Skip to main content

Advertisement

Log in

Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Please contact to the corresponding author.

Code Availability

Not applicable.

Abbreviations

OLT :

Orthotopic liver transplantation

MSC :

Mesenchymal stem cell

HLCs :

hepatocyte-like cells

CD :

cluster of differentiation

BM :

bone marrow

AD :

adipose tissue

UC :

umbilical cord

EV :

extracellular vesicle

HGF :

hepatocyte growth factor

EGF :

epidermal growth factor

HNF :

hepatocyte nuclear factor

FGF :

fibroblast growth factor

ITS :

insulin-transferrin selenium

OSM :

oncostatin M

DMSO :

dimethyl sulfoxide

CK-18 :

cytokeratin 18

CYP :

cytochrome p450

TNF-α :

tumor necrosis factor-alpha

DCs :

dendritic cells

NK :

natural killer

Tregs :

regulatory T cells

MMP-9 :

matrix metalloproteinase 9

IL :

interleukin

IGF-BP2 :

insulin like growth factor-binding protein-2

MCP-1 :

monocyte chemoattractant protein-1

MET-P :

mesenchymal epithelial transition factor-phosphorylated type

HSC :

hepatic stellate cell

SDF-1 :

stromal cell-derived factor-1

VEGF :

vascular endothelial growth factor

NGF :

nerve growth factor

GRO :

growth-related oncogene

OPG :

osteoprotegerin

BECN1 :

beclin-1

CXCR :

CXC-chemokine receptor

ALI :

acute liver injury

ACLF :

acute-on-chronic liver failure

HBV/HCV :

hepatitis B/C virus

AIH :

autoimmune hepatitis

NAFLD :

nonalcoholic fatty liver disease

NASH :

nonalcoholic steatohepatitis

ALD :

alcoholic liver disease

HCC :

hepatocellular carcinoma

D-Gal :

D-galactosamine

α-GalCer :

α-galactosylceramide

NKT :

natural killer T cell

IDO :

indoleamine 2,3-dioxygenase

ALB :

albumin

TBIL :

total bilirubin

PT :

prothrombin time

ALT :

alanine transaminase

INR :

international normalized ratio

CRISPR :

clustered, regularly interspaced, short palindromic repeats

MCD :

methionine-choline-deficient

ECM :

extracellular matrix

LAMP :

lysosome-associated membrane protein

TGF-β1 :

transforming growth factor-beta 1

INF-γ :

interferon γ

HIF-1α :

hypoxia-inducible factor -1α

DLC :

decompensated liver cirrhosis

NPCs :

nonparenchymal cells

References

  1. Williams, R. (2006). Global challenges in liver disease. Hepatology, 44(3), 521–526.

    Article  PubMed  Google Scholar 

  2. Xiao, J., Wang, F., Wong, N. K., He, J., Zhang, R., Sun, R., Xu, Y., Liu, Y., Li, W., Koike, K., et al. (2019). Global liver disease burdens and research trends: Analysis from a Chinese perspective. Journal of Hepatology, 71(1), 212–221.

    Article  PubMed  Google Scholar 

  3. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    PubMed  Google Scholar 

  4. Berasain, C., Arechederra, M., Argemi, J., Fernandez-Barrena, M. G., & Avila, M. A. (2023). Loss of liver function in chronic liver disease: An identity crisis. Journal of Hepatology, 78(2), 401–414.

    Article  CAS  PubMed  Google Scholar 

  5. Rumgay, H., Ferlay, J., de Martel, C., Georges, D., Ibrahim, A. S., Zheng, R., Wei, W., Lemmens, V., & Soerjomataram, I. (2022). Global, regional and national burden of primary liver cancer by subtype. European Journal of Cancer, 161, 108–118.

    Article  PubMed  Google Scholar 

  6. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33.

    PubMed  Google Scholar 

  7. Michelotti, G. A., Machado, M. V., & Diehl, A. M. (2013). NAFLD, NASH and liver cancer. Nature Reviews Gastroenterology & Hepatology, 10(11), 656–665.

  8. Nadeau, B. A., Fecher, L. A., Owens, S. R., & Razumilava, N. (2018). Liver Toxicity with Cancer Checkpoint Inhibitor Therapy. Seminars in Liver Disease, 38(4), 366–378.

    Article  CAS  PubMed  Google Scholar 

  9. Pinter, M., Scheiner, B., & Peck-Radosavljevic, M. (2021). Immunotherapy for advanced hepatocellular carcinoma: A focus on special subgroups. Gut, 70(1), 204–214.

    Article  CAS  PubMed  Google Scholar 

  10. Labgaa, I., Taffe, P., Martin, D., Clerc, D., Schwartz, M., Kokudo, N., Denys, A., Halkic, N., Demartines, N., & Melloul, E. (2020). Comparison of Partial Hepatectomy and Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Liver Cancer, 9(2), 138–147.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gallo, P., Terracciani, F., Di Pasquale, G., Esposito, M., Picardi, A., & Vespasiani-Gentilucci, U. (2022). Thrombocytopenia in chronic liver disease: Physiopathology and new therapeutic strategies before invasive procedures. World Journal of Gastroenterology, 28(30), 4061–4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sung, P. S., Park, D. J., Roh, P. R., Mun, K. D., Cho, S. W., Lee, G. W., Jung, E. S., Lee, S. H., Jang, J. W., Bae, S. H., et al. (2022). Intrahepatic inflammatory IgA(+)PD-L1(high) monocytes in hepatocellular carcinoma development and immunotherapy. Journal for Immunotherapy of Cancer, 10(5), e003618.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schoening, W. N., Buescher, N., Rademacher, S., Andreou, A., Kuehn, S., Neuhaus, R., Guckelberger, O., Puhl, G., Seehofer, D., & Neuhaus, P. (2013). Twenty-year longitudinal follow-up after orthotopic liver transplantation: A single-center experience of 313 consecutive cases. American Journal of Transplantation, 13(9), 2384–2394.

    Article  CAS  PubMed  Google Scholar 

  14. Matas, A. J., Sutherland, D. E., Steffes, M. W., Mauer, S. M., Sowe, A., Simmons, R. L., & Najarian, J. S. (1976). Hepatocellular transplantation for metabolic deficiencies: Decrease of plasms bilirubin in Gunn rats. Science, 192(4242), 892–894.

    Article  CAS  PubMed  Google Scholar 

  15. Fox, I. J., Chowdhury, J. R., Kaufman, S. S., Goertzen, T. C., Chowdhury, N. R., Warkentin, P. I., Dorko, K., Sauter, B. V., & Strom, S. C. (1998). Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. New England Journal of Medicine, 338(20), 1422–1426.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, C. A., Sinha, S., Fitzpatrick, E., & Dhawan, A. (2018). Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. Journal of Molecular Medicine (Berlin, Germany), 96(6), 469–481.

    Article  CAS  PubMed  Google Scholar 

  17. Soltys, K. A., Setoyama, K., Tafaleng, E. N., Soto Gutierrez, A., Fong, J., Fukumitsu, K., Nishikawa, T., Nagaya, M., Sada, R., Haberman, K., et al. (2017). Host conditioning and rejection monitoring in hepatocyte transplantation in humans. Journal of Hepatology, 66(5), 987–1000.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, Y., Zhao, Y., Zhang, L., Zhang, F., & Li, L. (2021). The application of mesenchymal stem cells in the treatment of liver diseases: Mechanism, efficacy, and safety issues. Frontiers in Medicine, 8, 655268.

  19. de Miguel, M. P., Prieto, I., Moratilla, A., Arias, J., & Aller, M. A. (2019). Mesenchymal stem cells for liver regeneration in liver failure: From experimental models to clinical trials. Stem Cells International, 2019, 3945672.

  20. Nevens, F., & van der Merwe, S. (2022). Mesenchymal Stem Cell Transplantation in Liver Diseases. Seminars in Liver Disease, 42(03), 283–292.

    Article  CAS  PubMed  Google Scholar 

  21. Eom, Y. W., Kang, S. H., Kim, M. Y., Lee, J. I., & Baik, S. K. (2020). Mesenchymal stem cells to treat liver diseases. Annals of Translational Medicine, 8(8), 563.

  22. Kang, S. H., Kim, M. Y., Eom, Y. W., & Baik, S. K. (2020). Mesenchymal Stem Cells for the Treatment of Liver Disease: Present and Perspectives. Gut Liver, 14(3), 306–315.

    Article  CAS  PubMed  Google Scholar 

  23. Malmir, A., Farivar, S., Rezaei, R., Tokhanbigli, S., Hatami, B., Mazhari, S., & Baghaei, K. (2023). The effect of mesenchymal stem cells and imatinib on macrophage polarization in rat model of liver fibrosis. Cell Biology International, 47(1), 135–143.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J., Sun, M., Liu, W., Li, Y., & Li, M. (2019). Stem cell-based therapies for liver diseases: An overview and update. Tissue Engineering and Regenerative Medicine, 16(2), 107–118.

