Skip to main content

Advertisement

Log in

Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as “solid-state” and “fluid-state” models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the “plasticity” model was proposed that partly reconciles both “solid-state” and “fluid-state” models. According to the “plasticity” model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

ANT:

adenine nucleotide translocase

BN-PAGE:

blue native polyacrylamide gel electrophoresis

CI:

complex I

CII:

complex II

CIII:

complex III

CIV:

complex IV

CV:

complex V

cryo-EM:

cryogenic electron microscopy

ETC:

electron transport chain

IMM:

inner mitochondrial membrane

IR:

ischemia-reperfusion

mtROS:

mitochondrial ROS

OPA1:

optic atrophy 1 protein

OXPHOS:

oxidative phosphorylation

PTP:

permeability transition pore

ROS:

reactive oxygen species

SC:

supercomplex

SCAF1:

supercomplex assembly factor 1

SLP2:

stomatin-like protein 2

References

  1. Sehnal D, Rose AS, Kovca J, Burley SK, Velankar S (2018) Mol*: Towards a common library and tools for web molecular graphicsMolVA/EuroVis Proceedings

  2. Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: The Amber Lipid Force Field. J Chem Theory Comput 10:865–879

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chance B, Estabrook RW, Lee CP (1963) Electron transport in the oxysome. Science 140:379–380

    CAS  PubMed  Google Scholar 

  4. Hatefi Y, Haavik AG, Griffiths DE (1962) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J Biol Chem 237:1676–1680

    CAS  PubMed  Google Scholar 

  5. Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    CAS  PubMed  Google Scholar 

  6. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kuhlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci U S A 108:14121–14126

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    CAS  PubMed  Google Scholar 

  9. Chavez JD, Lee CF, Caudal A, Keller A, Tian R, Bruce JE (2018) Chemical Crosslinking Mass Spectrometry Analysis of Protein Conformations and Supercomplexes in Heart Tissue. Cell Syst 6:136–141 e135

    CAS  PubMed  Google Scholar 

  10. Liu F, Lossl P, Rabbitts BM, Balaban RS, Heck AJR (2018) The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes. Mol Cell Proteomics 17:216–232

    CAS  PubMed  Google Scholar 

  11. Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, Yang M (2016) The architecture of the mammalian respirasome. Nature 537:639–643

    CAS  PubMed  Google Scholar 

  12. Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648

    CAS  PubMed  Google Scholar 

  13. Sousa JS, Mills DJ, Vonck J, Kuhlbrandt W (2016) Functional asymmetry and electron flow in the bovine respirasome. eLife 5. https://doi.org/10.7554/eLife.21290

  14. Wu M, Gu J, Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–1609 e1510

    CAS  PubMed  Google Scholar 

  15. Strogolova V, Furness A, Robb-McGrath M, Garlich J, Stuart RA (2012) Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 32:1363–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen YC, Taylor EB, Dephoure N, Heo JM, Tonhato A, Papandreou I, Nath N, Denko NC, Gygi SP, Rutter J (2012) Identification of a protein mediating respiratory supercomplex stability. Cell Metab 15:348–360

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570

    CAS  PubMed  Google Scholar 

  18. Mourier A, Matic S, Ruzzenente B, Larsson NG, Milenkovic D (2014) The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab 20:1069–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Javadov S, Kozlov AV, Camara AKS (2020) Mitochondria in Health and Diseases. Cells 9. https://doi.org/10.3390/cells9051177

  20. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jang S, Lewis TS, Powers C, Khuchua Z, Baines CP, Wipf P, Javadov S (2017) Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid Redox Signal 27:57–69

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Anwar MR, Saldana-Caboverde A, Garcia S, Diaz F (2018) The organization of mitochondrial supercomplexes is modulated by oxidative stress in vivo in mouse models of mitochondrial encephalopathy. Int J Mol Sci 19. https://doi.org/10.3390/ijms19061582

  23. Arthur CR, Morton SL, Dunham LD, Keeney PM, Bennett JP Jr (2009) Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Mol Neurodegener 4:37

    PubMed  PubMed Central  Google Scholar 

  24. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462–469

    CAS  PubMed  Google Scholar 

  25. Huang Y, Powers C, Madala SK, Greis KD, Haffey WD, Towbin JA, Purevjav E, Javadov S, Strauss AW, Khuchua Z (2015) Cardiac metabolic pathways affected in the mouse model of barth syndrome. PLoS One 10:e0128561

