Skip to main content

Advertisement

Log in

Arsenic and Tau Phosphorylation: a Mechanistic Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic poisoning can affect the peripheral nervous system and cause peripheral neuropathy. Despite different studies on the mechanism of intoxication, the complete process is not explained yet, which can prevent further intoxication and produce effective treatment. In the following paper, we would like to consider the idea that arsenic might cause some diseases via inflammation induction, and tauopathy in neurons. Tau protein, one of the microtubule-associated proteins expressed in neurons, contributes to neuronal microtubules structure. Arsenic may be involved in cellular cascades involved in modulating tau function or hyperphosphorylation of tau protein, which ultimately leads to nerve destruction. For proof of this assumption, some investigations have been planned to measure the association between arsenic and quantities of phosphorylation of tau protein. Additionally, some researchers have investigated the association between microtubule trafficking in neurons and the levels of tau protein phosphorylation. It should be noticed that changing tau phosphorylation in arsenic toxicity may add a new feature to understanding the mechanism of poisonousness and aid in discovering novel therapeutic candidates such as tau phosphorylation inhibitors for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Chen QY, Costa M (2021) Arsenic: a global environmental challenge. Annu Rev Pharmacol Toxicol 61:47–63

    Article  CAS  PubMed  Google Scholar 

  2. Duker AA, Carranza E, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  CAS  PubMed  Google Scholar 

  3. Rodrıguez V, Jimenez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    Article  PubMed  Google Scholar 

  4. Kesici GG (2016) Arsenic ototoxicity Journal of otology 11:13–17

    Article  PubMed  Google Scholar 

  5. Beamer P, Sugeng A, Kelly M, Lothrop N, Klimecki W, Wilkinson S, Loh M (2014) Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ Sci: Processes Impacts 16:1275–1281

    CAS  Google Scholar 

  6. Menka N, Root R, Chorover J (2014) Bioaccessibility, release kinetics, and molecular speciation of arsenic and lead in geo-dusts from the Iron King Mine Federal Superfund site in Humboldt, Arizona. Rev Environ Health 29:23–27

    Article  CAS  PubMed  Google Scholar 

  7. Sarwar T, Khan S, Muhammad S, Amin S (2021) Arsenic speciation, mechanisms, and factors affecting rice uptake and potential human health risk: a systematic review. Environ Technol Innov 22:101392

  8. Heyman A, Pfeiffer JB Jr, Willett RW, Taylor HM (1956) Peripheral neuropathy caused by arsenical intoxication: a study of 41 cases with observations on the effects of BAL (2, 3, dimercapto-propanol). N Engl J Med 254:401–409

    Article  CAS  PubMed  Google Scholar 

  9. Schoolmeester W, White D (1980) Arsenic poisoning. South Med J 73:198–208

    Article  CAS  PubMed  Google Scholar 

  10. Morton WE, Caron GA (1989) Encephalopathy: an uncommon manifestation of workplace arsenic poisoning? Am J Ind Med 15:1–5

    Article  CAS  PubMed  Google Scholar 

  11. Khan KM, Chakraborty R, Bundschuh J, Bhattacharya P, Parvez F (2020) Health effects of arsenic exposure in Latin America: an overview of the past eight years of research. Sci Total Environ 710:136071

    Article  CAS  PubMed  Google Scholar 

  12. Luo J, Shu W (2015) Arsenic-induced developmental neurotoxicity. In: Handbook of arsenic toxicology. Elsevier, pp 363–386

    Chapter  Google Scholar 

  13. Patel E, Reynolds M (2013) Methylmercury impairs motor function in early development and induces oxidative stress in cerebellar granule cells. Toxicol Lett 222:265–272

    Article  CAS  PubMed  Google Scholar 

  14. Winneke G (2011) Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308:9–15

    Article  CAS  PubMed  Google Scholar 

  15. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  PubMed  Google Scholar 

  16. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Current environmental health reports 1:132–147

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vahidnia A, van der Straaten R, Romijn F, Van Pelt J, van der Voet G, De Wolff F (2007) Arsenic metabolites affect expression of the neurofilament and tau genes: an in-vitro study into the mechanism of arsenic neurotoxicity. Toxicol In Vitro 21:1104–1112

    Article  CAS  PubMed  Google Scholar 

  18. Abernathy CO, Liu Y-P, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci 98:1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giasson BI, Mushynski WE (1996) Aberrant stress-induced phosphorylation of perikaryal neurofilaments. J Biol Chem 271:30404–30409