  25. Alfaifi, M., Eom, Y. W., Newsome, P. N., & Baik, S. K. (2018). Mesenchymal stromal cell therapy for liver diseases. Journal of Hepatology, 68(6), 1272–1285.

    Article  CAS  PubMed  Google Scholar 

  26. Dwyer, B. J., Macmillan, M. T., Brennan, P. N., & Forbes, S. J. (2021). Cell therapy for advanced liver diseases: Repair or rebuild. Journal of Hepatology, 74(1), 185–199.

    Article  CAS  PubMed  Google Scholar 

  27. Deng, Y., Xia, B., Chen, Z., Wang, F., Lv, Y., & Chen, G. (2022). Stem cell-based therapy strategy for hepatic fibrosis by targeting intrahepatic cells. Stem Cell Reviews and Reports, 18(1), 77–93.

  28. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  29. Samsonraj, R. M., Rai, B., Sathiyanathan, P., Puan, K. J., Rotzschke, O., Hui, J. H., Raghunath, M., Stanton, L. W., Nurcombe, V., & Cool, S. M. (2015). Establishing criteria for human mesenchymal stem cell potency. Stem Cells, 33(6), 1878–1891.

    Article  CAS  PubMed  Google Scholar 

  30. Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS, 9, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C. K., & Chaudhry, G. R. (2019). Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of Tissue Engineering and Regenerative Medicine, 13(9), 1738–1755.

    Article  CAS  PubMed  Google Scholar 

  32. Peng, L., Xie, D. Y., Lin, B. L., Liu, J., Zhu, H. P., Xie, C., Zheng, Y. B., & Gao, Z. L. (2011). Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: Short-term and long-term outcomes. Hepatology, 54(3), 820–828.

    Article  PubMed  Google Scholar 

  33. Seki, A., Sakai, Y., Komura, T., Nasti, A., Yoshida, K., Higashimoto, M., Honda, M., Usui, S., Takamura, M., Takamura, T., et al. (2013). Adipose tissue-derived stem cells as a regenerative therapy for a mouse steatohepatitis-induced cirrhosis model. Hepatology, 58(3), 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103(5), 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  35. Li, S., Huang, K. J., Wu, J. C., Hu, M. S., Sanyal, M., Hu, M., Longaker, M. T., & Lorenz, H. P. (2015). Peripheral blood-derived mesenchymal stem cells: Candidate cells responsible for healing critical-sized calvarial bone defects. Stem Cells Translational Medicine, 4(4), 359–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., de Groot-Swings, G. M., Claas, F. H., Fibbe, W. E., & Kanhai, H. H. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345.

  37. Taylor, H. S. (2004). Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA, 292(1), 81–85.

    Article  CAS  PubMed  Google Scholar 

  38. Navas, A., Magana-Guerrero, F. S., Dominguez-Lopez, A., Chavez-Garcia, C., Partido, G., Graue-Hernandez, E. O., Sanchez-Garcia, F. J., & Garfias, Y. (2018). Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair. Stem Cells Translational Medicine, 7(12), 906–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zagoura, D. S., Roubelakis, M. G., Bitsika, V., Trohatou, O., Pappa, K. I., Kapelouzou, A., Antsaklis, A., & Anagnou, N. P. (2012). Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut, 61(6), 894–906.

    Article  CAS  PubMed  Google Scholar 

  40. Yulyana, Y., Ho, I. A. W., Sia, K. C., Newman, J. P., Toh, X. Y., Endaya, B. B., Chan, J. K. Y., Gnecchi, M., Huynh, H., Chung, A. Y. F., et al. (2015). Paracrine Factors of Human Fetal MSCs Inhibit Liver Cancer Growth Through Reduced Activation of IGF-1R/PI3K/Akt Signaling. Molecular Therapy, 23(4), 746–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perry, B. C., Zhou, D., Wu, X., Yang, F. C., Byers, M. A., Chu, T. M., Hockema, J. J., Woods, E. J., & Goebel, W. S. (2008). Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Engineering Part C, Methods, 14(2), 149–156.

  42. Bajpai, V. K., Mistriotis, P., & Andreadis, S. T. (2012). Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Research, 8(1), 74–84.

  43. Riekstina, U., Muceniece, R., Cakstina, I., Muiznieks, I., & Ancans, J. (2008). Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology, 58(3), 153–162.

    Article  CAS  PubMed  Google Scholar 

  44. Steens, J., Klar, L., Hansel, C., Slama, A., Hager, T., Jendrossek, V., Aigner, C., & Klein, D. (2021). The vascular nature of lung-resident mesenchymal stem cells. Stem Cells Translational Medicine, 10(1), 128–143.

    Article  CAS  PubMed  Google Scholar 

  45. Sakata, N., Yoshimatsu, G., & Kodama, S. (2018). The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells. International Journal of Molecular Sciences, 19(5), 1391.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thirlwell, K. L., Colligan, D., Mountford, J. C., Samuel, K., Bailey, L., Cuesta-Gomez, N., Hewit, K. D., Kelly, C. J., West, C. C., McGowan, N. W. A., et al. (2020). Pancreas-derived mesenchymal stromal cells share immune response-modulating and angiogenic potential with bone marrow mesenchymal stromal cells and can be grown to therapeutic scale under Good Manufacturing Practice conditions. Cytotherapy, 22(12), 762–771.

    Article  CAS  PubMed  Google Scholar 

  47. Bruno, S., Bussolati, B., Grange, C., Collino, F., di Cantogno, L. V., Herrera, M. B., Biancone, L., Tetta, C., Segoloni, G., & Camussi, G. (2009). Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells and Development, 18(6), 867–880.

  48. Mouiseddine, M., Mathieu, N., Stefani, J., Demarquay, C., & Bertho, J. M. (2008). Characterization and histological localization of multipotent mesenchymal stromal cells in the human postnatal thymus. Stem Cells and Development, 17(6), 1165–1174.

  49. Bodin, A., Bharadwaj, S., Wu, S., Gatenholm, P., Atala, A., & Zhang, Y. (2010). Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials, 31(34), 8889–8901.

    Article  CAS  PubMed  Google Scholar 

  50. Gotherstrom, C., Ringden, O., Westgren, M., Tammik, C., & Le Blanc, K. (2003). Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplantation, 32(3), 265–272.

    Article  CAS  PubMed  Google Scholar 

  51. Lanzoni, G., Alviano, F., Marchionni, C., Bonsi, L., Costa, R., Foroni, L., Roda, G., Belluzzi, A., Caponi, A., Ricci, F., et al. (2009). Isolation of stem cell populations with trophic and immunoregulatory functions from human intestinal tissues: Potential for cell therapy in inflammatory bowel disease. Cytotherapy, 11(8), 1020–1031.

    Article  CAS  PubMed  Google Scholar 

  52. Asakura, A., Komaki, M., & Rudnicki, M. (2001). Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 68(4–5), 245–253.

    Article  CAS  PubMed  Google Scholar 

  53. Chen, L., Qu, J., & Xiang, C. (2019). The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Research & Therapy, 10(1), 1.

    Article  Google Scholar 

  54. Neybecker, P., Henrionnet, C., Pape, E., Mainard, D., Galois, L., Loeuille, D., Gillet, P., & Pinzano, A. (2018). In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Research & Therapy, 9(1), 329.

    Article  CAS  Google Scholar 

  55. De Bari, C., Dell’Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 44(8), 1928–1942.

    Article  PubMed  Google Scholar 

  56. Lv, F. J., Tuan, R. S., Cheung, K. M., & Leung, V. Y. (2014). Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells, 32(6), 1408–1419.

    Article  CAS  PubMed  Google Scholar 

  57. Khoury, M., Alcayaga-Miranda, F., Illanes, S. E., & Figueroa, F. E. (2014). The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy. Frontiers in Immunology, 5, 205.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, L., Qu, J., Cheng, T., Chen, X., & Xiang, C. (2019). Menstrual blood-derived stem cells: Toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Research & Therapy, 10(1), 406.

    Article  CAS  Google Scholar 

  60. Rountree, C. B., Mishra, L., & Willenbring, H. (2012). Stem cells in liver diseases and cancer: Recent advances on the path to new therapies. Hepatology, 55(1), 298–306.

    Article  PubMed  Google Scholar 

  61. Abbasi-Malati, Z., Roushandeh, A. M., Kuwahara, Y., & Roudkenar, M. H. (2018). Mesenchymal stem cells on horizon: A new arsenal of therapeutic agents. Stem Cell Reviews and Reports, 14(4), 484–499.

  62. Hu, C., Zhao, L., Duan, J., & Li, L. (2019). Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. Journal of Cellular and Molecular Medicine, 23(3), 1657–1670.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li, M., & Ikehara, S. (2013). Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells International, 2013, 132642.