    PubMed  PubMed Central  Google Scholar 

  26. Antoun G, McMurray F, Thrush AB, Patten DA, Peixoto AC, Slack RS, McPherson R, Dent R, Harper ME (2015) Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals. Diabetologia 58:2861–2866

    CAS  PubMed  Google Scholar 

  27. Gomez LA, Monette JS, Chavez JD, Maier CS, Hagen TM (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, Cantó C, Amati F (2017) Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metab 25:301–311

    CAS  PubMed  Google Scholar 

  29. Casuso RA, Al-Fazazi S, Hidalgo-Gutierrez A, Lopez LC, Plaza-Diaz J, Rueda-Robles A, Huertas JR (2019) Hydroxytyrosol influences exercise-induced mitochondrial respiratory complex assembly into supercomplexes in rats. Free Radic Biol Med 134:304–310

    CAS  PubMed  Google Scholar 

  30. Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J (2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 111:15735–15740

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fedor JG, Hirst J (2018) Mitochondrial supercomplexes do not enhance catalysis by quinone channeling. Cell Metab 28:525–531 e524

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24:800–808

    CAS  PubMed  Google Scholar 

  33. Milenkovic D, Blaza JN, Larsson NG, Hirst J (2017) The enigma of the respiratory chain supercomplex. Cell Metab 25:765–776

    CAS  PubMed  Google Scholar 

  34. Lobo-Jarne T, Ugalde C (2018) Respiratory chain supercomplexes: structures, function and biogenesis. Semin Cell Dev Biol 76:179–190

    CAS  PubMed  Google Scholar 

  35. Schagger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    CAS  PubMed  Google Scholar 

  36. Parodi-Rullán RM, Chapa-Dubocq X, Guzman-Hernandez R, Jang S, Torres-Ramos CA, Ayala-Pena S, Javadov S (2019) The role of adenine nucleotide translocase in the assembly of respiratory supercomplexes in cardiac cells. Cells 8. https://doi.org/10.3390/cells8101247

  37. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309

    CAS  PubMed  Google Scholar 

  38. Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279:31761–31768

    CAS  PubMed  Google Scholar 

  39. Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R, Garcia-Poyatos C, Ezkurdia I, Mercader N, Vazquez J, Enriquez JA (2016) Mechanism of super-assembly of respiratory complexes III and IV. Nature 539:579–582

    CAS  PubMed  Google Scholar 

  40. Bundgaard A, James AM, Harbour ME, Murphy MP, Fago A (2020) Stable mitochondrial CICIII2 supercomplex interactions in reptiles versus homeothermic vertebrates. J Exp Biol 223:jeb223776

    PubMed  PubMed Central  Google Scholar 

  41. Guo R, Zong S, Wu M, Gu J, Yang M (2017) Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170:1247–1257 e1212

    CAS  PubMed  Google Scholar 

  42. Jang S, Javadov S (2018) Elucidating the contribution of ETC complexes I and II to the respirasome formation in cardiac mitochondria. Sci Rep 8:17732

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jang S, Javadov S (2018) Current challenges in elucidating respiratory supercomplexes in mitochondria: methodological obstacles. Front Physiol 9:238

    PubMed  PubMed Central  Google Scholar 

  44. Clason T, Ruiz T, Schagger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    CAS  PubMed  Google Scholar 

  45. Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T et al (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol 204:1083–1086

  47. Gilkerson RW, Selker JM, Capaldi RA (2003) The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546:355–358

    CAS  PubMed  Google Scholar 

  48. Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rampelt H, Zerbes RM, van der Laan M, Pfanner N (2017) Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim Biophys Acta, Mol Cell Res 1864:737–746

    CAS  Google Scholar 

  50. Wilkens V, Kohl W, Busch K (2013) Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J Cell Sci 126:103–116

    CAS  PubMed  Google Scholar 

  51. Bottinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, Becker T (2012) Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol 423:677–686

    PubMed  Google Scholar 

  52. de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325:108–116

    PubMed  Google Scholar 

  53. Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL, Mooga VP, Stroud DA, Kulkarni G, Wenk MR et al (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19:2133–2139

  54. Bazan S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W (2013) Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 288:401–411

