Skip to main content

Advertisement

Log in

Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not available.

References

  1. Műzes, G., & Sipos, F. (2022). Mesenchymal stem cell-derived secretome: A potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells, 11. https://doi.org/10.3390/cells11152300

  2. Jia, Y., Wang, A., Zhao, B., Wang, C., Su, R., Zhang, B., Fan, Z., Zeng, Q., He, L., Pei, X., & Yue, W. (2022). An optimized method for obtaining clinical-grade specific cell subpopulations from human umbilical cord-derived mesenchymal stem cells. Cell Proliferation, 55, e13300. https://doi.org/10.1111/cpr.13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altieri, D. C. (2022). Mitochondria in cancer: Clean windmills or stressed tinkerers? Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2022.08.001

    Article  PubMed  Google Scholar 

  4. Chan, D. C. (2020). Mitochondrial dynamics and its involvement in disease. Annual Review of Pathology: Mechanisms of Disease, 15, 235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711

    Article  CAS  Google Scholar 

  5. Chandel, N. S., Jasper, H., Ho, T. T., & Passegué, E. (2016). Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nature Cell Biology, 18, 823–832. https://doi.org/10.1038/ncb3385

    Article  CAS  PubMed  Google Scholar 

  6. Picard, M., & Shirihai, O. S. (2022). Mitochondrial signal transduction. Cell Metabolism, 34, 1620–1653. https://doi.org/10.1016/j.cmet.2022.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra, P., & Chan, D. C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Reviews Molecular Cell Biology, 15, 634–646. https://doi.org/10.1038/nrm3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song, J., Herrmann, J. M., & Becker, T. (2021). Quality control of the mitochondrial proteome. Nature Reviews Molecular Cell Biology, 22, 54–70. https://doi.org/10.1038/s41580-020-00300-2

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, L., Hu, X., Xiao, F., Zhang, X., Zhao, L., & Wang, M. (2022). Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Frontiers in Immunology, 13, 929520. https://doi.org/10.3389/fimmu.2022.929520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suh, J., Kim, N. K., Shim, W., Lee, S. H., Kim, H. J., Moon, E., Sesaki, H., Jang, J. H., Kim, J. E., & Lee, Y. S. (2023). Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metabolism, 35, 345-360.e347. https://doi.org/10.1016/j.cmet.2023.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Tong, Y., Zhang, Z., & Wang, S. (2022). Role of mitochondria in retinal pigment epithelial aging and degeneration. Front Aging, 3, 926627. https://doi.org/10.3389/fragi.2022.926627

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ploumi, C., Daskalaki, I., & Tavernarakis, N. (2017). Mitochondrial biogenesis and clearance: A balancing act. FEBS Journal, 284, 183–195. https://doi.org/10.1111/febs.13820

    Article  CAS  PubMed  Google Scholar 

  13. Rambout, X., Cho, H., Blanc, R., Lyu, Q., Miano, J. M., Chakkalakal, J. V., Nelson, G. M., Yalamanchili, H. K., Adelman, K., & Maquat, L. E. (2023). PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Molecular Cell, 83, 186-202.e111. https://doi.org/10.1016/j.molcel.2022.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dos Santos, T. W., Pereira, Q. C., Teixeira, L., Gambero, A., Villena, J. A., & Ribeiro, M. L. (2018). Effects of Polyphenols on thermogenesis and mitochondrial biogenesis. International Journal of Molecular Sciences, 19. https://doi.org/10.3390/ijms19092757

  15. Gureev, A. P., & Popov, V. N. (2019). Nrf2/ARE pathway as a therapeutic target for the treatment of parkinson diseases. Neurochemical Research, 44, 2273–2279. https://doi.org/10.1007/s11064-018-02711-2

    Article  CAS  PubMed  Google Scholar 

  16. Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, Á. L., & Pérez, S. (2020). PGC-1α, inflammation, and oxidative stress: An integrative view in metabolism. Oxidative Medicine and Cellular Longevity, 2020, 1452696. https://doi.org/10.1155/2020/1452696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemasters, J. J. (2014). Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biology, 2, 749–754. https://doi.org/10.1016/j.redox.2014.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y., Wang, Z., Sun, J., & Qian, Y. (2021). Identification of HCC subtypes with different prognosis and metabolic patterns based on mitophagy. Front Cell Dev Biol, 9, 799507. https://doi.org/10.3389/fcell.2021.799507

    Article  PubMed  PubMed Central  Google Scholar 

  19. Denning, N. L., Aziz, M., Gurien, S. D., & Wang, P. (2019). DAMPs and NETs in sepsis. Frontiers in Immunology, 10, 2536. https://doi.org/10.3389/fimmu.2019.02536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Imberechts, D., Kinnart, I., Wauters, F., Terbeek, J., Manders, L., Wierda, K., Eggermont, K., Madeiro, R. F., Sue, C., Verfaillie, C., & Vandenberghe, W. (2022). DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy. Brain, 145, 4368–4384. https://doi.org/10.1093/brain/awac313

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jin, S. M., & Youle, R. J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125, 795–799. https://doi.org/10.1242/jcs.093849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dabravolski, S. A., Nikiforov, N. G., Zhuravlev, A. D., Orekhov, N. A., Mikhaleva, L. M., & Orekhov, A. N. (2021). The role of altered mitochondrial metabolism in thyroid cancer development and mitochondria-targeted thyroid cancer treatment. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23010460

  23. Padman, B. S., Nguyen, T. N., Uoselis, L., Skulsuppaisarn, M., Nguyen, L. K., & Lazarou, M. (2019). LC3/GABARAPs drive ubiquitin-independent recruitment of optineurin and NDP52 to amplify mitophagy. Nature Communications, 10, 408. https://doi.org/10.1038/s41467-019-08335-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. The EMBO Journal, 40, e104705. https://doi.org/10.15252/embj.2020104705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pozo Devoto, V. M., Onyango, I. G., & Stokin, G. B. (2022). Mitochondrial behavior when things go wrong in the axon. Frontiers in Cellular Neuroscience, 16, 959598. https://doi.org/10.3389/fncel.2022.959598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vezza, T., Díaz-Pozo, P., Canet, F., de Marañón, A. M., Abad-Jiménez, Z., García-Gargallo, C., Roldan, I., Solá, E., Bañuls, C., López-Domènech, S., Rocha, M., & Víctor, V. M. (2022). The role of mitochondrial dynamic dysfunction in age-associated type 2 diabetes. World J Mens Health, 40, 399–411. https://doi.org/10.5534/wjmh.210146

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bennett, C. F., Latorre-Muro, P., & Puigserver, P. (2022). Mechanisms of mitochondrial respiratory adaptation. Nature Reviews Molecular Cell Biology, 23, 817–835. https://doi.org/10.1038/s41580-022-00506-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A., & Ryan, M. T. (2015). Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. Journal of Cell Science, 128, 2795–2804. https://doi.org/10.1242/jcs.169136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Javadov, S., Jang, S., Chapa-Dubocq, X. R., Khuchua, Z., & Camara, A. K. (2021). Mitochondrial respiratory supercomplexes in mammalian cells: Structural versus functional role. Journal of Molecular Medicine (Berlin, Germany), 99, 57–73. https://doi.org/10.1007/s00109-020-02004-8

    Article  CAS  PubMed  Google Scholar 

  30. Tang, J. X., Thompson, K., Taylor, R. W., & Oláhová, M. (2020). Mitochondrial OXPHOS biogenesis: Co-regulation of protein synthesis, import, and assembly pathways. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21113820

  31. Fu, W., Liu, Y., & Yin, H. (2019). Mitochondrial dynamics: Biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells International, 2019, 9757201. https://doi.org/10.1155/2019/9757201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boese, A. C., & Kang, S. (2021). Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biology, 42, 101870. https://doi.org/10.1016/j.redox.2021.101870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iwata, R., Casimir, P., Erkol, E., Boubakar, L., Planque, M., Gallego López, I. M., Ditkowska, M., Gaspariunaite, V., Beckers, S., Remans, D., Vints, K., Vandekeere, A., Poovathingal, S., Bird, M., Corthout, N., Vermeersch, P., Carpentier, S., Davie, K., Mazzone, M., Gounko, N. V., Aerts, S., Ghesquière, B., Fendt, S. M., & Vanderhaeghen, P. (2023). Mitochondria metabolism sets the species-specific tempo of neuronal development. Science, eabn4705. https://doi.org/10.1126/science.abn4705