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ (1996) Differential activation of ERK, JNK/SAPK and P3/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med 21:771–781

    Article  CAS  PubMed  Google Scholar 

  22. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1739:280–297

    Article  CAS  PubMed  Google Scholar 

  24. Weingarten MD, Lockwood AH, Hwo S-Y, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci 72:1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    Article  CAS  PubMed  Google Scholar 

  26. Nichols TW (2014) Hyperphosphorylation of tau protein in Down’s dementia and Alzheimer’s disease: methylation and implications in prevention and therapy. J Alzheimers Dis Parkinsonism 4:1–8

    Article  Google Scholar 

  27. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. The Lancet Neurology 12:609–622

    Article  CAS  PubMed  Google Scholar 

  28. Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, De Silva R, Di Giovanni G (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xia Y, Prokop S, Giasson BI (2021) “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Molecular Neurodegeneration 16:1–19

    Article  Google Scholar 

  30. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin M-L, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12:289–309

    Article  CAS  PubMed  Google Scholar 

  31. Zhao W, Xiang Y, Zhang Z, Liu X, Jiang M, Jiang B, Song Y, Hu J (2020) Pharmacological inhibition of GSK3 promotes TNFα-induced GM-CSF via up-regulation of ERK signaling in nasopharyngeal carcinoma (NPC). Int Immunopharmacol 83:106447

    Article  CAS  PubMed  Google Scholar 

  32. Frame S, Cohen P, Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7:1321–1327

    Article  CAS  PubMed  Google Scholar 

  33. Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle: separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    Article  CAS  PubMed  Google Scholar 

  34. Xu M, Wang S, Zhu L, Wu P, Dai W, Rakesh K (2019) Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: a critical review. Eur J Med Chem 164:448–470

    Article  CAS  PubMed  Google Scholar 

  35. Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J (2015) G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 272:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park SH, Park-Min K-H, Chen J, Hu X, Ivashkiv LB (2011) Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages. Nat Immunol 12:607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC (2016) Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics 15:409–425

    Article  CAS  PubMed  Google Scholar 

  38. Ramesh M, Gopinath P, Govindaraju T (2020) Role of post-translational modifications in Alzheimer’s disease. ChemBioChem 21:1052–1079

    Article  CAS  PubMed  Google Scholar 

  39. Clayton KA, Van Enoo AA, Ikezu T (2017) Alzheimer’s disease: the role of microglia in brain homeostasis and proteopathy. Front Neurosci 11:680

    Article  PubMed  PubMed Central  Google Scholar 

  40. Niño SA, Morales-Martínez A, Chi-Ahumada E, Carrizales L, Salgado-Delgado R, Pérez-Severiano F, Díaz-Cintra S, Jiménez-Capdeville ME, Zarazúa S (2018b) Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s disease model. ACS Chem Nerosci 10:323–336

    Article  Google Scholar 

  41. Rahman MA, Hannan MA, Uddin MJ, Rahman MS, Rashid MM, Kim B (2021) Exposure to environmental arsenic and emerging risk of Alzheimer’s disease: perspective mechanisms, management strategy, and future directions. Toxics 9:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cm C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  Google Scholar 

  43. Rajasekhar K, Govindaraju T (2018) Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Adv 8:23780–23804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roy NK, Murphy A, Costa M (2020) Arsenic methyltransferase and methylation of inorganic arsenic. Biomolecules 10:1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174:130–138

    Article  CAS  PubMed  Google Scholar 

  46. Tripathi MK, Kartawy M, Ginzburg S, Amal H (2022) Arsenic alters nitric oxide signaling similar to autism spectrum disorder and Alzheimer’s disease-associated mutations. Transl Psychiatry 12:1–11

    Article  Google Scholar 

  47. Fu S-C, Lin J-W, Liu J-M, Liu S-H, Fang K-M, Su C-C, Hsu R-J, Wu C-C, Huang C-F, Lee K-I (2021) Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death. Neurotoxicology 85:133–144

    Article  CAS  PubMed  Google Scholar 

  48. King AP, Wilson JJ (2020) Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 49:8113–8136

    Article  CAS  PubMed  Google Scholar 

  49. Zhang W, Cui X, Gao Y, Sun L, Wang J, Yang Y, Liu X, Li Y, Guo X, Sun D (2019) Role of pigment epithelium-derived factor (PEDF) on arsenic-induced neuronal apoptosis. Chemosphere 215:925–931