    CAS  PubMed  Google Scholar 

  55. Xu Y, Phoon CK, Berno B, D'Souza K, Hoedt E, Zhang G, Neubert TA, Epand RM, Ren M, Schlame M (2016) Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 12:641–647

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Christie DA, Lemke CD, Elias IM, Chau LA, Kirchhof MG, Li B, Ball EH, Dunn SD, Hatch GM, Madrenas J (2011) Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Mol Cell Biol 31:3845–3856

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitsopoulos P, Chang YH, Wai T, Konig T, Dunn SD, Langer T, Madrenas J (2015) Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol Cell Biol 35:1838–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    CAS  PubMed  Google Scholar 

  60. Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L et al (2014) OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33:2676–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaser M, Kambacheld M, Kisters-Woike B, Langer T (2003) Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 278:46414–46423

    PubMed  Google Scholar 

  62. Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wai T, Saita S, Nolte H, Muller S, Konig T, Richter-Dennerlein R, Sprenger HG, Madrenas J, Muhlmeister M, Brandt U et al (2016) The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep 17:1844–1856

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC et al (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171

  65. Jang S, Javadov S (2020) OPA1 regulates respiratory supercomplexes assembly: The role of mitochondrial swelling. Mitochondrion 51:30–39

    CAS  PubMed  Google Scholar 

  66. Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425–427

    CAS  PubMed  Google Scholar 

  67. Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122:3823–3830

    CAS  PubMed  Google Scholar 

  68. Jian C, Xu F, Hou T, Sun T, Li J, Cheng H, Wang X (2017) Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci 130:2620–2630

    CAS  PubMed  Google Scholar 

  69. Desmurs M, Foti M, Raemy E, Vaz FM, Martinou JC, Bairoch A, Lane L (2015) C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol Cell Biol 35:1139–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vukotic M, Oeljeklaus S, Wiese S, Vogtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S et al (2012) Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15:336–347

    CAS  PubMed  Google Scholar 

  71. Strogolova V, Hoang NH, Hosler J, Stuart RA (2019) The yeast mitochondrial proteins Rcf1 and Rcf2 support the enzymology of the cytochrome c oxidase complex and generation of the proton motive force. J Biol Chem 294:4867–4877

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dawitz H, Schafer J, Schaart JM, Magits W, Brzezinski P, Ott M (2019) Rcf1 modulates cytochrome c oxidase activity especially under energy-demanding conditions. Front Physiol 10:1555

    PubMed  Google Scholar 

  73. Timon-Gomez A, Garlich J, Stuart RA, Ugalde C, Barrientos A (2020) Distinct roles of mitochondrial HIGD1A and HIGD2A in respiratory complex and supercomplex biogenesis. Cell Rep 31:107607

    CAS  PubMed  Google Scholar 

  74. Hock DH, Reljic B, Ang CS, Muellner-Wong L, Mountford HS, Compton AG, Ryan MT, Thorburn DR, Stroud DA (2020) HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV. Mol Cell Proteomics 19:1145–1160

    CAS  PubMed  Google Scholar 

  75. Hatle KM, Gummadidala P, Navasa N, Bernardo E, Dodge J, Silverstrim B, Fortner K, Burg E, Suratt BT, Hammer J et al (2013) MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol Cell Biol 33:2302–2314

  76. Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S (2013) A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4:2147

    PubMed  Google Scholar 

  77. Calvo E, Cogliati S, Hernansanz-Agustin P, Loureiro-Lopez M, Guaras A, Casuso RA, Garcia-Marques F, Acin-Perez R, Marti-Mateos Y, Silla-Castro JC et al (2020) Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Qpool. Sci Adv 6:eaba7509

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lobo-Jarne T, Nyvltova E, Perez-Perez R, Timon-Gomez A, Molinie T, Choi A, Mourier A, Fontanesi F, Ugalde C Barrientos A (2018) Human COX7A2L regulates complex III biogenesis and promotes supercomplex organization remodeling without affecting mitochondrial bioenergetics. Cell Rep 25:1786–1799 e1784

  79. Perez-Perez R, Lobo-Jarne T, Milenkovic D, Mourier A, Bratic A, Garcia-Bartolome A, Fernandez-Vizarra E, Cadenas S, Delmiro A, Garcia-Consuegra I et al (2016) COX7A2L is a mitochondrial complex III binding protein that stabilizes the III2+IV supercomplex without affecting respirasome formation. Cell Rep 16:2387–2398