  64. Bianco, P. (2014). “Mesenchymal” stem cells. Annual Review of Cell and Developmental Biology, 30, 677–704.

    Article  CAS  PubMed  Google Scholar 

  65. Samsonraj, R. M., Raghunath, M., Nurcombe, V., Hui, J. H., van Wijnen, A. J., & Cool, S. M. (2017). Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Translational Medicine, 6(12), 2173–2185.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Aurich, I., Mueller, L. P., Aurich, H., Luetzkendorf, J., Tisljar, K., Dollinger, M. M., Schormann, W., Walldorf, J., Hengstler, J. G., Fleig, W. E., et al. (2007). Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut, 56(3), 405–415.

    Article  CAS  PubMed  Google Scholar 

  67. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P., & Lee, O. K. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6), 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  68. Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H., & Ochiya, T. (2007). Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 46(1), 219–228.

    Article  CAS  PubMed  Google Scholar 

  69. Mou, X. Z., Lin, J., Chen, J. Y., Li, Y. F., Wu, X. X., Xiang, B. Y., Li, C. Y., Ma, J. M., & Xiang, C. (2013). Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells. Journal of Zhejiang University. Science. B, 14(11), 961–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takashina, T., Matsunaga, A., Shimizu, Y., Sakuma, T., Okamura, T., Matsuoka, K., Yamamoto, T., & Ishizaka, Y. (2023). Robust protein-based engineering of hepatocyte-like cells from human mesenchymal stem cells. Hepatology Communications, 7(3), e0051.

  71. Zhao, Q., Ren, H., Li, X., Chen, Z., Zhang, X., Gong, W., Liu, Y., Pang, T., & Han, Z. C. (2009). Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy, 11(4), 414–426.

    Article  CAS  PubMed  Google Scholar 

  72. Prasajak, P., & Leeanansaksiri, W. (2013). Developing a new two-step protocol to generate functional hepatocytes from Wharton’s Jelly-derived mesenchymal stem cells under hypoxic condition. Stem Cells International, 2013, 762196.

  73. Yang, J. F., Cao, H. C., Pan, Q. L., Yu, J., Li, J., & Li, L. J. (2015). Mesenchymal stem cells from the human umbilical cord ameliorate fulminant hepatic failure and increase survival in mice. Hepatobiliary & Pancreatic Diseases International, 14(2), 186–193.

    Article  CAS  Google Scholar 

  74. Sgodda, M., Aurich, H., Kleist, S., Aurich, I., Konig, S., Dollinger, M. M., Fleig, W. E., & Christ, B. (2007). Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Experimental Cell Research, 313(13), 2875–2886.

    Article  CAS  PubMed  Google Scholar 

  75. Bornstein, R., Macias, M. I., de la Torre, P., Grande, J., & Flores, A. I. (2012). Human decidua-derived mesenchymal stromal cells differentiate into hepatic-like cells and form functional three-dimensional structures. Cytotherapy, 14(10), 1182–1192.

    Article  CAS  PubMed  Google Scholar 

  76. Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J. G., Dollinger, M. M., Fleig, W. E., et al. (2009). Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut, 58(4), 570–581.

    Article  CAS  PubMed  Google Scholar 

  77. El Baz, H., Demerdash, Z., Kamel, M., Atta, S., Salah, F., Hassan, S., Hammam, O., Khalil, H., Meshaal, S., & Raafat, I. (2018). Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study. Experimental and Clinical Transplantation, 16(1), 81–89.

    PubMed  Google Scholar 

  78. Song, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 41(9), 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, S., Zhu, R., Li, H., Li, J., Han, Q., & Zhao, R. C. (2019). Mesenchymal stem cells and immune disorders: From basic science to clinical transition. Frontiers in Medicine, 13(2), 138–151.

    Article  Google Scholar 

  80. Seki, E., & Brenner, D. A. (2015). Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences, 22(7), 512–518.

  81. Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7, e2062.

    Article  CAS  Google Scholar 

  82. Ren, G., Su, J., Zhang, L., Zhao, X., Ling, W., L’Huillie, A., Zhang, J., Lu, Y., Roberts, A. I., Ji, W., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 27(8), 1954–1962.

    Article  CAS  PubMed  Google Scholar 

  83. Chiesa, S., Morbelli, S., Morando, S., Massollo, M., Marini, C., Bertoni, A., Frassoni, F., Bartolome, S. T., Sambuceti, G., Traggiai, E., et al. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389.

  84. Tabera, S., Perez-Simon, J. A., Diez-Campelo, M., Sanchez-Abarca, L. I., Blanco, B., Lopez, A., Benito, A., Ocio, E., Sanchez-Guijo, F. M., Canizo, C., et al. (2008). The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica, 93(9), 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  85. Franquesa, M., Hoogduijn, M. J., Bestard, O., & Grinyo, J. M. (2012). Immunomodulatory effect of mesenchymal stem cells on B cells. Frontiers in Immunology, 3, 212.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liu, J., Liu, Q., & Chen, X. (1843). The Immunomodulatory Effects of Mesenchymal Stem Cells on Regulatory B Cells. Frontiers in Immunology, 2020, 11.

    Google Scholar 

  87. Saldana, L., Bensiamar, F., Valles, G., Mancebo, F. J., Garcia-Rey, E., & Vilaboa, N. (2019). Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Research & Therapy, 10(1), 58.

    Article  CAS  Google Scholar 

  88. Kim, H. S., Yun, J. W., Shin, T. H., Lee, S. H., Lee, B. C., Yu, K. R., Seo, Y., Lee, S., Kang, T. W., Choi, S. W., et al. (2015). Human umbilical cord blood mesenchymal stem cell-derived PGE2 and TGF-beta1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells, 33(4), 1254–1266.

    Article  CAS  PubMed  Google Scholar 

  89. Gao, R., Ye, T., Zhu, Z., Li, Q., Zhang, J., Yuan, J., Zhao, B., Xie, Z., & Wang, Y. (2022). Small extracellular vesicles from iPSC-derived mesenchymal stem cells ameliorate tendinopathy pain by inhibiting mast cell activation. Nanomedicine (London, England), 17(8), 513–529.

    Article  CAS  PubMed  Google Scholar 

  90. Chang, C., Yan, J., Yao, Z., Zhang, C., Li, X., & Mao, H. Q. (2021). Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies. Advanced Healthcare Materials, 10(7), e2001689.

  91. Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplantation, 23(9), 1045–1059.

    Article  PubMed  Google Scholar 

  92. Wang, Y. H., Wu, D. B., Chen, B., Chen, E. Q., & Tang, H. (2018). Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Research & Therapy, 9(1), 227.

    Article  CAS  Google Scholar 

  93. Haldar, D., Henderson, N. C., Hirschfield, G., & Newsome, P. N. (2016). Mesenchymal stromal cells and liver fibrosis: A complicated relationship. The FASEB Journal, 30(12), 3905–3928.

    Article  CAS  PubMed  Google Scholar 

  94. Meier, R. P., Mahou, R., Morel, P., Meyer, J., Montanari, E., Muller, Y. D., Christofilopoulos, P., Wandrey, C., Gonelle-Gispert, C., & Buhler, L. H. (2015). Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. Journal of Hepatology, 62(3), 634–641.

    Article  CAS  PubMed  Google Scholar 

  95. Sobrevals, L., Rodriguez, C., Romero-Trevejo, J. L., Gondi, G., Monreal, I., Paneda, A., Juanarena, N., Arcelus, S., Razquin, N., Guembe, L., et al. (2010). Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology, 51(3), 912–921.

    CAS  PubMed  Google Scholar 

  96. Tsai, P. C., Fu, T. W., Chen, Y. M., Ko, T. L., Chen, T. H., Shih, Y. H., Hung, S. C., & Fu, Y. S. (2009). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplantation, 15(5), 484–495.

    Article  PubMed  Google Scholar 

  97. Wang, P. P., Xie, D. Y., Liang, X. J., Peng, L., Zhang, G. L., Ye, Y. N., Xie, C., & Gao, Z. L. (2012). HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway. Plos One, 7(8), e43408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parekkadan, B., van Poll, D., Megeed, Z., Kobayashi, N., Tilles, A. W., Berthiaume, F., & Yarmush, M. L. (2007). Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochemical and Biophysical Research Communications, 363(2), 247–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan, R.-L., Wang, P., Xiang, L.-X., & Shao, J.-Z. (2011). Delta-like 1 Serves as a New Target and Contributor to Liver Fibrosis Down-regulated by Mesenchymal Stem Cell Transplantation. Journal of Biological Chemistry, 286(14), 12340–12348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, H., Xu, R., Zhang, Z., Chen, L., Shi, M., & Wang, F. S. (2011). Implications of the immunoregulatory functions of mesenchymal stem cells in the treatment of human liver diseases. Cellular & Molecular Immunology, 8(1), 19–22.

