Skip to main content
Log in

The Footprints of Oxidative Stress and Mitochondrial Impairment in Arsenic Trioxide-Induced Testosterone Release Suppression in Pubertal and Mature F1-Male Balb/c Mice via the Downregulation of 3β-HSD, 17β-HSD, and CYP11a Expression

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to arsenic (AS) causes abnormalities in the reproductive system; however, the precise cellular pathway of AS toxicity on steroidogenesis in developing F1-male mice has not been clearly defined. In this study, paternal mice were treated with arsenic trioxide (As2O3; 0, 0.2, 2, and 20 ppm in drinking water) from 5 weeks before mating until weaning and continued for male offspring from weaning until maturity (in vivo). Additionally, Leydig cells (LCs) were isolated from the testes of sacrificed F1-intact mature male mice and incubated with As2O3 (0, 1, 10, and 100 μM) for 48 h (in vitro). Biomarkers of mitochondrial impairment, oxidative stress, and several steroidogenic genes, including the steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleaving enzyme (P450scc; Cyp11a), 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxysteroid dehydrogenase (17β-HSD), were evaluated. High doses of As2O3 interrupted testosterone (T) biosynthesis and T-related gene expression in these experimental models. Altogether, overconsumption of As2O3 can cause testicular and LC toxicity through mitochondrial-related pathways and oxidative stress indices as well as downregulation of androgenic-related genes in mice and isolated LCs. These results could lead to the development of preventive/therapeutic procedures against As2O3-induced reproductive toxicity.

Mohammad Mehdi Ommati and Reza Heidari contributed equally to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baxley M, Hood R, Vedel G, Harrison W, Szczech G (1981) Prenatal toxicity of orally administered sodium arsenite in mice. Bull Environ Contam Toxicol 26(1):749–756

    Article  CAS  Google Scholar 

  2. Flora S, Dube S, Arora U, Kannan G, Shukla M, Malhotra P (1995) Therapeutic potential of meso 2, 3-dimercaptosuccinic acid or 2, 3-dimercaptopropane 1-sulfonate in chronic arsenic intoxication in rats. Biometals 8(2):111–116

    Article  CAS  Google Scholar 

  3. Bencko V (1977) Carcinogenic, teratogenic, and mutagenic effects of arsenic. Environ Health Perspect 19:179–182. https://doi.org/10.1289/ehp.7719179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sina AAI (1989) Ghanoon dar Teb [in Farsi, translated by Abdul Rah-man Sharafkandi]. Soroush Publisher, Tehran

    Google Scholar 

  5. Darbandi MP, Taheri J (2018) Using sulfur-containing minerals in medicine: Iranian traditional documents and modern pharmaceutical terminology. Earth Sci Hist 37(1):25–33

    Article  Google Scholar 

  6. Tan B, Huang JF, Wei Q, Zhang H, Ni RZ (2005) Anti-hepatoma effect of arsenic trioxide on experimental liver cancer induced by 2-acetamidofluorene in rats. World J Gastroenterol 11(38):5938–5943

    Article  CAS  Google Scholar 

  7. Hoonjan M, Jadhav V, Bhatt P (2018) Arsenic trioxide: insights into its evolution to an anticancer agent. J Biol Inorg Chem 23(3):313–329

    Article  CAS  Google Scholar 

  8. Squier SM (2018) Parasites! Graphic exploration of tropical disease drug development. AMA J Ethics 20(2):167

    Article  Google Scholar 

  9. Bolt HM (2012) Arsenic: an ancient toxicant of continuous public health impact, from Iceman Ötzi until now. Springer:825–830

  10. Golka K, Hengstler J, Marchan R, Bolt H (2010) Severe arsenic poisoning: one of the largest man-made catastrophies. Springer:583–584

  11. Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N, Freeman C, Galichet L (2009) A review of human carcinogens—part C: metals, arsenic, dusts, and fibres. Lancet Oncol 10(5):453–454

    Article  Google Scholar 

  12. Skal’naia M, Zhavoronkov A, Skal’nyĭ A, Riabchikov O (1995) Morphologic characteristics of the thymus in pregnant and newborn mice exposed to sodium arsenite. Arkh Patol 57(2):52–58

    PubMed  Google Scholar 

  13. Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J (2018) Arsenic-induced autophagy in the developing mouse cerebellum: involvement of the blood–brain barrier’s tight-junction proteins and the PI3K–AKT–mTOR signaling pathway. J Agric Food Chem 66(32):8602–8614

    Article  CAS  Google Scholar 

  14. Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J (2018) Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood–brain barrier’s tight junction proteins. Arch Toxicol 92(11):3255–3275

    Article  CAS  Google Scholar 

  15. Chattopadhyay S, Ghosh S, Chaki S, Debnath J, Ghosh D (1999) Effect of sodium arsenite on plasma levels of gonadotrophins and ovarian steroidogenesis in mature albino rats: duration-dependent response. J Toxicol Sci 24(5):425–431. https://doi.org/10.2131/jts.24.5_425

    Article  CAS  PubMed  Google Scholar 

  16. Yousefsani BS, Pourahmad J, Hosseinzadeh H (2018) The mechanism of protective effect of crocin against liver mitochondrial toxicity caused by arsenic III. Toxicol Mech Methods 28(2):105–114