  34. Ryan, D. G., & O’Neill, L. A. J. (2020). Krebs cycle reborn in macrophage immunometabolism. Annual Review of Immunology, 38, 289–313. https://doi.org/10.1146/annurev-immunol-081619-104850

    Article  CAS  PubMed  Google Scholar 

  35. Lill, R., & Freibert, S. A. (2020). Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annual Review of Biochemistry, 89, 471–499. https://doi.org/10.1146/annurev-biochem-013118-111540

    Article  CAS  PubMed  Google Scholar 

  36. Sheftel, A., Stehling, O., & Lill, R. (2010). Iron-sulfur proteins in health and disease. Trends in Endocrinology and Metabolism, 21, 302–314. https://doi.org/10.1016/j.tem.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  37. Saha, P. P., Vishwanathan, V., Bankapalli, K., & D’Silva, P. (2018). Iron-sulfur protein assembly in human cells. Reviews of Physiology Biochemistry and Pharmacology, 174, 25–65. https://doi.org/10.1007/112_2017_5

    Article  CAS  PubMed  Google Scholar 

  38. Wu, Z., Berlemann, L. A., Bader, V., Sehr, D. A., Dawin, E., Covallero, A., Meschede, J., Angersbach, L., Showkat, C., Michaelis, J. B., Münch, C., Rieger, B., Namgaladze, D., Herrera, M. G., Fiesel, F. C., Springer, W., Mendes, M., Stepien, J., Barkovits, K., … Winklhofer, K. F. (2022). LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus. The EMBO Journal, 41, e112006. https://doi.org/10.15252/embj.2022112006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collier, J. J., Oláhová, M., McWilliams, T. G., & Taylor, R. W. (2023). Mitochondrial signalling and homeostasis: From cell biology to neurological disease. Trends in Neurosciences, 46, 137–152. https://doi.org/10.1016/j.tins.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  40. Finkel, T., Menazza, S., Holmström, K. M., Parks, R. J., Liu, J., Sun, J., Liu, J., Pan, X., & Murphy, E. (2015). The ins and outs of mitochondrial calcium. Circulation Research, 116, 1810–1819. https://doi.org/10.1161/circresaha.116.305484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pahlavani, H. A. (2022). Exercise-induced signaling pathways to counteracting cardiac apoptotic processes. Front Cell Dev Biol, 10, 950927. https://doi.org/10.3389/fcell.2022.950927

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wong, Y. C., Kim, S., Peng, W., & Krainc, D. (2019). Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis. Trends in Cell Biology, 29, 500–513. https://doi.org/10.1016/j.tcb.2019.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chakrabarty, R. P., & Chandel, N. S. (2022). Beyond ATP, new roles of mitochondria. The Biochemist (London), 44, 2–8. https://doi.org/10.1042/bio_2022_119

    Article  CAS  Google Scholar 

  44. Marchi, S., Guilbaud, E., Tait, S. W. G., Yamazaki, T., & Galluzzi, L. (2022). Mitochondrial control of inflammation. Nature Reviews Immunology, 1–15. https://doi.org/10.1038/s41577-022-00760-x

  45. Mews, P., Donahue, G., Drake, A. M., Luczak, V., Abel, T., & Berger, S. L. (2017). Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature, 546, 381–386. https://doi.org/10.1038/nature22405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dai, Z., Ramesh, V., & Locasale, J. W. (2020). The evolving metabolic landscape of chromatin biology and epigenetics. Nature Reviews Genetics, 21, 737–753. https://doi.org/10.1038/s41576-020-0270-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hernansanz-Agustín, P., & Enríquez, J. A. (2021). Functional segmentation of CoQ and cyt c pools by respiratory complex superassembly. Free Radical Biology & Medicine, 167, 232–242. https://doi.org/10.1016/j.freeradbiomed.2021.03.010

    Article  CAS  Google Scholar 

  48. Shadel, G. S., & Horvath, T. L. (2015). Mitochondrial ROS signaling in organismal homeostasis. Cell, 163, 560–569. https://doi.org/10.1016/j.cell.2015.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sercel, A. J., Carlson, N. M., Patananan, A. N., & Teitell, M. A. (2021). Mitochondrial DNA dynamics in reprogramming to pluripotency. Trends in Cell Biology, 31, 311–323. https://doi.org/10.1016/j.tcb.2020.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Summer, S., Kocsis, A., Reihs, E. I., Rothbauer, M., Lonhus, K., Stys, D., Ertl, P., & Fischer, M. B. (2023). Automated analysis of mitochondrial dimensions in mesenchymal stem cells: Current methods and future perspectives. Heliyon, 9, e12987. https://doi.org/10.1016/j.heliyon.2023.e12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kocsis, Á., Pasztorek, M., Rossmanith, E., Djinovic, Z., Mayr, T., Spitz, S., Zirath, H., Ertl, P., & Fischer, M. B. (2021). Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B. Journal of Bioscience and Bioengineering, 132, 310–320. https://doi.org/10.1016/j.jbiosc.2021.05.010

    Article  CAS  PubMed  Google Scholar 

  52. Huang, K., Shen, Y., Xue, Z., Bibikova, M., April, C., Liu, Z., Cheng, L., Nagy, A., Pellegrini, M., Fan, J. B., & Fan, G. (2014). A panel of CpG methylation sites distinguishes human embryonic stem cells and induced pluripotent stem cells. Stem Cell Reports, 2, 36–43. https://doi.org/10.1016/j.stemcr.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  53. Jin, X., Su, R., Li, R., Cheng, L., & Li, Z. (2018). Crucial role of pro-inflammatory cytokines from respiratory tract upon PM(2.5) exposure in causing the BMSCs differentiation in cells and animals. Oncotarget, 9, 1745–1759. https://doi.org/10.18632/oncotarget.23158

    Article  PubMed  Google Scholar 

  54. Roche, S., Delorme, B., Oostendorp, R. A., Barbet, R., Caton, D., Noel, D., Boumediene, K., Papadaki, H. A., Cousin, B., Crozet, C., Milhavet, O., Casteilla, L., Hatzfeld, J., Jorgensen, C., Charbord, P., & Lehmann, S. (2009). Comparative proteomic analysis of human mesenchymal and embryonic stem cells: Towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 9, 223–232. https://doi.org/10.1002/pmic.200800035

    Article  CAS  PubMed  Google Scholar 

  55. Rodrigues, A. S., Pereira, S. L., & Ramalho-Santos, J. (2020). Stem metabolism: Insights from oncometabolism and vice versa. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1866, 165760. https://doi.org/10.1016/j.bbadis.2020.165760

    Article  CAS  PubMed  Google Scholar 

  56. Li, X., Wang, X., Zhang, C., Wang, J., Wang, S., & Hu, L. (2022). Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Proliferation, 55, e13191. https://doi.org/10.1111/cpr.13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H., Dai, H., & Li, J. (2023). Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. Journal of Advanced Research, 45, 15–29. https://doi.org/10.1016/j.jare.2022.05.012

    Article  CAS  PubMed  Google Scholar 

  58. Coulet, M., Kepp, O., Kroemer, G., & Basmaciogullari, S. (2022). Metabolic profiling of CHO cells during the production of biotherapeutics. Cells, 11. https://doi.org/10.3390/cells11121929