    Article  CAS  PubMed  Google Scholar 

  50. Weidling I, Swerdlow RH (2019) Mitochondrial dysfunction and stress responses in Alzheimer’s disease. Biology 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  51. Goebel HH, Schmidt PF, Bohl J, Tettenborn B, Krämer G, Gutmann L (1990) Polyneuropathy due to acute arsenic intoxication: biopsy studies. J Neuropathol Exp Neurol 49:137–149

    Article  CAS  PubMed  Google Scholar 

  52. Greenberg SA (1996) Acute demyelinating polyneuropathy with arsenic ingestion. Muscle Nerve 19:1611–1613

    Article  CAS  PubMed  Google Scholar 

  53. Alizadeh-Ghodsi M, Zavvari A, Ebrahimi-Kalan A, Shiri-Shahsavar MR, Yousefi B (2018) The hypothetical roles of arsenic in multiple sclerosis by induction of inflammation and aggregation of tau protein: a commentary. Nutr Neurosci 21:92–96

    Article  PubMed  Google Scholar 

  54. Gong G, O’Bryant SE (2010) The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord 24:311–316

    Article  CAS  PubMed  Google Scholar 

  55. Niño SA, Martel-Gallegos G, Castro-Zavala A, Ortega-Berlanga B, Delgado JM, Hc H-M, Romero-Guzmán E, Ríos-Lugo J, Rosales-Mendoza S, Jimenez-Capdeville ME (2018a) Chronic arsenic exposure increases Aβ (1–42) production and receptor for advanced glycation end products expression in rat brain. Chem Res Toxicol 31:13–21

    Article  PubMed  Google Scholar 

  56. Jin N, Yin X, Yu D, Cao M, Gong C-X, Iqbal K, Ding F, Gu X, Liu F (2015) Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giasson BI, Sampathu DM, Wilson CA, Vogelsberg-Ragaglia V, Mushynski WE, Lee VM-Y (2002) The environmental toxin arsenite induces tau hyperphosphorylation. Biochemistry 41:15376–15387

    Article  CAS  PubMed  Google Scholar 

  58. Vahidnia A, van der Straaten R, Romijn F, van Pelt J, van der Voet G, De Wolff F (2008) Mechanism of arsenic-induced neurotoxicity may be explained through cleavage of p35 to p25 by calpain. Toxicol In Vitro 22:682–687

    Article  CAS  PubMed  Google Scholar 

  59. Florea A-M, Splettstoesser F, Büsselberg D (2007) Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharmacol 220:292–301

    Article  CAS  PubMed  Google Scholar 

  60. Srivastava RK, Li C, Ahmad A, Abrams O, Gorbatyuk MS, Harrod KS, Wek RC, Afaq F, Athar M (2016a) ATF4 regulates arsenic trioxide-mediated NADPH oxidase, ER-mitochondrial crosstalk and apoptosis. Arch Biochem Biophys 609:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srivastava RK, Li C, Wang Y, Weng Z, Elmets CA, Harrod KS, Deshane JS, Athar M (2016b) Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions. Toxicol Appl Pharmacol 308:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Camins A, Verdaguer E, Folch J, Canudas AM, Pallàs M (2006) The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect 19:453–460

    Article  CAS  PubMed  Google Scholar 

  63. Lee M-s, Kwon YT, Li M, Peng J, Friedlander RM, Tsai L-H (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364

    Article  CAS  PubMed  Google Scholar 

  64. Shen XY, Luo T, Li S, Ting OY, He F, Xu J, Wang HQ (2018) Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+-calpain-p25-CDK5 pathway in HT22 cells. Int J Mol Med 41:1138–1146

    CAS  PubMed  Google Scholar 

  65. Piedrahita D, Hernández I, López-Tobón A, Fedorov D, Obara B, Manjunath B, Boudreau RL, Davidson B, LaFerla F, Gallego-Gómez JC (2010) Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J Neurosci 30:13966–13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Angelo M, Plattner F, Giese KP (2006) Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. J Neurochem 99:353–370