    Article  CAS  Google Scholar 

  101. Lin, N., Hu, K., Chen, S., Xie, S., Tang, Z., Lin, J., & Xu, R. (2009). Nerve growth factor-mediated paracrine regulation of hepatic stellate cells by multipotent mesenchymal stromal cells. Life Sciences, 85(7–8), 291–295.

    Article  CAS  PubMed  Google Scholar 

  102. Chen, L., Zhang, C., Chen, L., Wang, X., Xiang, B., Wu, X., Guo, Y., Mou, X., Yuan, L., Chen, B., et al. (2017). Human Menstrual Blood-Derived Stem Cells Ameliorate Liver Fibrosis in Mice by Targeting Hepatic Stellate Cells via Paracrine Mediators. Stem Cells Translational Medicine, 6(1), 272–284.

    Article  CAS  PubMed  Google Scholar 

  103. Wang, J., Ding, H., Zhou, J., Xia, S., Shi, X., & Ren, H. (2022). Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype. Journal of Clinical and Translational Hepatology, 10(4), 669–679.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liang, Y., Duan, L., Lu, J., & Xia, J. (2021). Engineering exosomes for targeted drug delivery. Theranostics, 11(7), 3183–3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Borrelli, D. A., Yankson, K., Shukla, N., Vilanilam, G., Ticer, T., & Wolfram, J. (2018). Extracellular vesicle therapeutics for liver disease. Journal of Controlled Release, 273, 86–98.

    Article  CAS  PubMed  Google Scholar 

  106. Thietart, S., & Rautou, P. E. (2020). Extracellular vesicles as biomarkers in liver diseases: A clinician’s point of view. Journal of Hepatology, 73(6), 1507–1525.

    Article  CAS  PubMed  Google Scholar 

  107. van Niel, G., Carter, D. R. F., Clayton, A., Lambert, D. W., Raposo, G., & Vader, P. (2022). Challenges and directions in studying cell-cell communication by extracellular vesicles. Nature Reviews Molecular Cell Biology, 23(5), 369–382.

    Article  PubMed  Google Scholar 

  108. Phelps, J., Sanati-Nezhad, A., Ungrin, M., Duncan, N. A., & Sen, A. (2018). Bioprocessing of mesenchymal stem cells and their derivatives: Toward cell-free therapeutics. Stem Cells International, 2018, 9415367.

  109. Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S., & Li, P. (2020). Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. International Journal of Nanomedicine, 15, 6917–6934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin, D., Chen, H., Xiong, J., Zhang, J., Hu, Z., Gao, J., Gao, B., Zhang, S., Chen, J., Cao, H., et al. (2022). Mesenchymal stem cells exosomal let-7a-5p improve autophagic flux and alleviate liver injury in acute-on-chronic liver failure by promoting nuclear expression of TFEB. Cell Death & Disease, 13(10), 865.

    Article  CAS  Google Scholar 

  111. Sun, C., Shi, C., Duan, X., Zhang, Y., & Wang, B. (2022). Exosomal microRNA-618 derived from mesenchymal stem cells attenuate the progression of hepatic fibrosis by targeting Smad4. Bioengineered, 13(3), 5915–5927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, F. B., Chen, D. Z., Chen, L., Hu, E. D., Wu, J. L., Li, H., Gong, Y. W., Lin, Z., Wang, X. D., Li, J., et al. (2019). Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p. Molecules and Cells, 42(12), 906–918.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tan, Y., Huang, Y., Mei, R., Mao, F., Yang, D., Liu, J., Xu, W., Qian, H., & Yan, Y. (2022). HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death & Disease, 13(4), 319.

    Article  CAS  Google Scholar 

  114. Haga, H., Yan, I. K., Takahashi, K., Matsuda, A., & Patel, T. (2017). Extracellular Vesicles from Bone Marrow-Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice. Stem Cells Translational Medicine, 6(4), 1262–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, Y., Zhang, X., Zhang, H., Song, P., Pan, W., Xu, P., Wang, G., Hu, P., Wang, Z., Huang, K., et al. (2022). Mesenchymal Stem Cells Derived Extracellular Vesicles Alleviate Traumatic Hemorrhagic Shock Induced Hepatic Injury via IL-10/PTPN22-Mediated M2 Kupffer Cell Polarization. Frontiers in Immunology, 12, 811164.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yuan, M., Hu, X., Yao, L., Jiang, Y., & Li, L. (2022). Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Research & Therapy, 13(1), 179.

    Article  Google Scholar 

  117. Xiu, G., Li, X., Yin, Y., Li, J., Li, B., Chen, X., Liu, P., Sun, J., & Ling, B. (2020). SDF-1/CXCR4 Augments the Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells in the Treatment of Lipopolysaccharide-Induced Liver Injury by Promoting Their Migration Through PI3K/Akt Signaling Pathway. Cell Transplantation, 29, 963689720929992.

    Article  PubMed  Google Scholar 

  118. Liepelt, A., & Tacke, F. (2016). Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. American Journal of Physiology. Gastrointestinal and Liver Physiology, 311(2), G203-209.

    Article  PubMed  Google Scholar 

  119. Zhao, L., Chen, S., Shi, X., Cao, H., & Li, L. (2018). A pooled analysis of mesenchymal stem cell-based therapy for liver disease. Stem Cell Research & Therapy, 9(1), 72.

    Article  CAS  Google Scholar 

  120. Nitzsche, F., Muller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells, 35(6), 1446–1460.

    Article  PubMed  Google Scholar 

  121. Xu, R., Ni, B., Wang, L., Shan, J., Pan, L., He, Y., Lv, G., Lin, H., Chen, W., & Zhang, Q. (2022). CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure. Stem Cell Research & Therapy, 13(1), 55.

    Article  CAS  Google Scholar 

  122. Ullah, M., Liu, D. D., & Thakor, A. S. (2019). Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience, 15, 421–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Timaner, M., Tsai, K. K., & Shaked, Y. (2020). The multifaceted role of mesenchymal stem cells in cancer. Seminars in Cancer Biology, 60, 225–237.

    Article  CAS  PubMed  Google Scholar 

  124. Keating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10(6), 709–716.

    Article  CAS  PubMed  Google Scholar 

  125. Pittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. npj Regenerative Medicine, 4, 22.

  126. Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells, 37(7), 855–864.

    Article  PubMed  Google Scholar 

  127. Fan, X. L., Zhang, Y., Li, X., & Fu, Q. L. (2020). Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cellular and Molecular Life Sciences, 77(14), 2771–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun, H., Shi, C., Ye, Z., Yao, B., Li, C., Wang, X., & Qian, Q. (2022). The role of mesenchymal stem cells in liver injury. Cell Biology International, 46(4), 501–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Viswanathan, P., & Gupta, S. (2012). New directions for cell-based therapies in acute liver failure. Journal of Hepatology, 57(4), 913–915.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang, Y. H., & Chen, E. Q. (2023) Mesenchymal stem cell therapy in acute liver failure. Gut Liver. Advance online publication. https://doi.org/10.5009/gnl220417

  131. Sang, J.-F., Shi, X.-L., Han, B., Huang, T., Huang, X., Ren, H.-Z., & Ding, Y.-T. (2016). Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary & Pancreatic Diseases International, 15(6), 602–611.

    Article  CAS  Google Scholar 

  132. Sun, L., Fan, X., Zhang, L., Shi, G., Aili, M., Lu, X., Jiang, T., & Zhang, Y. (2014). Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats. International Journal of Molecular Medicine, 34(4), 987–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Long, F. L., Wang, N., Zhang, R. Z., Qiu, H., Lv, J. L., Wang, X. F., Wang, M. G., & Mao, D. W. (2017). Effects of transplantation of bone marrow mesenchymal stem cells on hepatic injury and metabolism in rats with acute liver failure. International Journal of Clinical and Experimental Medicine, 10(3), 4881–4888.

    CAS  Google Scholar 

  134. Amiri, F., Molaei, S., Bahadori, M., Nasiri, F., Deyhim, M. R., Jalili, M. A., Nourani, M. R., & Habibi Roudkenar, M. (2016). Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure. Iran Biomedical Journal, 20(3), 135–144.

    PubMed  Google Scholar 

  135. Milosavljevic, N., Gazdic, M., Markovic, B. S., Arsenijevic, A., Nurkovic, J., Dolicanin, Z., Djonov, V., Lukic, M. L., & Volarevic, V. (2017). Mesenchymal Stem Cells Attenuate Acute Liver Injury by Altering Ratio Between Interleukin 17 Producing and Regulatory Natural Killer T Cells. Liver Transplantation, 23(8), 1040–1050.

    Article  PubMed  Google Scholar 

  136. Gazdic, M., Markovic, B. S., Arsenijevic, A., Jovicic, N., Acovic, A., Harrell, C. R., Fellabaum, C., Djonov, V., Arsenijevic, N., Lukic, M. L., et al. (2018). Crosstalk between mesenchymal stem cells and T regulatory cells is crucially important for the attenuation of acute liver injury. Liver Transplantation, 24(5), 687–702.