  59. Somasundaram, L., Levy, S., Hussein, A. M., Ehnes, D. D., Mathieu, J., & Ruohola-Baker, H. (2020). Epigenetic metabolites license stem cell states. Current Topics in Developmental Biology, 138, 209–240. https://doi.org/10.1016/bs.ctdb.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  60. Buzoglu, H. D., Burus, A., Bayazıt, Y., & Goldberg, M. (2023). Stem cell and oxidative stress-inflammation cycle. Current Stem Cell Research & Therapy, 18, 641–652. https://doi.org/10.2174/1574888x17666221012151425

    Article  CAS  Google Scholar 

  61. Denu, R. A., & Hematti, P. (2016). Effects of oxidative stress on mesenchymal stem cell biology. Oxidative Medicine and Cellular Longevity, 2016, 2989076. https://doi.org/10.1155/2016/2989076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baker, N., Wade, S., Triolo, M., Girgis, J., Chwastek, D., Larrigan, S., Feige, P., Fujita, R., Crist, C., Rudnicki, M. A., Burelle, Y., & Khacho, M. (2022). The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell, 29, 1315-1332.e1319. https://doi.org/10.1016/j.stem.2022.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dobrowolski, S. F., Sudano, C., Phua, Y. L., Tourkova, I. L., Spridik, K., Goetzman, E. S., Vockley, J., & Blair, H. C. (2021). Mesenchymal stem cell energy deficit and oxidative stress contribute to osteopenia in the Pah(enu2) classical PKU mouse. Molecular Genetics and Metabolism, 132, 173–179. https://doi.org/10.1016/j.ymgme.2021.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Puca, F., Fedele, M., Rasio, D., & Battista, S. (2022). Role of diet in stem and cancer stem cells. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23158108

  65. Katajisto, P., Döhla, J., Chaffer, C. L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R., Chen, W., Weinberg, R. A., & Sabatini, D. M. (2015). Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science, 348, 340–343. https://doi.org/10.1126/science.1260384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prieto, J., León, M., Ponsoda, X., Sendra, R., Bort, R., Ferrer-Lorente, R., Raya, A., López-García, C., & Torres, J. (2016). Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nature Communications, 7, 11124. https://doi.org/10.1038/ncomms11124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ren, L., Chen, X., Chen, X., Li, J., Cheng, B., & Xia, J. (2020). Mitochondrial dynamics: Fission and fusion in fate determination of mesenchymal stem cells. Frontiers in Cell and Development Biology, 8, 580070. https://doi.org/10.3389/fcell.2020.580070

    Article  Google Scholar 

  68. Zhao, L., Hu, C., Zhang, P., Jiang, H., & Chen, J. (2019). Mesenchymal stem cell therapy targeting mitochondrial dysfunction in acute kidney injury. Journal of Translational Medicine, 17, 142. https://doi.org/10.1186/s12967-019-1893-4

    Article  PubMed  PubMed Central  Google Scholar 

  69. Moon, D. K., Kim, B. G., Lee, A. R., In Choe, Y., Khan, I., Moon, K. M., Jeon, R. H., Byun, J. H., Hwang, S. C., & Woo, D. K. (2020). Resveratrol can enhance osteogenic differentiation and mitochondrial biogenesis from human periosteum-derived mesenchymal stem cells. Journal of Orthopaedic Surgery and Research, 15, 203. https://doi.org/10.1186/s13018-020-01684-9

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lisowski, P., Kannan, P., Mlody, B., & Prigione, A. (2018). Mitochondria and the dynamic control of stem cell homeostasis. EMBO Reports, 19. https://doi.org/10.15252/embr.201745432

  71. Khacho, M., Clark, A., Svoboda, D. S., Azzi, J., MacLaurin, J. G., Meghaizel, C., Sesaki, H., Lagace, D. C., Germain, M., Harper, M. E., Park, D. S., & Slack, R. S. (2016). Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell, 19, 232–247. https://doi.org/10.1016/j.stem.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  72. Hinge, A., He, J., Bartram, J., Javier, J., Xu, J., Fjellman, E., Sesaki, H., Li, T., Yu, J., Wunderlich, M., Mulloy, J., Kofron, M., Salomonis, N., Grimes, H. L., & Filippi, M. D. (2020). Asymmetrically segregated mitochondria provide cellular memory of hematopoietic stem cell replicative history and drive HSC attrition. Cell Stem Cell, 26, 420-430.e426. https://doi.org/10.1016/j.stem.2020.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Forni, M. F., Peloggia, J., Trudeau, K., Shirihai, O., & Kowaltowski, A. J. (2016). Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells, 34, 743–755. https://doi.org/10.1002/stem.2248

    Article  CAS  PubMed  Google Scholar 

  74. Moqbel, S. A. A., Zeng, R., Ma, D., Xu, L., Lin, C., He, Y., Ma, C., Xu, K., Ran, J., Jiang, L., & Wu, L. (2022). The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway. Stem Cell Research & Therapy, 13, 127. https://doi.org/10.1186/s13287-022-02758-7

    Article  CAS  Google Scholar 

  75. Li, Q., Gao, Z., Chen, Y., & Guan, M. X. (2017). The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein & Cell, 8, 439–445. https://doi.org/10.1007/s13238-017-0385-7

    Article  CAS  Google Scholar 

  76. Wai, T., & Langer, T. (2016). Mitochondrial dynamics and metabolic regulation. Trends in Endocrinology and Metabolism, 27, 105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  77. Jorgensen, C., & Khoury, M. (2021). Musculoskeletal progenitor/stromal cell-derived mitochondria modulate cell differentiation and therapeutical function. Frontiers in Immunology, 12, 606781. https://doi.org/10.3389/fimmu.2021.606781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shyh-Chang, N., Daley, G. Q., & Cantley, L. C. (2013). Stem cell metabolism in tissue development and aging. Development, 140, 2535–2547. https://doi.org/10.1242/dev.091777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kida, Y. S., Kawamura, T., Wei, Z., Sogo, T., Jacinto, S., Shigeno, A., Kushige, H., Yoshihara, E., Liddle, C., Ecker, J. R., Yu, R. T., Atkins, A. R., Downes, M., & Evans, R. M. (2015). ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell, 16, 547–555. https://doi.org/10.1016/j.stem.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Q., Bai, B., Mei, X., Wan, C., Cao, H., Dan, L., Wang, S., Zhang, M., Wang, Z., Wu, J., Wang, H., Huo, J., Ding, G., Zhao, J., Xie, Q., Wang, L., Qiu, Z., Zhao, S., & Zhang, T. (2018). Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nature Communications, 9, 3436. https://doi.org/10.1038/s41467-018-05451-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wilson-Fritch, L., Burkart, A., Bell, G., Mendelson, K., Leszyk, J., Nicoloro, S., Czech, M., & Corvera, S. (2003). Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Molecular and Cellular Biology, 23, 1085–1094. https://doi.org/10.1128/mcb.23.3.1085-1094.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, J., Qin, X., Pan, D., Zhang, B., & Jin, F. (2019). Amino acid-mediated metabolism: A new power to influence properties of stem cells. Stem Cells International, 2019, 6919463. https://doi.org/10.1155/2019/6919463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gheller, B. J., Blum, J. E., Lim, E. W., Handzlik, M. K., Hannah Fong, E. H., Ko, A. C., Khanna, S., Gheller, M. E., Bender, E. L., Alexander, M. S., Stover, P. J., Field, M. S., Cosgrove, B. D., Metallo, C. M., & Thalacker-Mercer, A. E. (2021). Extracellular serine and glycine are required for mouse and human skeletal muscle stem and progenitor cell function. Molecular Metabolism, 43, 101106. https://doi.org/10.1016/j.molmet.2020.101106

    Article  CAS  PubMed  Google Scholar 

  84. Kilberg, M. S., Terada, N., & Shan, J. (2016). Influence of amino acid metabolism on embryonic stem cell function and differentiation. Advances in Nutrition, 7, 780s–789s. https://doi.org/10.3945/an.115.011031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhong, X., Cui, P., Cai, Y., Wang, L., He, X., Long, P., Lu, K., Yan, R., Zhang, Y., Pan, X., Zhao, X., Li, W., Zhang, H., Zhou, Q., & Gao, P. (2019). Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells. Cell Metabolism, 29, 979-992.e974. https://doi.org/10.1016/j.cmet.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  86. Clémot, M., Sênos Demarco, R., & Jones, D. L. (2020). Lipid mediated regulation of adult stem cell behavior. Frontiers in Cell and Development Biology, 8, 115. https://doi.org/10.3389/fcell.2020.00115

