cancer Res. 2019;38(1):1–23.

    Article  CAS  Google Scholar 

  217. Cominetti MR, Altei WF, Selistre-de-Araujo HS. Metastasis inhibition in breast cancer by targeting cancer cell extravasation. Breast Cancer. 2019;11:165.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Liu S, et al. Vascular endothelial growth factor plays a critical role in the formation of the pre-metastatic niche via prostaglandin E2. Oncol Rep. 2014;32(6):2477–84.

    Article  CAS  PubMed  Google Scholar 

  219. Malik FA, et al. Effect of expressional alteration of KAI1 on breast cancer cell growth, adhesion, migration and invasion. Cancer Genomics-Proteomics. 2009;6(4):205–13.

    CAS  PubMed  Google Scholar 

  220. Blanco MA, Kang Y. Signaling pathways in breast cancer metastasis-novel insights from functional genomics. Breast Cancer Res. 2011;13(2):1–9.

    Article  CAS  Google Scholar 

  221. Liu S, et al. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY). 2019;11(22):10697.

    Article  CAS  Google Scholar 

  222. Prud’homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget. 2012;3(9):921.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Bai J, et al. BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS ONE. 2013;8(3):e59772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lee H, et al. TMEM2 Is a SOX4-regulated gene that mediates metastatic migration and invasion in breast cancer. Can Res. 2016;76(17):4994–5005.

    Article  CAS  Google Scholar 

  225. Yesilkanal AE, Rosner MR. Raf kinase inhibitory protein (RKIP) as a metastasis suppressor: regulation of signaling networks in cancer. Crit Rev Oncog. 2014;19(6):447–54.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Chao YL, Shepard CR, Wells A. Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer. 2010;9(1):179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Bevilacqua E, Frankenberger CA, Rosner MR. RKIP Suppresses breast cancer metastasis to the bone by regulating stroma-associated genes. Int J Breast Cancer. 2012;2012:124704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Malinowsky K, et al. UPA and PAI-1-related signaling pathways differ between primary breast cancers and lymph node metastases. Transl Oncol. 2012;5(2):98–104.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Mahauad-Fernandez WD, et al. BST-2 promotes survival in circulation and pulmonary metastatic seeding of breast cancer cells. Sci Rep. 2018;8(1):17608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Pedrosa RMSM, et al. Breast cancer brain metastasis: molecular mechanisms and directions for treatment. Neuro Oncol. 2018;20(11):1439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Harris RE, Casto BC, Harris ZM. Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol. 2014;5(4):677–92.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017;32(3):282–93.

    Article  CAS  PubMed  Google Scholar 

  233. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2020;45(1):162–74.

    CAS  PubMed  Google Scholar 

  234. Fu Q, Manolagas SC, O’Brien CA. Parathyroid hormone controls receptor activator of NF-kappaB ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol. 2006;26(17):6453–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Vesuna F, Bergman Y, Raman V. Genomic pathways modulated by Twist in breast cancer. BMC Cancer. 2017;17(1):52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Central University of Punjab for providing infrastructure and facility. Indian Council of Medical Research (ICMR), New Delhi, is acknowledged for Research Associateship 2019-4834/CMB-BMS to P.S. and Council of Scientific and Industrial Research (CSIR), New Delhi, for Junior Research Fellowship (JRF) to Y.C. for Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Munshi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhichholiya, Y., Suman, P., Singh, S. et al. The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 38, 95 (2021). https://doi.org/10.1007/s12032-021-01547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01547-1

Keywords

Navigation