    Article  CAS  PubMed  Google Scholar 

  67. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555–565

    Article  CAS  PubMed  Google Scholar 

  68. Li YM, Broome JD (1999) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 59:776–780

    CAS  PubMed  Google Scholar 

  69. Vega L, Gonsebatt ME, Ostrosky-Wegman P (1995) Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutation Research/Environmental Mutagenesis and Related Subjects 334:365–373

    Article  CAS  Google Scholar 

  70. Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH (1997) Reactivating kinase/p38 phosphorylates τ protein in vitro. J Neurochem 69:191–198

    Article  CAS  PubMed  Google Scholar 

  71. Atzori C, Ghetti B, Piva R, Srinivasan AN, Zolo P, Delisle MB, Mirra SS, Migheli A (2001) Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J Neuropathol Exp Neurol 60:1190–1197

    Article  CAS  PubMed  Google Scholar 

  72. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441

    Article  CAS  PubMed  Google Scholar 

  73. DeFuria J, Shea TB (2007) Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: roles of JNK and GSK-3β. Brain Res 1181:74–82

    Article  CAS  PubMed  Google Scholar 

  74. Watcharasit P, Thiantanawat A, Satayavivad J (2008) GSK3 promotes arsenite-induced apoptosis via facilitation of mitochondria disruption. Journal of Applied Toxicology: An International Journal 28:466–474

    Article  CAS  Google Scholar 

  75. Wang R, Xia L, Gabrilove J, Waxman S, Jing Y (2013) Downregulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells. Leukemia 27:315–324

    Article  CAS  PubMed  Google Scholar 

  76. Jenkins SM, Johnson GV (2000) Microtubule/MAP-affinity regulating kinase (MARK) is activated by phenylarsine oxide in situ and phosphorylates tau within its microtubule-binding domain. J Neurochem 74:1463–1468

    Article  CAS  PubMed  Google Scholar 

  77. Drewes G, Ebneth A, Preuss U, Mandelkow E-M, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89:297–308

    Article  CAS  PubMed  Google Scholar 

  78. Pakzad D, Akbari V, Sepand MR, Aliomrani M (2021) Risk of neurodegenerative disease due to tau phosphorylation changes and arsenic exposure via drinking water. Toxicology Research 10:325–333

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hasegawa M, Crowther RA, Jakes R, Goedert M (1997) Alzheimer-like changes in microtubule-associated protein tau induced by sulfated glycosaminoglycans: inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J Biol Chem 272:33118–33124

    Article  CAS  PubMed  Google Scholar 

  80. Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M, Steveling K, Reis H, Cicinnati VR, Schmid KW, Baba HA (2008) Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 48:83–90

    Article  CAS  PubMed  Google Scholar 

  81. Guise S, Braguer D, Carles G, Delacourte A, Briand C (2001) Hyperphosphorylation of tau is mediated by ERK activation during anticancer drug-induced apoptosis in neuroblastoma cells. J Neurosci Res 63:257–267

    Article  CAS  PubMed  Google Scholar 

  82. Perry G, Roder H, Nunomura A, Takeda A, Friedlich AL, Zhu X, Raina AK, Holbrook N, Siedlak SL, Harris PL (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport 10:2411–2415

    Article  CAS  PubMed  Google Scholar 

  83. Rapoport M, Ferreira A (2000) PD98059 prevents neurite degeneration induced by fibrillar β-amyloid in mature hippocampal neurons. J Neurochem 74:125–133

    Article  CAS  PubMed  Google Scholar 

  84. Latimer DA, Gallo J-M, Lovestone S, Miller CC, Hugh Reynolds C, Marquardt B, Stabel S, Woodgett JR, Anderton BH (1995) Stimulation of MAP kinase by v-raf transformation of fibroblasts fails to induce hyperphosphorylation of transfected tau. FEBS Lett 365:42–46

    Article  CAS  PubMed  Google Scholar 

  85. Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo J-M, Hanger D, Mulot S, Marquardt B, Stabel S (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4:1077–1086

    Article  CAS  PubMed  Google Scholar 

  86. Huang H-S, Liu Z-M, Cheng Y-L (2011) Involvement of glycogen synthase kinase-3β in arsenic trioxide–induced p21 expression. Toxicol Sci 121:101–109

    Article  CAS  PubMed  Google Scholar 

  87. Wisessaowapak C, Visitnonthachai D, Watcharasit P, Satayavivad J (2021) Prolonged arsenic exposure increases tau phosphorylation in differentiated SH-SY5Y cells: the contribution of GSK3 and ERK1/2. Environ Toxicol Pharmacol 84:103626