    Article  Google Scholar 

  87. Chakrabarty, R. P., & Chandel, N. S. (2021). Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell, 28, 394–408. https://doi.org/10.1016/j.stem.2021.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alicka, M., & Marycz, K. (2018). The effect of chronic inflammation and oxidative and endoplasmic reticulum stress in the course of metabolic syndrome and its therapy. Stem Cells International, 2018, 4274361. https://doi.org/10.1155/2018/4274361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marycz, K., Weiss, C., Śmieszek, A., & Kornicka, K. (2018). Evaluation of oxidative stress and mitophagy during adipogenic differentiation of adipose-derived stem cells isolated from equine metabolic syndrome (EMS) horses. Stem Cells International, 2018, 5340756. https://doi.org/10.1155/2018/5340756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marycz, K., Kornicka, K., Irwin-Houston, J. M., & Weiss, C. (2018). Combination of resveratrol and 5-azacytydine improves osteogenesis of metabolic syndrome mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 22, 4771–4793. https://doi.org/10.1111/jcmm.13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okabe, K., Nawaz, A., Nishida, Y., Yaku, K., Usui, I., Tobe, K., & Nakagawa, T. (2020). NAD+ metabolism regulates preadipocyte differentiation by enhancing α-ketoglutarate-mediated histone H3K9 demethylation at the PPARγ promoter. Frontiers in Cell and Development Biology, 8, 586179. https://doi.org/10.3389/fcell.2020.586179

    Article  Google Scholar 

  92. Xu, L., Liu, Y., Sun, Y., Wang, B., Xiong, Y., Lin, W., Wei, Q., Wang, H., He, W., Wang, B., & Li, G. (2017). Tissue source determines the differentiation potentials of mesenchymal stem cells: A comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Research & Therapy, 8, 275. https://doi.org/10.1186/s13287-017-0716-x

    Article  CAS  Google Scholar 

  93. Marycz, K., Toker, N. Y., Grzesiak, J., Wrzeszcz, K., & Golonka, P. (2012). The therapeutic effect of autogenic adipose derived stem cells combined with autogenic platelet rich plasma in tendons disorders hi horses in vitro and in vivo research. Journal of Animal and Veterinary Advances, 11, 4324–4331.

    Google Scholar 

  94. Chamorro-García, R., Sahu, M., Abbey, R. J., Laude, J., Pham, N., & Blumberg, B. (2013). Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environmental Health Perspectives, 121, 359–366. https://doi.org/10.1289/ehp.1205701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, H., Yang, Y., Fan, L., Deng, L., Fan, J., Li, D., Li, H., & Zhao, R. C. (2021). Lnc13728 facilitates human mesenchymal stem cell adipogenic differentiation via positive regulation of ZBED3 and downregulation of the WNT/Β-catenin pathway. Stem Cell Research & Therapy, 12, 176. https://doi.org/10.1186/s13287-021-02250-8

    Article  CAS  Google Scholar 

  96. Huang, W., Li, K., Liu, A., Yang, Z., Hu, C., Chen, D., & Wang, H. (2018). miR-330-5p inhibits H2O2-induced adipogenic differentiation of MSCs by regulating RXRγ. International Journal of Molecular Medicine, 42, 2042–2052. https://doi.org/10.3892/ijmm.2018.3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng, H., Liu, J., Yu, J., & McAlinden, A. (2021). Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone, 151, 116058. https://doi.org/10.1016/j.bone.2021.116058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, Z., He, H., Wang, M., & Liang, J. (2019). MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Proliferation, 52, e12688. https://doi.org/10.1111/cpr.12688

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lu, X., Chen, Y., Wang, H., Bai, Y., Zhao, J., Zhang, X., Liang, L., Chen, Y., Ye, C., Li, Y., Zhang, Y., Li, Y., & Ma, T. (2019). Integrated lipidomics and transcriptomics characterization upon aging-related changes of lipid species and pathways in human bone marrow mesenchymal stem cells. Journal of Proteome Research, 18, 2065–2077. https://doi.org/10.1021/acs.jproteome.8b00936

    Article  CAS  PubMed  Google Scholar 

  100. Zhou, X., Hong, Y., Zhang, H., & Li, X. (2020). Mesenchymal stem cell senescence and rejuvenation: Current status and challenges. Frontiers in Cell and Development Biology, 8, 364. https://doi.org/10.3389/fcell.2020.00364

    Article  Google Scholar 

  101. Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells, 37, 855–864. https://doi.org/10.1002/stem.3016

    Article  PubMed  Google Scholar 

  102. Li, Y., Wu, Q., Wang, Y., Li, L., Bu, H., & Bao, J. (2017). Senescence of mesenchymal stem cells (review). International Journal of Molecular Medicine, 39, 775–782. https://doi.org/10.3892/ijmm.2017.2912

    Article  CAS  PubMed  Google Scholar 

  103. Berry, B. J., Vodičková, A., Müller-Eigner, A., Meng, C., Ludwig, C., Kaeberlein, M., Peleg, S., & Wojtovich, A. P. (2023). Optogenetic rejuvenation of mitochondrial membrane potential extends C. elegans lifespan. Nature Aging, 3, 157–161. https://doi.org/10.1038/s43587-022-00340-7

    Article  PubMed  Google Scholar 

  104. Zhang, G., Wang, Y., Lin, J., Wang, B., Mohsin, A., Cheng, Z., Hao, W., Gao, W. Q., Xu, H., & Guo, M. (2022). Biological activity reduction and mitochondrial and lysosomal dysfunction of mesenchymal stem cells aging in vitro. Stem Cell Research & Therapy, 13, 411. https://doi.org/10.1186/s13287-022-03107-4

    Article  CAS  Google Scholar 

  105. Korolchuk, V. I., Miwa, S., Carroll, B., & von Zglinicki, T. (2017). Mitochondria in cell senescence: Is mitophagy the weakest link? eBioMedicine, 21, 7–13. https://doi.org/10.1016/j.ebiom.2017.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  106. Meyer, J. N., Leuthner, T. C., & Luz, A. L. (2017). Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology, 391, 42–53. https://doi.org/10.1016/j.tox.2017.07.019

    Article  CAS  PubMed  Google Scholar 

  107. Babenko, V. A., Silachev, D. N., Danilina, T. I., Goryunov, K. V., Pevzner, I. B., Zorova, L. D., Popkov, V. A., Chernikov, V. P., Plotnikov, E. Y., Sukhikh, G. T., & Zorov, D. B. (2021). Age-related changes in bone-marrow mesenchymal stem cells. Cells, 10. https://doi.org/10.3390/cells10061273

  108. Cantó, C., Menzies, K. J., & Auwerx, J. (2015). NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 22, 31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, J. H., Hayano, M., Griffin, P. T., Amorim, J. A., Bonkowski, M. S., Apostolides, J. K., Salfati, E. L., Blanchette, M., Munding, E. M., Bhakta, M., Chew, Y. C., Guo, W., Yang, X., Maybury-Lewis, S., Tian, X., Ross, J. M., Coppotelli, G., Meer, M. V., Rogers-Hammond, R., … Sinclair, D. A. (2023). Loss of epigenetic information as a cause of mammalian aging. Cell, 186, 305-326.e327. https://doi.org/10.1016/j.cell.2022.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nelson, G., Kucheryavenko, O., Wordsworth, J., & von Zglinicki, T. (2018). The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mechanisms of Ageing and Development, 170, 30–36. https://doi.org/10.1016/j.mad.2017.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ye, G., Xie, Z., Zeng, H., Wang, P., Li, J., Zheng, G., Wang, S., Cao, Q., Li, M., Liu, W., Cen, S., Li, Z., Wu, Y., Ye, Z., & Shen, H. (2020). Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death & Disease, 11, 775. https://doi.org/10.1038/s41419-020-02993-x