    Article  PubMed  Google Scholar 

  137. Gazdic, M., Markovic, B. S., Vucicevic, L., Nikolic, T., Djonov, V., Arsenijevic, N., Trajkovic, V., Lukic, M. L., & Volarevic, V. (2018). Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. Journal of Tissue Engineering and Regenerative Medicine, 12(2), E1173–E1185.

    Article  CAS  PubMed  Google Scholar 

  138. Wang, J., Ren, H., Yuan, X., Ma, H., Shi, X., & Ding, Y. (2018). Interleukin-10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatology Research, 48(3), E194–E202.

    Article  CAS  PubMed  Google Scholar 

  139. Liang, H., Huang, K., Su, T., Li, Z., Hu, S., Dinh, P. U., Wrona, E. A., Shao, C., Qiao, L., Vandergriff, A. C., et al. (2018). Mesenchymal Stem Cell/Red Blood Cell-Inspired Nanoparticle Therapy in Mice with Carbon Tetrachloride-Induced Acute Liver Failure. ACS Nano, 12(7), 6536–6544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Deng, L., Kong, X., Liu, G., Li, C., Chen, H., Hong, Z., Liu, J., & Xia, J. (2016). Transplantation of Adipose-Derived Mesenchymal Stem Cells Efficiently Rescues Thioacetamide-Induced Acute Liver Failure in Mice. Transplantation Proceedings, 48(6), 2208–2215.

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Z., Meng, F., Li, C., Zhou, X., Zeng, X., He, Y., Mrsny, R. J., Liu, M., Hu, X., Hu, J. F., et al. (2014). Human umbilical cord mesenchymal stromal cells rescue mice from acetaminophen-induced acute liver failure. Cytotherapy, 16(9), 1207–1219.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, S., Chen, L., Liu, T., Zhang, B., Xiang, D., Wang, Z., & Wang, Y. (2012). Human Umbilical Cord Matrix Stem Cells Efficiently Rescue Acute Liver Failure Through Paracrine Effects Rather than Hepatic Differentiation. Tissue Engineering Part A, 18(13–14), 1352–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yun, J. W., Ahn, J. H., Kwon, E., Kim, S. H., Kim, H., Jang, J. J., Kim, W. H., Kim, J. H., Han, S. Y., Kim, J. T., et al. (2016). Human umbilical cord-derived mesenchymal stem cells in acute liver injury: Hepatoprotective efficacy, subchronic toxicity, tumorigenicity, and biodistribution. Regulatory Toxicology and Pharmacology, 81, 437–447.

    Article  CAS  PubMed  Google Scholar 

  144. Cai, W., Sun, J., Sun, Y., Zhao, X., Guo, C., Dong, J., Peng, X., & Zhang, R. (2020). NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomaterials Science, 8(23), 6592–6602.

  145. Zhou, R., Li, Z., He, C., Li, R., Xia, H., Li, C., Xiao, J., & Chen, Z. Y. (2014). Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model. Plos One, 9(8), e104392.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cao, H., Yang, J., Yu, J., Pan, Q., Li, J., Zhou, P., Li, Y., Pan, X., Li, J., Wang, Y., et al. (2012). Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC Medicine, 10, 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Y., Li, Y., Li, W., Cai, J., Yue, M., Jiang, L., Xu, R., Zhang, L., Li, J., & Zhu, C. (2018). Therapeutic effect of human umbilical cord mesenchymal stem cells at various passages on acute liver failure in rats. Stem Cells International, 2018, 7159465.

  148. Chen, D., Zeng, R., Teng, G., Cai, C., Pan, T., Tu, H., Lin, H., Du, Q., Wang, H., & Chen, Y. (2021). Menstrual blood-derived mesenchymal stem cells attenuate inflammation and improve the mortality of acute liver failure combining with A2AR agonist in mice. Journal of Gastroenterology and Hepatology, 36(9), 2619–2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, L., Xiang, B., Wang, X., & Xiang, C. (2017). Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Research & Therapy, 8(1), 9.

    Article  Google Scholar 

  150. Arroyo, V., Moreau, R., & Jalan, R. (2020). Acute-on-Chronic Liver Failure. New England Journal of Medicine, 382(22), 2137–2145.

    Article  CAS  PubMed  Google Scholar 

  151. Shi, M., Zhang, Z., Xu, R., Lin, H., Fu, J., Zou, Z., Zhang, A., Shi, J., Chen, L., Lv, S., et al. (2012). Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Translational Medicine, 1(10), 725–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lin, B. L., Chen, J. F., Qiu, W. H., Wang, K. W., Xie, D. Y., Chen, X. Y., Liu, Q. L., Peng, L., Li, J. G., Mei, Y. Y., et al. (2017). Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. Hepatology, 66(1), 209–219.

    Article  CAS  PubMed  Google Scholar 

  153. He, Y., Guo, X., Lan, T., Xia, J., Wang, J., Li, B., Peng, C., Chen, Y., Hu, X., & Meng, Z. (2021). Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat3 signaling. Stem Cell Research & Therapy, 12(1), 396.

    Article  CAS  Google Scholar 

  154. Yue, T., Zhang, Q., Cai, T., Xu, M., Zhu, H., Pourkarim, M. R., De Clercq, E., & Li, G. (2022). Trends in the disease burden of HBV and HCV infection in China from 1990–2019. International Journal of Infectious Diseases, 122, 476–485.

    Article  PubMed  Google Scholar 

  155. Shin, E.-C., Sung, P. S., & Park, S.-H. (2016). Immune responses and immunopathology in acute and chronic viral hepatitis. Nature Reviews Immunology, 16(8), 509–523.

    Article  CAS  PubMed  Google Scholar 

  156. Guan, J., Ren, Y., Wang, J., & Zhu, H. (2022). The knowledge on HCV: From the discovery to the elimination. Infectious Microbes & Diseases, 4(1), 1–6.

  157. Rehermann, B., & Bertoletti, A. (2015). Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology, 61(2), 712–721.

    Article  CAS  PubMed  Google Scholar 

  158. Zhou, J., Huang, C., Zhu, H., & Chen, Z. (2022). Focus on dysregulated adaptive immunity in chronic hepatitis B: A promising direction for immunotherapy. Infectious Microbes & Diseases, 4(1), 7–12.

  159. Zhang, K., Lai, X., Song, J., He, L., Wang, L., Ou, G., Tian, X., Wang, L., Deng, J., Zhang, J., et al. (2021). A novel cell culture model reveals the viral interference during hepatitis B and C virus coinfection. Antiviral Research, 189, 105061.

    Article  CAS  PubMed  Google Scholar 

  160. Yates, K. B., Tonnerre, P., Martin, G. E., Gerdemann, U., Al Abosy, R., Comstock, D. E., Weiss, S. A., Wolski, D., Tully, D. C., Chung, R. T., et al. (2021). Epigenetic scars of CD8(+) T cell exhaustion persist after cure of chronic infection in humans. Nature Immunology, 22(8), 1020–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rong, Q., Zhang, L., Su, E., Li, J., Li, J., Liu, Z., Huang, Z., Ma, W., Cao, K., & Huang, J. (2008). Bone marrow-derived mesenchymal stem cells are capable of mediating hepatitis B virus infection in injured tissues. Journal of Viral Hepatitis, 15(8), 607–614.

    Article  CAS  PubMed  Google Scholar 

  162. Wang, Y., Wang, F., Zhao, H., Zhang, X., Chen, H., & Zhang, K. (2014). Human adipose-derived mesenchymal stem cells are resistant to HBV infection during differentiation into hepatocytes in vitro. International Journal of Molecular Sciences, 15(4), 6096–6110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Y. H., Xu, Y., Wu, H. M., Yang, J., Yang, L. H., & Yue-Meng, W. (2016). Umbilical cord-derived mesenchymal stem cell transplantation in hepatitis B virus related acute-on-chronic liver failure treated with plasma exchange and entecavir: A 24-month prospective study. Stem Cell Reviews and Reports, 12(6), 645–653.

  164. Jia, Y., Shu, X., Yang, X., Sun, H., Cao, H., Cao, H., Zhang, K., Xu, Q., Li, G., & Yang, Y. (2020). Enhanced therapeutic effects of umbilical cord mesenchymal stem cells after prolonged treatment for HBV-related liver failure and liver cirrhosis. Stem Cell Research & Therapy, 11(1), 277.

    Article  CAS  Google Scholar 

  165. Salama, H., Zekri, A. R., Medhat, E., Al Alim, S. A., Ahmed, O. S., Bahnassy, A. A., Lotfy, M. M., Ahmed, R., & Musa, S. (2014). Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Research & Therapy, 5(3), 70.