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, Houten SM, Amariuta T, Wolski W, Zamboni N et al (2016) Systems proteomics of liver mitochondria function. Science 352:aad0189

    PubMed  Google Scholar 

  81. Althoff T, Mills DJ, Popot JL, Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    CAS  PubMed  Google Scholar 

  83. Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lopez-Fabuel I, Le Douce J, Logan A, James AM, Bonvento G, Murphy MP, Almeida A, Bolanos JP (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci U S A 113:13063–13068

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353

    PubMed  Google Scholar 

  87. Calvaruso MA, Willems P, van den Brand M, Valsecchi F, Kruse S, Palmiter R, Smeitink J, Nijtmans L (2012) Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. Hum Mol Genet 21:115–120

    PubMed  Google Scholar 

  88. Hirst J (2018) Open questions: respiratory chain supercomplexes-why are they there and what do they do? BMC Biol 16:111

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci U S A 108:15196–15200

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Letts JA, Fiedorczuk K, Degliesposti G, Skehel M, Sazanov LA (2019) Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk. Mol Cell 75:1131–1146 e1136

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368:545–553

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103:7607–7612

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlic A, Rose PW (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34:3755–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Budde SM, van den Heuvel LP, Janssen AJ, Smeets RJ, Buskens CA, DeMeirleir L, Van Coster R, Baethmann M, Voit T, Trijbels JM et al (2000) Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 275:63–68

    CAS  PubMed  Google Scholar 

  95. Diaz F, Enriquez JA, Moraes CT (2012) Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV. Mol Cell Biol 32:415–429

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landazuri MO, Enriquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386

    CAS  PubMed  Google Scholar 

  97. Lobo-Jarne T, Perez-Perez R, Fontanesi F, Timon-Gomez A, Wittig I, Penas A, Serrano-Lorenzo P, Garcia-Consuegra I, Arenas J, Martin MA et al (2020) Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J 39:e103912

    CAS  PubMed  Google Scholar 

  98. Protasoni M, Perez-Perez R, Lobo-Jarne T, Harbour ME, Ding S, Penas A, Diaz F, Moraes CT, Fearnley IM, Zeviani M et al (2020) Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J 39:e102817

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Comte J, Maisterrena B, Gautheron DC (1976) Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim Biophys Acta 419:271–284

    CAS  PubMed  Google Scholar 

  100. Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Phys Cell Phys 292:C157–C163

    CAS  Google Scholar 

  101. Javadov S, Chapa-Dubocq X, Makarov V (2018) Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 38:58–70

    CAS  PubMed  Google Scholar 

  102. Gadicherla AK, Stowe DF, Antholine WE, Yang M, Camara AK (2012) Damage to mitochondrial complex I during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine. Biochim Biophys Acta 1817:419–429

    CAS  PubMed  Google Scholar 

  103. Ramirez-Camacho I, Correa F, El Hafidi M, Silva-Palacios A, Ostolga-Chavarria M, Esparza-Perusquia M, Olvera-Sanchez S, Flores-Herrera O, Zazueta C (2018) Cardioprotective strategies preserve the stability of respiratory chain supercomplexes and reduce oxidative stress in reperfused ischemic hearts. Free Radic Biol Med 129:407–417

    CAS  PubMed  Google Scholar 

  104. Maekawa S, Takada S, Nambu H, Furihata T, Kakutani N, Setoyama D, Ueyanagi Y, Kang D, Sabe H, Kinugawa S (2019) Linoleic acid improves assembly of the CII subunit and CIII2/CIV complex of the mitochondrial oxidative phosphorylation system in heart failure. Cell Commun Signal 17:128

    PubMed  PubMed Central  Google Scholar 

  105. Chatfield KC, Sparagna GC, Chau S, Phillips EK, Ambardekar AV, Aftab M, Mitchell MB, Sucharov CC, Miyamoto SD, Stauffer BL (2019) Elamipretide improves mitochondrial function in the failing human heart. JACC Basic Transl Sci 4:147–157

    PubMed  PubMed Central  Google Scholar 

  106. Schrepper A, Schwarzer M, Schope M, Amorim PA, Doenst T (2012) Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload - role of respiratory chain complex activity. J Mol Cell Cardiol 52:125–135