    Article  CAS  Google Scholar 

  112. Nassour, J., Aguiar, L. G., Correia, A., Schmidt, T. T., Mainz, L., Przetocka, S., Haggblom, C., Tadepalle, N., Williams, A., Shokhirev, M. N., Akincilar, S. C., Tergaonkar, V., Shadel, G. S., & Karlseder, J. (2023). Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature. https://doi.org/10.1038/s41586-023-05710-8

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sun, Y., Yu, X., Gao, X., Zhang, C., Sun, H., Xu, K., Wei, D., Wang, Q., Zhang, H., Shi, Y., Li, L., & He, X. (2022). RNA sequencing profiles reveal dynamic signaling and glucose metabolic features during bone marrow mesenchymal stem cell senescence. Cell & Bioscience, 12, 62. https://doi.org/10.1186/s13578-022-00796-5

    Article  CAS  Google Scholar 

  114. Zhang, D. Y., Wang, H. J., & Tan, Y. Z. (2011). Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS ONE, 6, e21397. https://doi.org/10.1371/journal.pone.0021397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, X., Hong, Y., He, H., Jiang, G., You, W., Liang, X., Fu, Q., Han, S., Lian, Q., & Zhang, Y. (2019). FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxidative Medicine and Cellular Longevity, 2019, 4915149. https://doi.org/10.1155/2019/4915149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liang, X., Ding, Y., Lin, F., Zhang, Y., Zhou, X., Meng, Q., Lu, X., Jiang, G., Zhu, H., Chen, Y., Lian, Q., Fan, H., & Liu, Z. (2019). Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. The FASEB Journal, 33, 4559–4570. https://doi.org/10.1096/fj.201801690R

    Article  CAS  PubMed  Google Scholar 

  117. Wu, K. K. (2021). Control of mesenchymal stromal cell senescence by tryptophan metabolites. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22020697

  118. Bock, F. J., & Tait, S. W. G. (2020). Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 21, 85–100. https://doi.org/10.1038/s41580-019-0173-8

    Article  CAS  PubMed  Google Scholar 

  119. Sugioka, R., Shimizu, S., & Tsujimoto, Y. (2004). Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. Journal of Biological Chemistry, 279, 52726–52734. https://doi.org/10.1074/jbc.M408910200

    Article  CAS  PubMed  Google Scholar 

  120. Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8, 741–752. https://doi.org/10.1038/nrm2239

    Article  CAS  PubMed  Google Scholar 

  121. Szabadkai, G., Simoni, A. M., Chami, M., Wieckowski, M. R., Youle, R. J., & Rizzuto, R. (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Molecular Cell, 16, 59–68. https://doi.org/10.1016/j.molcel.2004.09.026

    Article  CAS  PubMed  Google Scholar 

  122. Waheed, T. O., Hahn, O., Sridharan, K., Mörke, C., Kamp, G., & Peters, K. (2022). Oxidative stress response in adipose tissue-derived mesenchymal stem/stromal cells. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms232113435

  123. He, J., Liu, J., Huang, Y., Tang, X., Xiao, H., & Hu, Z. (2021). Oxidative stress, inflammation, and autophagy: Potential targets of mesenchymal stem cells-based therapies in ischemic stroke. Frontiers in Neuroscience, 15, 641157. https://doi.org/10.3389/fnins.2021.641157

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu, X. B., Jiang, J., Gui, C., Hu, X. Y., Xiang, M. X., & Wang, J. A. (2008). Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta Pharmacologica Sinica, 29, 815–822. https://doi.org/10.1111/j.1745-7254.2008.00811.x

    Article  CAS  PubMed  Google Scholar 

  125. Deng, L., Hu, S., Baydoun, A. R., Chen, J., Chen, X., & Cong, X. (2009). Aspirin induces apoptosis in mesenchymal stem cells requiring Wnt/beta-catenin pathway. Cell Proliferation, 42, 721–730. https://doi.org/10.1111/j.1365-2184.2009.00639.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fu, X., He, Y., Wang, X., Peng, D., Chen, X., Li, X., & Wang, Q. (2017). Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Research & Therapy, 8, 187. https://doi.org/10.1186/s13287-017-0641-z

    Article  CAS  Google Scholar 

  127. Zinovkin, R. A., & Zamyatnin, A. A. (2019). Mitochondria-targeted drugs. Current Molecular Pharmacology, 12, 202–214. https://doi.org/10.2174/1874467212666181127151059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yamada, Y., Ito, M., Arai, M., Hibino, M., Tsujioka, T., & Harashima, H. (2020). Challenges in promoting mitochondrial transplantation therapy. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21176365

  129. Rodriguez, A. M., Nakhle, J., Griessinger, E., & Vignais, M. L. (2018). Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 17, 712–721. https://doi.org/10.1080/15384101.2018.1445906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Spees, J. L., Olson, S. D., Whitney, M. J., & Prockop, D. J. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences of the United States of America, 103, 1283–1288. https://doi.org/10.1073/pnas.0510511103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kumar, P. R., Saad, M., Hellmich, C., Mistry, J. J., Moore, J. A., Conway, S., Morris, C. J., Bowles, K. M., Moncrieff, M. D., & Rushworth, S. A. (2022). PGC-1α induced mitochondrial biogenesis in stromal cells underpins mitochondrial transfer to melanoma. British Journal of Cancer, 127, 69–78. https://doi.org/10.1038/s41416-022-01783-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Phinney, D. G., Di Giuseppe, M., Njah, J., Sala, E., Shiva, S., St Croix, C. M., Stolz, D. B., Watkins, S. C., Di, Y. P., Leikauf, G. D., Kolls, J., Riches, D. W., Deiuliis, G., Kaminski, N., Boregowda, S. V., McKenna, D. H., & Ortiz, L. A. (2015). Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 6, 8472. https://doi.org/10.1038/ncomms9472

    Article  CAS  PubMed  Google Scholar 

  133. Paliwal, S., Chaudhuri, R., Agrawal, A., & Mohanty, S. (2018). Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Research & Therapy, 9, 298. https://doi.org/10.1186/s13287-018-1012-0

    Article  Google Scholar 

  134. Li, C., Cheung, M. K. H., Han, S., Zhang, Z., Chen, L., Chen, J., Zeng, H., & Qiu, J. (2019). Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword. Bioscience Reports, 39. https://doi.org/10.1042/bsr20182417

  135. Paliwal, S., Chaudhuri, R., Agrawal, A., & Mohanty, S. (2018). Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. Journal of Biomedical Science, 25, 31. https://doi.org/10.1186/s12929-018-0429-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., & Lo, E. H. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535, 551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mahrouf-Yorgov, M., Augeul, L., Da Silva, C. C., Jourdan, M., Rigolet, M., Manin, S., Ferrera, R., Ovize, M., Henry, A., Guguin, A., Meningaud, J. P., Dubois-Randé, J. L., Motterlini, R., Foresti, R., & Rodriguez, A. M. (2017). Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death and Differentiation, 24, 1224–1238. https://doi.org/10.1038/cdd.2017.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Murray, L. M. A., & Krasnodembskaya, A. D. (2019). Concise review: Intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells, 37, 14–25. https://doi.org/10.1002/stem.2922

    Article  PubMed  Google Scholar 

  139. Dutra Silva, J., Su, Y., Calfee, C. S., Delucchi, K. L., Weiss, D., McAuley, D. F., O'Kane, C., & Krasnodembskaya, A. D. (2021). Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. The European Respiratory Journal, 58. https://doi.org/10.1183/13993003.02978-2020