    Article  Google Scholar 

  166. Gossard, A. A., & Lindor, K. D. (2012). Autoimmune hepatitis: A review. Journal of Gastroenterology, 47(5), 498–503.

    Article  CAS  PubMed  Google Scholar 

  167. Chen, Y., Chen, S., Liu, L. Y., Zou, Z. L., Cai, Y. J., Wang, J. G., Chen, B., Xu, L. M., Lin, Z., Wang, X. D., et al. (2014). Mesenchymal stem cells ameliorate experimental autoimmune hepatitis by activation of the programmed death 1 pathway. Immunology Letters, 162(2Pt B), 222–228.

  168. Zhang, F., Fan, L., Liu, Q., Tang, S., Zhang, S., Xiao, L., Zhang, L., Li, Q., Maihemuti, N., & Li, L. (2022). Comprehensive immune cell analysis of human menstrual-blood-derived stem cells therapy to concanavalin A hepatitis. Frontiers in Immunology, 13, 974387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Eslam, M., & George, J. (2019). Genetic contributions to NAFLD: Leveraging shared genetics to uncover systems biology. Nature Reviews Gastroenterology & Hepatology, 17(1), 40–52.

  170. Zhang, X., Ji, X., Wang, Q., & Li, J. Z. (2018). New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein & Cell, 9(2), 164–177.

    Article  CAS  Google Scholar 

  171. Santhekadur, P. K., Kumar, D. P., & Sanyal, A. J. (2018). Preclinical models of non-alcoholic fatty liver disease. Journal of Hepatology, 68(2), 230–237.

    Article  CAS  PubMed  Google Scholar 

  172. Lee, C. W., Hsiao, W. T., & Lee, O. K. (2017). Mesenchymal stromal cell-based therapies reduce obesity and metabolic syndromes induced by a high-fat diet. Translational Research, 182(61–74), e68.

    Google Scholar 

  173. Winkler, S., & Christ, B. (2014). Treatment of NASH with human mesenchymal stem cells in the immunodeficient mouse. Methods in Molecular Biology, 1213, 51–56.

    Article  CAS  PubMed  Google Scholar 

  174. Du, J., Jiang, Y., Liu, X., Ji, X., Xu, B., Zhang, Y., Liu, Y., Zhang, T., & Lin, J. (2023). HGF Secreted by Menstrual Blood-Derived Endometrial Stem Cells Ameliorates Non-Alcoholic Fatty Liver Disease Through Downregulation of Hepatic Rnf186. Stem Cells, 41(2), 153–168.

    Article  PubMed  Google Scholar 

  175. Wang, H., Wang, D., Yang, L., Wang, Y., Jia, J., Na, D., Chen, H., Luo, Y., & Liu, C. (2017). Compact bone-derived mesenchymal stem cells attenuate nonalcoholic steatohepatitis in a mouse model by modulation of CD4 cells differentiation. International Immunopharmacology, 42, 67–73.

    Article  CAS  PubMed  Google Scholar 

  176. Orman, E. S., Odena, G., & Bataller, R. (2013). Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy. Journal of Gastroenterology and Hepatology, 28(Suppl 1), 77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Huang, D. Q., Mathurin, P., Cortez-Pinto, H., & Loomba, R. (2023). Global epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk factors. Nature Reviews Gastroenterology & Hepatology, 20(1), 37–49.

  178. Ezquer, F., Bruna, F., Calligaris, S., Conget, P., & Ezquer, M. (2016). Multipotent mesenchymal stromal cells: A promising strategy to manage alcoholic liver disease. World Journal of Gastroenterology, 22(1), 24–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Han, J., Lee, C., Hur, J., & Jung, Y. (2023). Current Therapeutic Options and Potential of Mesenchymal Stem Cell Therapy for Alcoholic Liver Disease. Cells, 12(1), 22.

    Article  CAS  Google Scholar 

  180. Jang, Y. O., Kim, Y. J., Baik, S. K., Kim, M. Y., Eom, Y. W., Cho, M. Y., Park, H. J., Park, S. Y., Kim, B. R., Kim, J. W., et al. (2014). Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: A pilot study. Liver International, 34(1), 33–41.

    Article  CAS  PubMed  Google Scholar 

  181. Lanthier, N., Lin-Marq, N., Rubbia-Brandt, L., Clement, S., Goossens, N., & Spahr, L. (2017). Autologous bone marrow-derived cell transplantation in decompensated alcoholic liver disease: What is the impact on liver histology and gene expression patterns? Stem Cell Research & Therapy, 8(1), 88.

    Article  Google Scholar 

  182. Friedman, S. L., & Pinzani, M. (2022). Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology, 75(2), 473–488.

    Article  CAS  PubMed  Google Scholar 

  183. Roehlen, N., Crouchet, E., & Baumert, T. F. (2020). Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9(4), 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chang, Y. J., Liu, J. W., Lin, P. C., Sun, L. Y., Peng, C. W., Luo, G. H., Chen, T. M., Lee, R. P., Lin, S. Z., Harn, H. J., et al. (2009). Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sciences, 85(13–14), 517–525.

    Article  CAS  PubMed  Google Scholar 

  185. Miryounesi, M., Piryaei, A., Pournasr, B., Aghdami, N., & Baharvand, H. (2013). Repeated versus single transplantation of mesenchymal stem cells in carbon tetrachloride-induced liver injury in mice. Cell Biology International, 37(4), 340–347.

    Article  CAS  PubMed  Google Scholar 

  186. Ali, G., & Masoud, M. S. (2012). Bone marrow cells ameliorate liver fibrosis and express albumin after transplantation in CCl(4)-induced fibrotic liver. Saudi Journal of Gastroenterology, 18(4), 263–267.

  187. Fiore, E. J., Bayo, J. M., Garcia, M. G., Malvicini, M., Lloyd, R., Piccioni, F., Rizzo, M., Peixoto, E., Sola, M. B., Atorrasagasti, C., et al. (2015). Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice. Stem Cells and Development, 24(6), 791–801.

  188. Milosavljevic, N., Gazdic, M., Simovic Markovic, B., Arsenijevic, A., Nurkovic, J., Dolicanin, Z., Jovicic, N., Jeftic, I., Djonov, V., Arsenijevic, N., et al. (2018). Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells - an experimental study. Transplant International, 31(1), 102–115.

    Article  CAS  PubMed  Google Scholar 

  189. Idriss, N. K., Sayyed, H. G., Osama, A., & Sabry, D. (2018). Treatment Efficiency of Different Routes of Bone Marrow-Derived Mesenchymal Stem Cell Injection in Rat Liver Fibrosis Model. Cellular Physiology and Biochemistry, 48(5), 2161–2171.

    Article  CAS  PubMed  Google Scholar 

  190. Nasir, G. A., Mohsin, S., Khan, M., Shams, S., Ali, G., Khan, S. N., & Riazuddin, S. (2013). Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. Journal of Translational Medicine, 11, 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Du, C., Jiang, M., Wei, X., Qin, J., Xu, H., Wang, Y., Zhang, Y., Zhou, D., Xue, H., Zheng, S., et al. (2018). Transplantation of human matrix metalloproteinase-1 gene-modified bone marrow-derived mesenchymal stem cell attenuates CCL4-induced liver fibrosis in rats. International Journal of Molecular Medicine, 41(6), 3175–3184.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang, Y., Lian, F., Li, J., Fan, W., Xu, H., Yang, X., Liang, L., Chen, W., & Yang, J. (2012). Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats. Journal of Translational Medicine, 10, 133.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lou, G., Yang, Y., Liu, F., Ye, B., Chen, Z., Zheng, M., & Liu, Y. (2017). MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. Journal of Cellular and Molecular Medicine, 21(11), 2963–2973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jung, K. H., Shin, H. P., Lee, S., Lim, Y. J., Hwang, S. H., Han, H., Park, H. K., Chung, J. H., & Yim, S. V. (2009). Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model. Liver International, 29(6), 898–909.

    Article  CAS  PubMed  Google Scholar 

  195. Seo, K. W., Sohn, S. Y., Bhang, D. H., Nam, M. J., Lee, H. W., & Youn, H. Y. (2014). Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood-derived mesenchymal stem cells on liver fibrosis in rats. Cell Biology International, 38(1), 106–116.

    Article  CAS  PubMed  Google Scholar 

  196. Jung, J., Choi, J. H., Lee, Y., Park, J. W., Oh, I. H., Hwang, S. G., Kim, K. S., & Kim, G. J. (2013). Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells, 31(8), 1584–1596.

    Article  CAS  PubMed  Google Scholar 

  197. Gines, P., Krag, A., Abraldes, J. G., Sola, E., Fabrellas, N., & Kamath, P. S. (2021). Liver cirrhosis. Lancet, 398(10308), 1359–1376.

    Article  PubMed  Google Scholar 

  198. European Association for the Study of the Liver. (2018). Electronic address eee, European Association for the Study of the L: EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. Journal of Hepatology, 69(2), 406–460.