    CAS  PubMed  Google Scholar 

  107. Lotz C, Zhang J, Fang C, Liem D, Ping P (2015) Isoflurane protects the myocardium against ischemic injury via the preservation of mitochondrial respiration and its supramolecular organization. Anesth Analg 120:265–274

    CAS  PubMed  Google Scholar 

  108. Jang S, Javadov S (2017) Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria. Arch Biochem Biophys 630:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Parodi-Rullan RM, Soto-Prado J, Vega-Lugo J, Chapa-Dubocq X, Diaz-Cordero SI, Javadov S (2018) Divergent effects of cyclophilin-D inhibition on the female rat heart: acute versus chronic post-myocardial infarction. Cell Physiol Biochem 50:288–303

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wong R, Aponte AM, Steenbergen C, Murphy E (2010) Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol 298:H75–H91

    CAS  PubMed  Google Scholar 

  111. Ait-Aissa K, Blaszak SC, Beutner G, Tsaih SW, Morgan G, Santos JH, Flister MJ, Joyce DL, Camara AKS, Gutterman DD et al (2019) Mitochondrial oxidative phosphorylation defect in the heart of subjects with coronary artery disease. Sci Rep 9:7623

  112. Chapa-Dubocq XR, Rodriguez-Graciani KM, Guzman-Hernandez RA, Jang S, Brookes PS, Javadov S (2020) Cardiac Function is not Susceptible to Moderate Disassembly of Mitochondrial Respiratory Supercomplexes. Int J Mol Sci 21. https://doi.org/10.3390/ijms21051555

  113. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 61:372–385

    CAS  PubMed  Google Scholar 

  114. Nowikovsky K, Schweyen RJ, Bernardi P (2009) Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta 1787:345–350

    CAS  PubMed  Google Scholar 

  115. Zhang K, Wang G, Zhang X, Huttemann PP, Qiu Y, Liu J, Mitchell A, Lee I, Zhang C, Lee JS et al (2016) COX7AR is a stress-inducible mitochondrial COX subunit that promotes breast cancer malignancy. Sci Rep 6:31742

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, Werner L, Cerny J, Zobalova R, Goodwin J et al (2017) Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2(high) breast cancer. Antioxid Redox Signal 26:84–103

  117. Tomkova V, Sandoval-Acuna C, Torrealba N, Truksa J (2019) Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells. Free Radic Biol Med 143:510–521

    CAS  PubMed  Google Scholar 

  118. Mirali S, Botham A, Voisin V, Xu C, St-Germain J, Sharon D, Hoff FW, Qiu Y, Hurren R, Gronda M et al (2020) The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci Transl Med 12:eaaz8264

  119. Ikeda K, Horie-Inoue K, Suzuki T, Hobo R, Nakasato N, Takeda S, Inoue S (2019) Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat Commun 10:4108

    PubMed  PubMed Central  Google Scholar 

  120. Wang G, Popovic B, Tao J, Jiang A (2020) Overexpression of COX7RP promotes tumor growth and metastasis by inducing ROS production in hepatocellular carcinoma cells. Am J Cancer Res 10:1366–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nagano H, Hashimoto N, Nakayama A, Suzuki S, Miyabayashi Y, Yamato A, Higuchi S, Fujimoto M, Sakuma I, Beppu M et al (2018) p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc Natl Acad Sci U S A 115:8370–8375

  122. Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van’ t Veer-Korthof ET, Van der Harten JJ, Sobotka-Plojhar MA (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62:327–355

    CAS  PubMed  Google Scholar 

  123. Acehan D, Vaz F, Houtkooper RH, James J, Moore V, Tokunaga C, Kulik W, Wansapura J, Toth MJ, Strauss A, Khuchua Z (2011) Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 286:899–908

    CAS  PubMed  Google Scholar 

  124. Soustek MS, Falk DJ, Mah CS, Toth MJ, Schlame M, Lewin AS, Byrne BJ (2011) Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. Hum Gene Ther 22:865–871

    CAS  PubMed  Google Scholar 

  125. Gohel D, Sripada L, Prajapati P, Singh K, Roy M, Kotadia D, Tassone F, Charlet-Berguerand N, Singh R (2019) FMRpolyG alters mitochondrial transcripts level and respiratory chain complex assembly in Fragile X associated tremor/ataxia syndrome [FXTAS]. Biochim Biophys Acta Mol basis Dis 1865:1379–1388