  140. Chuang, Y. C., Liou, C. W., Chen, S. D., Wang, P. W., Chuang, J. H., Tiao, M. M., Hsu, T. Y., Lin, H. Y., & Lin, T. K. (2017). Mitochondrial transfer from Wharton’s jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxidative Medicine and Cellular Longevity, 2017, 5691215. https://doi.org/10.1155/2017/5691215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhao, M., Liu, S., Wang, C., Wang, Y., Wan, M., Liu, F., Gong, M., Yuan, Y., Chen, Y., Cheng, J., Lu, Y., & Liu, J. (2021). Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano, 15, 1519–1538. https://doi.org/10.1021/acsnano.0c08947

    Article  CAS  PubMed  Google Scholar 

  142. Wang, X., & Gerdes, H. H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death and Differentiation, 22, 1181–1191. https://doi.org/10.1038/cdd.2014.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ko, J. H., Kim, H. J., Jeong, H. J., Lee, H. J., & Oh, J. Y. (2020). Mesenchymal stem and stromal cells harness macrophage-derived amphiregulin to maintain tissue homeostasis. Cell Reports, 30, 3806-3820.e3806. https://doi.org/10.1016/j.celrep.2020.02.062

    Article  CAS  PubMed  Google Scholar 

  144. Islam, M. N., Das, S. R., Emin, M. T., Wei, M., Sun, L., Westphalen, K., Rowlands, D. J., Quadri, S. K., Bhattacharya, S., & Bhattacharya, J. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine, 18, 759–765. https://doi.org/10.1038/nm.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nickel, S., Christ, M., Schmidt, S., Kosacka, J., Kühne, H., Roderfeld, M., Longerich, T., Tietze, L., Bosse, I., Hsu, M. J., Stock, P., Roeb, E., & Christ, B. (2022). Human mesenchymal stromal cells resolve lipid load in high fat diet-induced non-alcoholic steatohepatitis in mice by mitochondria donation. Cells, 11. https://doi.org/10.3390/cells11111829

  146. Levoux, J., Prola, A., Lafuste, P., Gervais, M., Chevallier, N., Koumaiha, Z., Kefi, K., Braud, L., Schmitt, A., Yacia, A., Schirmann, A., Hersant, B., Sid-Ahmed, M., Ben Larbi, S., Komrskova, K., Rohlena, J., Relaix, F., Neuzil, J., & Rodriguez, A. M. (2021). Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metabolism, 33, 283-299.e289. https://doi.org/10.1016/j.cmet.2020.12.006

    Article  CAS  PubMed  Google Scholar 

  147. Plotnikov, E. Y., Khryapenkova, T. G., Vasileva, A. K., Marey, M. V., Galkina, S. I., Isaev, N. K., Sheval, E. V., Polyakov, V. Y., Sukhikh, G. T., & Zorov, D. B. (2008). Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. Journal of Cellular and Molecular Medicine, 12, 1622–1631. https://doi.org/10.1111/j.1582-4934.2007.00205.x

    Article  CAS  PubMed  Google Scholar 

  148. Torralba, D., Baixauli, F., & Sánchez-Madrid, F. (2016). Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Frontiers in Cell and Development Biology, 4, 107. https://doi.org/10.3389/fcell.2016.00107

    Article  Google Scholar 

  149. Soundara Rajan, T., Gugliandolo, A., Bramanti, P., & Mazzon, E. (2020). Tunneling nanotubes-mediated protection of mesenchymal stem cells: An update from preclinical studies. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21103481

  150. Luchetti, F., Carloni, S., Nasoni, M. G., Reiter, R. J., & Balduini, W. (2022). Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. Journal of Pineal Research, 73, e12800. https://doi.org/10.1111/jpi.12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M., Rehman, R., Tiwari, B. K., Jha, K. A., Barhanpurkar, A. P., Wani, M. R., Roy, S. S., Mabalirajan, U., Ghosh, B., & Agrawal, A. (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO Journal, 33, 994–1010. https://doi.org/10.1002/embj.201386030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hanna, S. J., McCoy-Simandle, K., Miskolci, V., Guo, P., Cammer, M., Hodgson, L., & Cox, D. (2017). The role of rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Science and Reports, 7, 8547. https://doi.org/10.1038/s41598-017-08950-7

    Article  CAS  Google Scholar 

  153. Jiang, D., Gao, F., Zhang, Y., Wong, D. S., Li, Q., Tse, H. F., Xu, G., Yu, Z., & Lian, Q. (2016). Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death & Disease, 7, e2467. https://doi.org/10.1038/cddis.2016.358

    Article  CAS  Google Scholar 

  154. Burt, R., Dey, A., Aref, S., Aguiar, M., Akarca, A., Bailey, K., Day, W., Hooper, S., Kirkwood, A., Kirschner, K., Lee, S. W., Lo Celso, C., Manji, J., Mansour, M. R., Marafioti, T., Mitchell, R. J., Muirhead, R. C., Cheuk Yan Ng, K., Pospori, C., … Fielding, A. K. (2019). Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood, 134, 1415–1429. https://doi.org/10.1182/blood.2019001398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sun, X., Wang, Y., Zhang, J., Tu, J., Wang, X. J., Su, X. D., Wang, L., & Zhang, Y. (2012). Tunneling-nanotube direction determination in neurons and astrocytes. Cell Death & Disease, 3, e438. https://doi.org/10.1038/cddis.2012.177

    Article  CAS  Google Scholar 

  156. Bukoreshtliev, N. V., Wang, X., Hodneland, E., Gurke, S., Barroso, J. F., & Gerdes, H. H. (2009). Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Letters, 583, 1481–1488. https://doi.org/10.1016/j.febslet.2009.03.065

    Article  CAS  PubMed  Google Scholar 

  157. Liu, K., Guo, L., Zhou, Z., Pan, M., & Yan, C. (2019). Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvascular Research, 123, 74–80. https://doi.org/10.1016/j.mvr.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  158. Tan, Y. L., Eng, S. P., Hafez, P., Abdul Karim, N., Law, J. X., & Ng, M. H. (2022). Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: A review of evidence in preclinical models. Stem Cells Translational Medicine, 11, 814–827. https://doi.org/10.1093/stcltm/szac044

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jiang, X., You, L., Zhang, Z., Cui, X., Zhong, H., Sun, X., Ji, C., & Chi, X. (2021). Biological properties of milk-derived extracellular vesicles and their physiological functions in infant. Frontiers in Cell and Development Biology, 9, 693534. https://doi.org/10.3389/fcell.2021.693534

    Article  Google Scholar 

  160. Mittelbrunn, M., & Sánchez-Madrid, F. (2012). Intercellular communication: Diverse structures for exchange of genetic information. Nature Reviews Molecular Cell Biology, 13, 328–335. https://doi.org/10.1038/nrm3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lu, T., Zhang, J., Cai, J., Xiao, J., Sui, X., Yuan, X., Li, R., Li, Y., Yao, J., Lv, G., Chen, X., Chen, H., Zeng, K., Liu, Y., Chen, W., Chen, G., Yang, Y., Zheng, J., & Zhang, Y. (2022). Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia-reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps. Biomaterials, 284, 121486. https://doi.org/10.1016/j.biomaterials.2022.121486

    Article  CAS  PubMed  Google Scholar 

  162. Zorova, L. D., Kovalchuk, S. I., Popkov, V. A., Chernikov, V. P., Zharikova, A. A., Khutornenko, A. A., Zorov, S. D., Plokhikh, K. S., Zinovkin, R. A., Evtushenko, E. A., Babenko, V. A., Pevzner, I. B., Shevtsova, Y. A., Goryunov, K. V., Plotnikov, E. Y., Silachev, D. N., Sukhikh, G. T., & Zorov, D. B. (2022). Do extracellular vesicles derived from mesenchymal stem cells contain functional mitochondria? International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23137408

  163. Zheng, J., Lu, T., Zhou, C., Cai, J., Zhang, X., Liang, J., Sui, X., Chen, X., Chen, L., Sun, Y., Zhang, J., Chen, W., Zhang, Y., Yao, J., Chen, G., & Yang, Y. (2020). Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD154 expression on CD4+ T cells via CCT2. Advanced Science (Weinheim, Germany), 7, 1903746. https://doi.org/10.1002/advs.201903746