    Article  Google Scholar 

  199. Su, D. N., Wu, S. P., & Xu, S. Z. (2020). Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis. Stem Cell Research & Therapy, 11(1), 395.

    Article  CAS  Google Scholar 

  200. Liu, Q., Lv, C., Huang, Q., Zhao, L., Sun, X., Ning, D., Liu, J., Jiang, Y., & Jin, S. (2022). ECM1 modified HF-MSCs targeting HSC attenuate liver cirrhosis by inhibiting the TGF-beta/Smad signaling pathway. Cell Death Discovery, 8(1), 51.

  201. Shi, M., Li, Y. Y., Xu, R. N., Meng, F. P., Yu, S. J., Fu, J. L., Hu, J. H., Li, J. X., Wang, L. F., Jin, L., et al. (2021). Mesenchymal stem cell therapy in decompensated liver cirrhosis: A long-term follow-up analysis of the randomized controlled clinical trial. Hepatology International, 15(6), 1431–1441.

    Article  PubMed  Google Scholar 

  202. Hou, J., Zhang, H., Sun, B., & Karin, M. (2020). The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications. Journal of Hepatology, 72(1), 167–182.

    Article  CAS  PubMed  Google Scholar 

  203. Villanueva, A. (2013). Rethinking future development of molecular therapies in hepatocellular carcinoma: A bottom-up approach. Journal of Hepatology, 59(2), 392–395.

    Article  PubMed  Google Scholar 

  204. Ponziani, F. R., Bhoori, S., Castelli, C., Putignani, L., Rivoltini, L., Del Chierico, F., Sanguinetti, M., Morelli, D., Paroni Sterbini, F., Petito, V., et al. (2019). Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology, 69(1), 107–120.

    Article  CAS  PubMed  Google Scholar 

  205. Lytle, N. K., Barber, A. G., & Reya, T. (2018). Stem cell fate in cancer growth, progression and therapy resistance. Nature Reviews Cancer, 18(11), 669–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R. C., Ye, L., & Zhang, X. (2008). Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Research, 18(4), 500–507.

    Article  CAS  PubMed  Google Scholar 

  207. Chen, X. C., Wang, R., Zhao, X., Wei, Y. Q., Hu, M., Wang, Y. S., Zhang, X. W., Zhang, R., Zhang, L., Yao, B., et al. (2006). Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis, 27(12), 2434–2441.

    Article  CAS  PubMed  Google Scholar 

  208. Li, G. C., Ye, Q. H., Xue, Y. H., Sun, H. J., Zhou, H. J., Ren, N., Jia, H. L., Shi, J., Wu, J. C., Dai, C., et al. (2010). Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Science, 101(12), 2546–2553.

    Article  CAS  PubMed  Google Scholar 

  209. Gao, Y., Yao, A., Zhang, W., Lu, S., Yu, Y., Deng, L., Yin, A., Xia, Y., Sun, B., & Wang, X. (2010). Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. Oncogene, 29(19), 2784–2794.

    Article  CAS  PubMed  Google Scholar 

  210. Li, G., Miao, F., Zhu, J., & Chen, Y. (2017). Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1. Molecular Medicine Reports, 16(5), 5799–5806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tang, Y. M., Bao, W. M., Yang, J. H., Ma, L. K., Yang, J., Xu, Y., Yang, L. H., Sha, F., Xu, Z. Y., Wu, H. M., et al. (2016). Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Molecular Medicine Reports, 14(3), 2717–2724.

    Article  CAS  PubMed  Google Scholar 

  212. Wu, N., Zhang, Y.-L., Wang, H.-T., Li, D.-W., Dai, H.-J., Zhang, Q.-Q., Zhang, J., Ma, Y., Xia, Q., Bian, J.-M., et al. (2016). Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. Cancer Biology & Therapy, 17(5), 558–565.

    Article  CAS  Google Scholar 

  213. André, F., Bayo, J., Fiore, E., Aquino, J. B., Malvicini, M., Rizzo, M., Peixoto, E., Andriani, O., Alaniz, L., Piccioni, F., et al. (2014). Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma. Plos One, 9(4), e95171.

    Article  Google Scholar 

  214. Liang, W., Chen, X., Zhang, S., Fang, J., Chen, M., Xu, Y., & Chen, X. (2021). Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cellular & Molecular Biology Letters, 26(1), 3.

    Article  CAS  Google Scholar 

  215. Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al. (2022). Gene editing and its applications in biomedicine. Science China-Life Sciences, 65(4), 660–700.

  216. Gillmore, J. D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M. L., Seitzer, J., O’Connell, D., Walsh, K. R., Wood, K., et al. (2021). CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. New England Journal of Medicine, 385(6), 493–502.

    Article  CAS  PubMed  Google Scholar 

  217. Allen, F., Crepaldi, L., Alsinet, C., Strong, A. J., Kleshchevnikov, V., De Angeli, P., Palenikova, P., Khodak, A., Kiselev, V., Kosicki, M., et al. (2019). Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 37, 64–72.

    Article  CAS  Google Scholar 

  218. Oakes, B. L., Fellmann, C., Rishi, H., Taylor, K. L., Ren, S. M., Nadler, D. C., Yokoo, R., Arkin, A. P., Doudna, J. A., & Savage, D. F. (2019). CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell, 176(1–2), 254-267 e261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Verkuijl, S. A. N., & Rots, M. G. (2019). The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Current Opinion in Biotechnology, 55, 68–73.

    Article  CAS  PubMed  Google Scholar 

  220. Drysdale, C. M., Nassehi, T., Gamer, J., Yapundich, M., Tisdale, J. F., & Uchida, N. (2021). Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for beta-hemoglobinopathies. Cell Stem Cell, 28(2), 191–208.

    Article  CAS  PubMed  Google Scholar 

  221. Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N. S., Cai, W., Yang, G., Bronson, R., Crowley, D. G., et al. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 514(7522), 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Soldner, F., & Jaenisch, R. (2018). Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell, 175(3), 615–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang, Z., Zhang, Y., Gao, F., Han, S., Cheah, K. S., Tse, H. F., & Lian, Q. (2017). CRISPR/Cas9 genome-editing system in human stem cells: Current status and future prospects. Molecular Therapy-Nucleic Acids, 9, 230–241.

  224. Filho, D. M., de Carvalho, R. P., Oliveira, L. F., Dos Santos, A., Parreira, R. C., Pinto, M. C. X., & Resende, R. R. (2019). Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System. Stem Cell Reviews and Reports, 15(4), 463–473.

    Article  PubMed  Google Scholar 

  225. Babazadeh, S., Nassiri, S. M., Siavashi, V., Sahlabadi, M., Hajinasrollah, M., & Zamani-Ahmadmahmudi, M. (2021). Macrophage polarization by MSC-derived CXCL12 determines tumor growth. Cellular & Molecular Biology Letters, 26(1), 30.

    Article  CAS  Google Scholar 

  226. Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N., & Simpson, R. J. (2016). Extracellular vesicle isolation and characterization: Toward clinical application. The Journal of Clinical Investigation, 126(4), 1152–1162.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Chen, L., Wang, Y., Li, S., Zuo, B., Zhang, X., Wang, F., & Sun, D. (2020). Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics, 10(20), 9425–9442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hu, C., Wu, Z., & Li, L. (2020). Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. Journal of Cellular and Molecular Medicine, 24(1), 40–49.

    Article  PubMed  Google Scholar 

  229. Xu, J., Chen, P., Yu, C., Shi, Q., Wei, S., Li, Y., Qi, H., Cao, Q., Guo, C., Wu, X., et al. (2022). Hypoxic bone marrow mesenchymal stromal cells-derived exosomal miR-182-5p promotes liver regeneration via FOXO1-mediated macrophage polarization. The FASEB Journal, 36(10), e22553.

    Article  CAS  PubMed  Google Scholar 

  230. Zhang, W., Chen, Q., Ye, Y., Zou, B., Liu, Y., Cheng, L., Yu, J., & Zheng, S. (2020). AntagomiR-199a Enhances the Liver Protective Effect of Hypoxia-Preconditioned BM-MSCs in a Rat Model of Reduced-Size Liver Transplantation. Transplantation, 104(1), 61–71.

    Article  CAS  PubMed  Google Scholar 

  231. Carriere, A., Ebrahimian, T. G., Dehez, S., Auge, N., Joffre, C., Andre, M., Arnal, S., Duriez, M., Barreau, C., Arnaud, E., et al. (2009). Preconditioning by mitochondrial reactive oxygen species improves the proangiogenic potential of adipose-derived cells-based therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(7), 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  232. Zheng, J., Li, H., He, L., Huang, Y., Cai, J., Chen, L., Zhou, C., Fu, H., Lu, T., Zhang, Y., et al. (2019). Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis. Cell Proliferation, 52(2), e12546.