    Article  CAS  PubMed  Google Scholar 

  88. Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T (2018) Implications of PI3K/AKT/PTEN signaling on superoxide dismutases expression and in the pathogenesis of Alzheimer’s disease. Diseases 6:28

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sugiyama MG, Fairn GD, Antonescu CN (2019) Akt-ing up just about everywhere: compartment-specific Akt activation and function in receptor tyrosine kinase signaling. Front Cell Dev Biol 7:70

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kanno T, Tsuchiya A, Tanaka A, Nishizaki T (2016) Combination of PKCε activation and PTP1B inhibition effectively suppresses Aβ-induced GSK-3β activation and tau phosphorylation. Mol Neurobiol 53:4787–4797

    Article  CAS  PubMed  Google Scholar 

  91. Curtis D, Bandyopadhyay S (2021) Mini-review: role of the PI3K/Akt pathway and tyrosine phosphatases in Alzheimer’s disease susceptibility. Ann Hum Genet 85:1–6

    Article  CAS  PubMed  Google Scholar 

  92. De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3β phosphorylation by sodium valproate and lithium. Neuropharmacology 43:1158–1164

    Article  PubMed  Google Scholar 

  93. Luo Z, Zang M, Guo W (2010) AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 6:457–470

    Article  CAS  PubMed  Google Scholar 

  94. Sanli T, Steinberg GR, Singh G, Tsakiridis T (2014) AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 15:156–169

    Article  CAS  PubMed  Google Scholar 

  95. Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118:460–474

    Article  CAS  PubMed  Google Scholar 

  96. Vingtdeux V, Davies P, Dickson DW, Marambaud P (2011) AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121:337–349

    Article  CAS  PubMed  Google Scholar 

  97. Beauchamp EM, Kosciuczuk EM, Serrano R, Nanavati D, Swindell EP, Viollet B, O’Halloran TV, Altman JK, Platanias LC (2015) Direct binding of arsenic trioxide to AMPK and generation of inhibitory effects on acute myeloid leukemia precursors. Mol Cancer Ther 14:202–212

    Article  CAS  PubMed  Google Scholar 

  98. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285:33154–33164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cline DJ, Thorpe C, Schneider JP (2003) Effects of As (III) binding on α-helical structure. J Am Chem Soc 125:2923–2929

    Article  CAS  PubMed  Google Scholar 

  100. Chiu H-W, Tseng Y-C, Hsu Y-H, Lin Y-F, Foo N-P, Guo H-R, Wang Y-J (2015) Arsenic trioxide induces programmed cell death through stimulation of ER stress and inhibition of the ubiquitin–proteasome system in human sarcoma cells. Cancer Lett 356:762–772

    Article  CAS  PubMed  Google Scholar 

  101. Hu W-C, Teo W-H, Huang T-F, Lee T-C, Lo J-F (2020) Combinatorial low dose arsenic trioxide and cisplatin exacerbates autophagy via AMPK/STAT3 signaling on targeting head and neck cancer initiating cells. Front Oncol 10:463

    Article  PubMed  PubMed Central  Google Scholar 

  102. Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D (2011) AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 434:503–512

    Article  CAS  PubMed  Google Scholar 

  103. Chayapong J, Madhyastha H, Madhyastha R, Nurrahmah QI, Nakajima Y, Choijookhuu N, Hishikawa Y, Maruyama M (2017) Arsenic trioxide induces ROS activity and DNA damage, leading to G0/G1 extension in skin fibroblasts through the ATM-ATR-associated Chk pathway. Environ Sci Pollut Res 24:5316–5325

    Article  CAS  Google Scholar 

  104. Li J, Tang G, Qin W, Yang R, Ma R, Ma B, Wei J, Lv H, Jiang Y (2018) Toxic effects of arsenic trioxide on Echinococcus granulosus protoscoleces through ROS production, and Ca2+-ER stress-dependent apoptosis. Acta Biochim Biophys Sin 50:579–585

    Article  CAS  PubMed  Google Scholar 

  105. You BR, Park WH (2012) Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep 28:749–757

    Article  CAS  PubMed  Google Scholar 

  106. Fang S, Wan X, Zou X, Sun S, Hao X, Liang C, Zhang Z, Zhang F, Sun B, Li H (2021) Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 12:1–18