    CAS  PubMed  Google Scholar 

  126. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  127. Bindoff LA, Birch-Machin MA, Cartlidge NE, Parker WD Jr, Turnbull DM (1991) Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J Neurol Sci 104:203–208

    CAS  PubMed  Google Scholar 

  128. Wernicke C, Hellmann J, Zieba B, Kuter K, Ossowska K, Frenzel M, Dencher NA, Rommelspacher H (2010) 9-Methyl-beta-carboline has restorative effects in an animal model of Parkinson's disease. Pharmacol Rep 62:35–53

    CAS  PubMed  Google Scholar 

  129. Lopez-Fabuel I, Martin-Martin L, Resch-Beusher M, Azkona G, Sanchez-Pernaute R, Bolanos JP (2017) Mitochondrial respiratory chain disorganization in Parkinson's disease-relevant PINK1 and DJ1 mutants. Neurochem Int 109:101–105

    CAS  PubMed  Google Scholar 

  130. Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, Xu Y, Chan RB, Di Paolo G, Mehler MF et al (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 36:3356–3371

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kenney PM, Bennett JP, Jr. (2019) Alzheimer's disease frontal cortex mitochondria show a loss of individual respiratory proteins but preservation of respiratory supercomplexes. Int J Alzheimers Dis 2019: 4814783.

  132. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  133. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    CAS  PubMed  PubMed Central  Google Scholar 

  134. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Google Scholar 

  135. Blander G, de Oliveira RM, Conboy CM, Haigis M, Guarente L (2003) Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 278:38966–38969

    CAS  PubMed  Google Scholar 

  136. Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    CAS  PubMed  Google Scholar 

  137. Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic Biol Med 18:195–201

    CAS  PubMed  Google Scholar 

  138. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8:1291–1297

    CAS  PubMed  Google Scholar 

  139. Kwong LK, Sohal RS (2000) Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373:16–22

    CAS  PubMed  Google Scholar 

  140. Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial Metabolism in Aging Heart. Circ Res 118:1593–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lombardi A, Silvestri E, Cioffi F, Senese R, Lanni A, Goglia F, de Lange P, Moreno M (2009) Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and Blue native-PAGE approach. J Proteome 72:708–721

    CAS  Google Scholar 

  142. Javadov S, Jang S, Rodriguez-Reyes N, Rodriguez-Zayas AE, Soto Hernandez J, Krainz T, Wipf P, Frontera W (2015) Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats. Oncotarget 6:39469–39481

    PubMed  PubMed Central  Google Scholar 

  143. Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572

    CAS  PubMed  Google Scholar 

  144. O'Toole JF, Patel HV, Naples CJ, Fujioka H, Hoppel CL (2010) Decreased cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria. Biochem J 427:105–112

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sgarbi G, Matarrese P, Pinti M, Lanzarini C, Ascione B, Gibellini L, Dika E, Patrizi A, Tommasino C, Capri M et al (2014) Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging (Albany NY) 6:296–310

    Google Scholar 

  146. Guerrero-Castillo S, Baertling F, Kownatzki D, Wessels HJ, Arnold S, Brandt U, Nijtmans L (2017) The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metab 25:128–139

    CAS  PubMed  Google Scholar 

  147. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR et al (2016) Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538:123–126

  148. Marques I, Dencher NA, Videira A, Krause F (2007) Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria. Eukaryot Cell 6:2391–2405

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lazarou M, Smith SM, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J 276:6701–6713

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors apologize to all colleagues whose important studies were not cited due to space restriction.

Funding

This study was supported by the National Institute of General Medical Sciences (Grant SC1GM128210 to Sa.J.) and the National Heart, Lung, and Blood Institute (Grant R01 HL-131673 to A.K.S.C.) of the National Institutes of Health, National Science Foundation (Grant 2006477 to Sa.J), and Advancing A Healthier Wisconsin (AHW; Grant 5520444 to A.K.S.C.).

Author information

Authors and Affiliations

Authors

Contributions

Sa.J. generated conceptual outline and wrote the first draft of the manuscript. Se.J. designed figures. All authors jointly performed the literature search and completed final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabzali Javadov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadov, S., Jang, S., Chapa-Dubocq, X.R. et al. Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. J Mol Med 99, 57–73 (2021). https://doi.org/10.1007/s00109-020-02004-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02004-8

Keywords

Navigation