    Article  CAS  PubMed  Google Scholar 

  233. El-Magd, M. A., Mohamed, Y., El-Shetry, E. S., Elsayed, S. A., Abo Gazia, M., Abdel-Aleem, G. A., Shafik, N. M., Abdo, W. S., El-Desouki, N. I., & Basyony, M. A. (2019). Melatonin maximizes the therapeutic potential of non-preconditioned MSCs in a DEN-induced rat model of HCC. Biomedicine & Pharmacotherapy, 114, 108732.

    Article  CAS  Google Scholar 

  234. Zhang, Y., Li, R., Rong, W., Han, M., Cui, C., Feng, Z., Sun, X., & Jin, S. (2018). Therapeutic effect of hepatocyte growth factor-overexpressing bone marrow-derived mesenchymal stem cells on CCl(4)-induced hepatocirrhosis. Cell Death & Disease, 9(12), 1186.

    Article  Google Scholar 

  235. Zheng, X., Zhou, X., Ma, G., Yu, J., Zhang, M., Yang, C., Hu, Y., Ma, S., Han, Z., Ning, W., et al. (2022). Endogenous Follistatin-like 1 guarantees the immunomodulatory properties of mesenchymal stem cells during liver fibrotic therapy. Stem Cell Research & Therapy, 13(1), 403.

    Article  CAS  Google Scholar 

  236. Takeuchi, S., Tsuchiya, A., Iwasawa, T., Nojiri, S., Watanabe, T., Ogawa, M., Yoshida, T., Fujiki, K., Koui, Y., Kido, T., et al. (2021). Small extracellular vesicles derived from interferon-gamma pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis. npj Regenerative Medicine, 6(1), 19.

  237. de Witte, S. F. H., Merino, A. M., Franquesa, M., Strini, T., van Zoggel, J. A. A., Korevaar, S. S., Luk, F., Gargesha, M., O’Flynn, L., Roy, D., et al. (2017). Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Research & Therapy, 8(1), 140.

    Article  Google Scholar 

  238. Anaparthy, N., Ho, Y. J., Martelotto, L., Hammell, M., & Hicks, J. (2019). Single-Cell Applications of Next-Generation Sequencing. Cold Spring Harbor Perspectives in Medicine, 9(10), a026898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhou, T., Kiran, M., Lui, K. O., & Ding, Q. (2022). Decoding liver fibrogenesis with single-cell technologies. Life Medicine, 1(3), 333–344.

    Article  Google Scholar 

  240. Jovic, D., Liang, X., Zeng, H., Lin, L., Xu, F., & Luo, Y. (2022). Single-cell RNA sequencing technologies and applications: A brief overview. Clinical and Translational Medicine, 12(3), e694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cohn, R. L., Gasek, N. S., Kuchel, G. A., & Xu, M. (2023). The heterogeneity of cellular senescence: Insights at the single-cell level. Trends in Cell Biology, 33(1), 9–17.

    Article  CAS  PubMed  Google Scholar 

  242. Halpern, K. B., Shenhav, R., Matcovitch-Natan, O., Toth, B., Lemze, D., Golan, M., Massasa, E. E., Baydatch, S., Landen, S., Moor, A. E., et al. (2017). Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature, 542(7641), 352–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zheng, C., Zheng, L., Yoo, J. K., Guo, H., Zhang, Y., Guo, X., Kang, B., Hu, R., Huang, J. Y., Zhang, Q., et al. (2017). Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell, 169(7), 1342-1356 e1316.

    Article  CAS  PubMed  Google Scholar 

  244. Ramachandran, P., Dobie, R., Wilson-Kanamori, J. R., Dora, E. F., Henderson, B. E. P., Luu, N. T., Portman, J. R., Matchett, K. P., Brice, M., Marwick, J. A., et al. (2019). Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature, 575(7783), 512–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zhang, C., Li, J., Cheng, Y., Meng, F., Song, J. W., Fan, X., Fan, H., Li, J., Fu, Y. L., Zhou, M. J., et al. (2023). Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. Gut, 72(1), 153–167.

    Article  CAS  PubMed  Google Scholar 

  246. Tang, X. Y., Wu, S., Wang, D., Chu, C., Hong, Y., Tao, M., Hu, H., Xu, M., Guo, X., & Liu, Y. (2022). Human organoids in basic research and clinical applications. Signal Transduction and Targeted Therapy, 7(1), 168.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Qu, J., Kalyani, F. S., Liu, L., Cheng, T., & Chen, L. (2021). Tumor organoids: Synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Communications, 41(12), 1331–1353.

  248. Zeng, F., Zhang, Y., Han, X., Weng, J., & Gao, Y. (2019). Liver buds and liver organoids: New tools for liver development, disease and medical application. Stem Cell Reviews and Reports, 15(6), 774–784.

  249. Funata, M., Nio, Y., Erion, D. M., Thompson, W. L., & Takebe, T. (2021). The promise of human organoids in the digestive system. Cell Death and Differentiation, 28(1), 84–94.

    Article  PubMed  Google Scholar 

  250. De Siervi, S., & Turato, C. (2023). Liver organoids as an in vitro model to study primary liver cancer. International Journal of Molecular Sciences, 24(5), 4529.

  251. He, C., Lu, D., Lin, Z., Chen, H., Li, H., Yang, X., Yang, M., Wang, K., Wei, X., Zheng, S., et al. (2023). Liver organoids, novel and promising modalities for exploring and repairing liver injury. Stem Cell Reviews and Reports, 19(2), 345–357.

  252. Yang, X., Meng, Y., Han, Z., Ye, F., Wei, L., & Zong, C. (2020). Mesenchymal stem cell therapy for liver disease: Full of chances and challenges. Cell & Bioscience, 10, 123.

    Article  Google Scholar 

  253. Christ, B., Bruckner, S., & Winkler, S. (2015). The therapeutic promise of mesenchymal stem cells for liver restoration. Trends in Molecular Medicine, 21(11), 673–686.

    Article  PubMed  Google Scholar 

  254. Irudayaswamy, A., Muthiah, M., Zhou, L., Hung, H., Jumat, N. H. B., Haque, J., Teoh, N., Farrell, G., Riehle, K. J., Lin, J. S., et al. (2018). Long-Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers. Stem Cells, 36(1), 103–113.

    Article  CAS  PubMed  Google Scholar 

  255. Khan, S., Mahgoub, S., Fallatah, N., Lalor, P. F., & Newsome P. N. (2023). Liver disease and cell therapy - advances made and remaining challenges. Stem Cells. Advance online publication. https://doi.org/10.1093/stmcls/sxad029

  256. Hendijani, F. (2017) Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Proliferation, 50(2), e12334.

  257. Chen, X., Huang, J., Wu, J., Hao, J., Fu, B., Wang, Y., Zhou, B., Na, T., Wei, J., Zhang, Y., et al. (2022). Human mesenchymal stem cells. Cell Proliferation, 55(4), e13141.

    Article  CAS  PubMed  Google Scholar 

  258. Galipeau, J., & Sensebe, L. (2018). Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell, 22(6), 824–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J. M., Kassis, I., Bulte, J. W., Petrou, P., Ben-Hur, T., Abramsky, O., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67(10), 1187–1194.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Berardis, S., Dwisthi Sattwika, P., Najimi, M., & Sokal, E. M. (2015). Use of mesenchymal stem cells to treat liver fibrosis: Current situation and future prospects. World Journal of Gastroenterology, 21(3), 742–758.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Wang, Y., Yi, H., & Song, Y. (2021). The safety of MSC therapy over the past 15 years: A meta-analysis. Stem Cell Research & Therapy, 12(1), 545.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Guolin Li from College of Life Sciences, Hunan Normal University and Dr. Jingjing Qu and Prof. Hongcui Cao from The First Affiliated Hospital, Zhejiang University School of Medicine for writing help of this manuscript. Additionally, we would like to thank Editage (http://www.editage.cn) for English language editing.

Funding

This work was supported by the National Key R&D Program of China (2022YFA1105603 and 2022YFC2304405), the National Natural Science Foundation of China (81900563), the Hangzhou Science and Technology Project (20200224), the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the Fundamental Research Funds for the Central Universities (2022ZFJH003), and CAMS Innovation Fund for Medical Sciences (2019-I2M-5–045).

Author information

Authors and Affiliations

Authors

Contributions

Charlie Xiang and Lijun Chen designed the manuscript, Lijun Chen wrote the manuscript, Ning Zhang, Yuqi Huang, Qi Zhang, Yangxin Fang, Jiamin Fu, Yin Yuan, Lu Chen, Xin Chen, Zhenyu Xu, Yifei Li, and Hiromi Izawa collected the references and modified the manuscript.

Corresponding author

Correspondence to Charlie Xiang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The author declares no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, N., Huang, Y. et al. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev and Rep 19, 2192–2224 (2023). https://doi.org/10.1007/s12015-023-10583-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10583-5

Keywords

Navigation