    Article  CAS  Google Scholar 

  164. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N., & Lu, Q. (2012). Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proceedings of the National Academy of Sciences of the United States of America, 109, 4146–4151. https://doi.org/10.1073/pnas.1200448109

    Article  PubMed  PubMed Central  Google Scholar 

  165. Morrison, T. J., Jackson, M. V., Cunningham, E. K., Kissenpfennig, A., McAuley, D. F., O’Kane, C. M., & Krasnodembskaya, A. D. (2017). Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. American Journal of Respiratory and Critical Care Medicine, 196, 1275–1286. https://doi.org/10.1164/rccm.201701-0170OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hahn, J. Y., Cho, H. J., Kang, H. J., Kim, T. S., Kim, M. H., Chung, J. H., Bae, J. W., Oh, B. H., Park, Y. B., & Kim, H. S. (2008). Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. Journal of the American College of Cardiology, 51, 933–943. https://doi.org/10.1016/j.jacc.2007.11.040

    Article  CAS  PubMed  Google Scholar 

  167. Dermietzel, R., Traub, O., Hwang, T. K., Beyer, E., Bennett, M. V., Spray, D. C., & Willecke, K. (1989). Differential expression of three gap junction proteins in developing and mature brain tissues. Proceedings of the National Academy of Sciences of the United States of America, 86, 10148–10152. https://doi.org/10.1073/pnas.86.24.10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Otsu, K., Das, S., Houser, S. D., Quadri, S. K., Bhattacharya, S., & Bhattacharya, J. (2009). Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113, 4197–4205. https://doi.org/10.1182/blood-2008-09-176198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sinclair, K. A., Yerkovich, S. T., Hopkins, P. M., & Chambers, D. C. (2016). Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Research & Therapy, 7, 91. https://doi.org/10.1186/s13287-016-0354-8

    Article  CAS  Google Scholar 

  170. Huang, T., Zhang, T., Jiang, X., Li, A., Su, Y., Bian, Q., Wu, H., Lin, R., Li, N., Cao, H., Ling, D., Wang, J., Tabata, Y., Gu, Z., & Gao, J. (2021). Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Science Advances, 7, eabj0534. https://doi.org/10.1126/sciadv.abj0534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Azizi, Z., Abbaszadeh, R., Sahebnasagh, R., Norouzy, A., Motevaseli, E., & Maedler, K. (2022). Bone marrow mesenchymal stromal cells for diabetes therapy: Touch, fuse, and fix? Stem Cell Research & Therapy, 13, 348. https://doi.org/10.1186/s13287-022-03028-2

    Article  CAS  Google Scholar 

  172. Savatier, P. (2021). Introduction of mouse embryonic fibroblasts into early embryos causes reprogramming and (Con)fusion. Cells, 10. https://doi.org/10.3390/cells10040772

  173. Kong, H., Yi, K., Zheng, C., Lao, Y. H., Zhou, H., Chan, H. F., Wang, H., Tao, Y., & Li, M. (2022). Membrane-fusogenic biomimetic particles: A new bioengineering tool learned from nature. Journal of Materials Chemistry B, 10, 6841–6858. https://doi.org/10.1039/d2tb00632d

    Article  CAS  PubMed  Google Scholar 

  174. Brown, K. E., & Fisher, A. G. (2021). Reprogramming lineage identity through cell-cell fusion. Current Opinion in Genetics & Development, 70, 15–23. https://doi.org/10.1016/j.gde.2021.04.004

    Article  CAS  Google Scholar 

  175. Kitani, T., Kami, D., Matoba, S., & Gojo, S. (2014). Internalization of isolated functional mitochondria: Involvement of macropinocytosis. Journal of Cellular and Molecular Medicine, 18, 1694–1703. https://doi.org/10.1111/jcmm.12316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kubat, G. B., Ozler, M., Ulger, O., Ekinci, O., Atalay, O., Celik, E., Safali, M., & Budak, M. T. (2021). The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35, e22612. https://doi.org/10.1002/jbt.22612

    Article  CAS  PubMed  Google Scholar 

  177. Pacak, C. A., Preble, J. M., Kondo, H., Seibel, P., Levitsky, S., Del Nido, P. J., Cowan, D. B., & McCully, J. D. (2015). Actin-dependent mitochondrial internalization in cardiomyocytes: Evidence for rescue of mitochondrial function. Biology Open, 4, 622–626. https://doi.org/10.1242/bio.201511478

    Article  PubMed  PubMed Central  Google Scholar 

  178. Díaz-Carballo, D., Klein, J., Acikelli, A. H., Wilk, C., Saka, S., Jastrow, H., Wennemuth, G., Dammann, P., Giger-Pabst, U., Khosrawipour, V., Rassow, J., Nienen, M., & Strumberg, D. (2017). Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget, 8, 95945–95964. https://doi.org/10.18632/oncotarget.21606

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wolf, D. P., Mitalipov, N., & Mitalipov, S. (2015). Mitochondrial replacement therapy in reproductive medicine. Trends in Molecular Medicine, 21, 68–76. https://doi.org/10.1016/j.molmed.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  180. Bourebaba, L., Kornicka-Garbowska, K., Galuppo, L., & Marycz, K. (2022). Artificial mitochondrial transfer (AMT) for the management of age-related musculoskeletal degenerative disorders: An emerging avenue for bone and cartilage metabolism regulation. Stem Cell Reviews and Reports, 18, 2195–2201. https://doi.org/10.1007/s12015-022-10357-5

    Article  PubMed  Google Scholar 

  181. Kornicka-Garbowska, K., Groborz, S., Lynda, B., Galuppo, L., & Marycz, K. (2022). Mitochondria transfer restores fibroblasts-like synoviocytes (FLS) plasticity in LPS-induced, in vitro synovitis model. Cell Communication and Signaling: CCS, 20, 137. https://doi.org/10.1186/s12964-022-00923-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sun, M., Jiang, W., Mu, N., Zhang, Z., Yu, L., & Ma, H. (2023). Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. Journal of Translational Medicine, 21, 347. https://doi.org/10.1186/s12967-023-04203-6

    Article  PubMed  PubMed Central  Google Scholar 

  183. Balcázar, M., Cañizares, S., Borja, T., Pontón, P., Bisiou, S., Carabasse, E., Bacilieri, A., Canavese, C., Diaz, R. F., Cabrera, F., & Caicedo, A. (2020). Bases for treating skin aging with artificial mitochondrial transfer/transplant (AMT/T). Frontiers in Bioengineering and Biotechnology, 8, 919. https://doi.org/10.3389/fbioe.2020.00919

    Article  PubMed  PubMed Central  Google Scholar 

  184. Parra, E., LeGatt, A., Court, A., Figueroa, F. E., & Khoury, M. (2019). Artificial mitochondria transfer prevents staurosporine-induced apoptosis of human T lymphocytes. Cytotherapy, 21, e8. https://doi.org/10.1016/j.jcyt.2019.04.027

    Article  Google Scholar 

  185. Liu, Z., Sun, Y., Qi, Z., Cao, L., & Ding, S. (2022). Mitochondrial transfer/transplantation: An emerging therapeutic approach for multiple diseases. Cell & Bioscience, 12, 66. https://doi.org/10.1186/s13578-022-00805-7

    Article  CAS  Google Scholar 

  186. Caicedo, A., Aponte, P. M., Cabrera, F., Hidalgo, C., & Khoury, M. (2017). Artificial mitochondria transfer: Current challenges, advances, and future applications. Stem Cells International, 2017, 7610414. https://doi.org/10.1155/2017/7610414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vignais, M. L., Levoux, J., Sicard, P., Khattar, K., Lozza, C., Gervais, M., Mezhoud, S., Nakhle, J., Relaix, F., Agbulut, O., Fauconnier, J., & Rodriguez, A. M. (2023). Transfer of cardiac mitochondria improves the therapeutic efficacy of mesenchymal stem cells in a preclinical model of ischemic heart disease. Cells, 12. https://doi.org/10.3390/cells12040582