    Article  Google Scholar 

  107. Wang L, Yin Y-L, Liu X-Z, Shen P, Zheng Y-G, Lan X-R, Lu C-B, Wang J-Z (2020) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translational neurodegeneration 9:1–13

    Article  Google Scholar 

  108. Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jóźwik A, Kühl T, Perry G, Petralia MC, Mazzon E (2021) Reactive oxygen species and their impact in neurodegenerative diseases: literature landscape analysis. Antioxid Redox Signal 34:402–420

    Article  CAS  PubMed  Google Scholar 

  109. Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, Ji X, Chen W, Xue M, Wei J (2015) The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in alzheimer’s disease. Oxid Med Cell Longev 2015:352723. https://doi.org/10.1155/2015/352723

  110. Mondragón-Rodríguez S, Perry G, Zhu X, Moreira PI, Acevedo-Aquino MC, Williams S (2013) Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer's disease. Oxid Med Cell Longev 2013:940603. https://doi.org/10.1155/2013/940603

  111. Su B, Wang X, Lee H-g, Tabaton M, Perry G, Smith MA, Zhu X (2010) Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468:267–271

    Article  CAS  PubMed  Google Scholar 

  112. Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, De Silva R (2019) A walk through tau therapeutic strategies. Acta Neuropathol Commun 7:1–31

    Article  CAS  Google Scholar 

  113. Götz J, Xia D, Leinenga G, Chew YL, Nicholas HR (2013) What renders TAU toxic. Front Neurol 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ittner LM, Fath T, Ke YD, Bi M, Van Eersel J, Li KM, Gunning P, Götz J (2008) Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci 105:15997–16002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T, Nheu L, Sundstrom LE, Costello AJ, Hovens CM (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17:1025–1033

    Article  CAS  PubMed  Google Scholar 

  116. Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J Biol Chem 287:893–904

    Article  PubMed  Google Scholar 

  117. Mapelli M, Massimiliano L, Crovace C, Seeliger MA, Tsai L-H, Meijer L, Musacchio A (2005) Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 48:671–679

    Article  CAS  PubMed  Google Scholar 

  118. Forlenza OV, De-Paula VJR, Diniz B (2014) Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Nerosci 5:443–450

    Article  CAS  Google Scholar 

  119. Selnick HG, Hess JF, Tang C, Liu K, Schachter JB, Ballard JE, Marcus J, Klein DJ, Wang X, Pearson M (2019) Discovery of MK-8719, a potent O-GlcNAcase inhibitor as a potential treatment for tauopathies. J Med Chem 62:10062–10097

    Article  CAS  PubMed  Google Scholar 

  120. Min S-W, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS, Defensor E, Mok SA (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21:1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rohn TT (2010) The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis 15:1403–1409

    Article  CAS  PubMed  Google Scholar 

  122. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C, Barulli MR, Bellomo A, Pilotto A, Daniele A, Greco A, Logroscino G (2016) Tau-centric targets and drugs in clinical development for the treatment of alzheimer's disease. Biomed Res Int 2016:3245935. https://doi.org/10.1155/2016/3245935

  123. Schneider A, Mandelkow E (2008) Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics 5:443–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shimada K, Motoi Y, Ishiguro K, Kambe T, Matsumoto S-e, Itaya M, Kunichika M, Mori H, Shinohara A, Chiba M (2012) Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion. Neurobiol Dis 46:101–108

    Article  CAS  PubMed  Google Scholar 

  125. Kwan P, Ho A, Baum L (2022) Effects of deferasirox in Alzheimer’s disease and tauopathy animal models. Biomolecules 12:365

    Article  PubMed  PubMed Central  Google Scholar 

  126. Xiong Y, Jing X-P, Zhou X-W, Wang X-L, Yang Y, Sun X-Y, Qiu M, Cao F-Y, Lu Y-M, Liu R (2013) Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 34:745–756

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SA participated and was involved in drafting of the manuscript. SM was involved in helping to revise the manuscript and final check of the draft. MM, the supervisor of the study, was involved in the concept, design, drafting, and final checking of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mojdeh Mohammadi.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariafar, S., Makhdoomi, S. & Mohammadi, M. Arsenic and Tau Phosphorylation: a Mechanistic Review. Biol Trace Elem Res 201, 5708–5720 (2023). https://doi.org/10.1007/s12011-023-03634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03634-y

Keywords

Navigation