  188. Fafián-Labora, J. A., & O’Loghlen, A. (2020). Classical and nonclassical intercellular communication in senescence and ageing. Trends in Cell Biology, 30, 628–639. https://doi.org/10.1016/j.tcb.2020.05.003

    Article  PubMed  Google Scholar 

  189. Mishra, V. K., Shih, H. H., Parveen, F., Lenzen, D., Ito, E., Chan, T. F., & Ke, L. Y. (2020). Identifying the therapeutic significance of mesenchymal stem cells. Cells, 9. https://doi.org/10.3390/cells9051145

  190. Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76, 3323–3348. https://doi.org/10.1007/s00018-019-03125-1

    Article  CAS  PubMed  Google Scholar 

  191. Deniz, I. A., Karbanová, J., Wobus, M., Bornhäuser, M., Wimberger, P., Kuhlmann, J. D., & Corbeil, D. (2023). Mesenchymal stromal cell-associated migrasomes: A new source of chemoattractant for cells of hematopoietic origin. Cell Communication and Signaling: CCS, 21, 36. https://doi.org/10.1186/s12964-022-01028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hwang, N. S., Zhang, C., Hwang, Y. S., & Varghese, S. (2009). Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1, 97–106. https://doi.org/10.1002/wsbm.26

    Article  CAS  PubMed  Google Scholar 

  193. Nitzsche, F., Müller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460. https://doi.org/10.1002/stem.2614

    Article  PubMed  Google Scholar 

  194. He, L., & Zhang, H. (2019). MicroRNAs in the migration of mesenchymal stem cells. Stem Cell Reviews and Reports, 15, 3–12. https://doi.org/10.1007/s12015-018-9852-7

    Article  CAS  PubMed  Google Scholar 

  195. Ryu, C. H., Park, S. A., Kim, S. M., Lim, J. Y., Jeong, C. H., Jun, J. A., Oh, J. H., Park, S. H., Oh, W. I., & Jeun, S. S. (2010). Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochemical and Biophysical Research Communications, 398, 105–110. https://doi.org/10.1016/j.bbrc.2010.06.043

    Article  CAS  PubMed  Google Scholar 

  196. Lin, M. N., Shang, D. S., Sun, W., Li, B., Xu, X., Fang, W. G., Zhao, W. D., Cao, L., & Chen, Y. H. (2013). Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Research, 1513, 1–8. https://doi.org/10.1016/j.brainres.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  197. Soltani, L., & Mahdavi, A. H. (2022). Role of signaling pathways during cardiomyocyte differentiation of mesenchymal stem cells. Cardiology, 147, 216–224. https://doi.org/10.1159/000521313

    Article  CAS  PubMed  Google Scholar 

  198. Majidinia, M., Sadeghpour, A., & Yousefi, B. (2018). The roles of signaling pathways in bone repair and regeneration. Journal of Cellular Physiology, 233, 2937–2948. https://doi.org/10.1002/jcp.26042

    Article  CAS  PubMed  Google Scholar 

  199. Qian, X., An, N., Ren, Y., Yang, C., Zhang, X., & Li, L. (2021). Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Reviews and Reports, 17, 411–427. https://doi.org/10.1007/s12015-020-10040-7

    Article  CAS  PubMed  Google Scholar 

  200. Zou, J., Yang, W., Cui, W., Li, C., Ma, C., Ji, X., Hong, J., Qu, Z., Chen, J., Liu, A., & Wu, H. (2023). Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. Journal of Nanobiotechnology, 21, 14. https://doi.org/10.1186/s12951-023-01778-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Huang, A., Liu, Y., Qi, X., Chen, S., Huang, H., Zhang, J., Han, Z., Han, Z. C., & Li, Z. (2022). Intravenously transplanted mesenchymal stromal cells: A new endocrine reservoir for cardioprotection. Stem Cell Research & Therapy, 13, 253. https://doi.org/10.1186/s13287-022-02922-z

    Article  CAS  Google Scholar 

  202. Huang, M., Mehrabi Nasab, E., & Athari, S. S. (2021). Immunoregulatory effect of mesenchymal stem cell via mitochondria signaling pathways in allergic asthma. Saudi Journal of Biological Sciences, 28, 6957–6962. https://doi.org/10.1016/j.sjbs.2021.07.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kim, S. H., Kim, J. Y., Park, S. Y., Jeong, W. T., Kim, J. M., Bae, S. H., & Kim, G. J. (2021). Activation of the EGFR-PI3K-CaM pathway by PRL-1-overexpressing placenta-derived mesenchymal stem cells ameliorates liver cirrhosis via ER stress-dependent calcium. Stem Cell Research & Therapy, 12, 551. https://doi.org/10.1186/s13287-021-02616-y

    Article  CAS  Google Scholar 

  204. Piao, L., Huang, Z., Inoue, A., Kuzuya, M., & Cheng, X. W. (2022). Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in SAMP10 mice. Stem Cell Research & Therapy, 13, 226. https://doi.org/10.1186/s13287-022-02895-z

    Article  CAS  Google Scholar 

  205. Sheu, J. J., Sung, P. H., Wallace, C. G., Yang, C. C., Chen, K. H., Shao, P. L., Chu, Y. C., Huang, C. R., Chen, Y. L., Ko, S. F., Lee, M. S., & Yip, H. K. (2020). Intravenous administration of iPS-MSC(SPIONs) mobilized into CKD parenchyma and effectively preserved residual renal function in CKD rat. Journal of Cellular and Molecular Medicine, 24, 3593–3610. https://doi.org/10.1111/jcmm.15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hoang, D. M., Pham, P. T., Bach, T. Q., Ngo, A. T. L., Nguyen, Q. T., Phan, T. T. K., Nguyen, G. H., Le, P. T. T., Hoang, V. T., Forsyth, N. R., Heke, M., & Nguyen, L. T. (2022). Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 7, 272. https://doi.org/10.1038/s41392-022-01134-4

    Article  PubMed  PubMed Central  Google Scholar 

  207. Belmar-López, C., Vassaux, G., Medel-Martinez, A., Burnet, J., Quintanilla, M., Ramón, Y. C. S., Hernandez-Losa, J., De la Vieja, A., & Martin-Duque, P. (2022). Mesenchymal stem cells delivery in individuals with different pathologies: Multimodal tracking, safety and future applications. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23031682

  208. Sun, L., Huang, C., Zhu, M., Guo, S., Gao, Q., Wang, Q., Chen, B., Li, R., Zhao, Y., Wang, M., Chen, Z., Shen, B., & Zhu, W. (2020). Gastric cancer mesenchymal stem cells regulate PD-L1-CTCF enhancing cancer stem cell-like properties and tumorigenesis. Theranostics, 10, 11950–11962. https://doi.org/10.7150/thno.49717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ren, W., Hou, J., Yang, C., Wang, H., Wu, S., Wu, Y., Zhao, X., & Lu, C. (2019). Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. Journal of Experimental & Clinical Cancer Research, 38, 62. https://doi.org/10.1186/s13046-019-1027-0

    Article  Google Scholar 

  210. Davidson, P. M., & Cadot, B. (2021). Actin on and around the nucleus. Trends in Cell Biology, 31, 211–223. https://doi.org/10.1016/j.tcb.2020.11.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks to all authors for their contribution to this manuscript.

Funding

This work was supported by the National Key Technology Research and Development Program of China (2022YFC2704400, 2022YFC2704403 and 2022YFC2702504); the National Clinical Research Center of Obstetrics and Gynecology (2015BAI13B05) and National Natural Science Foundation of China (82101700).

Author information

Authors and Affiliations

Authors

Contributions

Yang Liu Conceptualized and wrote the original draft. Lingjuan Wang edited the manuscript. Jihui Ai and Kezhen Li administrated and supervised the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jihui Ai or Kezhen Li.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, L., Ai, J. et al. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev and Rep 20, 617–636 (2024). https://doi.org/10.1007/s12015-024-10681-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-024-10681-y

Keywords

Navigation