    Article  CAS  Google Scholar 

  17. Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohammadian M, Mianabadi M, Zargari M, Karimpour A, Khalafi M, Amiri FT (2018) Effects of olive oil supplementation on sodium arsenate-induced hepatotoxicity in mice. Int J Prev Med 9(1):59. https://doi.org/10.4103/ijpvm.IJPVM_165_18

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ghosh D, Chattopadhyay S, Debnath J (1999) Effect of sodium arsenite on adrenocortical activity in immature female rats: evidence of dose dependent response. J Environ Sci 11(4):419–422

    CAS  Google Scholar 

  20. Khatun S, Maity M, Perveen H, Dash M, Chattopadhyay S (2018) Spirulina platensis ameliorates arsenic-mediated uterine damage and ovarian steroidogenic disorder. FACETS 3(1):736–753

    Article  Google Scholar 

  21. Alamdar A, Tian M, Huang Q, Du X, Zhang J, Liu L, Shah STA, Shen H (2019) Enhanced histone H3K9 tri-methylation suppresses steroidogenesis in rat testis chronically exposed to arsenic. Ecotoxicol Environ Saf 170:513–520

    Article  CAS  Google Scholar 

  22. Mehrzadi S, Bahrami N, Mehrabani M, Motevalian M, Mansouri E, Goudarzi M (2018) Ellagic acid: a promising protective remedy against testicular toxicity induced by arsenic. Biomed Pharmacother 103:1464–1472

    Article  CAS  Google Scholar 

  23. Tazari M, Baghshani H, Moosavi Z (2018) Effect of betaine versus arsenite-induced alterations of testicular oxidative stress and circulating androgenic indices in rats. Andrologia 50(10):e13091

    Article  Google Scholar 

  24. Li X, Yi H, Wang H (2018) Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice. Ecotoxicol Environ Saf 165:164–173

    Article  CAS  Google Scholar 

  25. Ramos-Trevino J, Bassol-Mayagoitia S, Hernández-Ibarra JA, Ruiz-Flores P, Nava-Hernández MP (2018) Toxic effect of cadmium, lead, and arsenic on the Sertoli cell: mechanisms of damage involved. DNA Cell Biol 37(7):600–608

    Article  CAS  Google Scholar 

  26. Chiou T-J, Chu S-T, Tzeng W-F, Huang Y-C, Liao C Jr (2008) Arsenic trioxide impairs spermatogenesis via reducing gene expression levels in testosterone synthesis pathway. Chem Res Toxicol 21(8):1562–1569. https://doi.org/10.1021/tx700366x

    Article  CAS  PubMed  Google Scholar 

  27. Ince S, Avdatek F, Demirel HH, Arslan-Acaroz D, Goksel E, Kucukkurt I (2016) Ameliorative effect of polydatin on oxidative stress-mediated testicular damage by chronic arsenic exposure in rats. Andrologia 48(5):518–524. https://doi.org/10.1111/and.12472

    Article  CAS  PubMed  Google Scholar 

  28. Shen H, Xu W, Zhang J, Chen M, Martin FL, Xia Y, Liu L, Dong S, Zhu Y-G (2013) Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol 47(15):8843–8851. https://doi.org/10.1021/es402025n

    Article  CAS  PubMed  Google Scholar 

  29. Udagawa O, Okamura K, Suzuki T, Nohara K (2019) Arsenic exposure and reproductive toxicity. In: Yamauchi H, Sun G (eds) Arsenic contamination in Asia: biological effects and preventive measures. Springer Singapore, Singapore, pp 29–42. https://doi.org/10.1007/978-981-13-2565-6_3

    Chapter  Google Scholar 

  30. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396. https://doi.org/10.1136/pmj.79.933.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang S, Jin B, Youn P, Park C, Park J-D, Ryu D-Y (2007) Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol Appl Pharmacol 218(2):196–203

    Article  CAS  Google Scholar 

  32. Sanghamitra S, Hazra J, Upadhyay S, Singh R, Amal R (2008) Arsenic induced toxicity on testicular tissue of mice. Indian J Physiol Pharmacol 52(1):84–90

    PubMed  Google Scholar 

  33. Zeng Q, Yi H, Huang L, An Q, Wang H (2018) Reduced testosterone and Ddx3y expression caused by long-term exposure to arsenic and its effect on spermatogenesis in mice. Environ Toxicol Pharmacol 63:84–91

    Article  CAS  Google Scholar 

  34. Reddy PS, Rani GP, Sainath SB, Meena R, Supriya C (2011) Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elem Med Biol 25(4):247–253. https://doi.org/10.1016/j.jtemb.2011.08.145

    Article  CAS  PubMed  Google Scholar 

  35. Organization WH (1998) Guidelines for drinking-water quality. In: Health criteria and other supporting information: addendum, vol 2. World Health Organization, Geneva

    Google Scholar 

  36. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477

    Google Scholar 

  37. Yu Y, Han Y, Niu R, Wang J, Manthari RK, Ommati MM, Sun Z (2018) Ameliorative effect of VE, IGF-I, and hCG on the fluoride-induced testosterone release suppression in mice Leydig cells. Biol Trace Elem Res 181:95. https://doi.org/10.1007/s12011-017-1023-1

    Article  CAS  PubMed  Google Scholar 

  38. Ommati MM, Jamshidzadeh A, Heidari R, Sun Z, Zamiri MJ, Khodaei F, Mousapour S, Ahmadi F, Javanmard N, Shirazi Yeganeh B (2019) Carnosine and histidine supplementation blunt lead-induced reproductive toxicity through antioxidative and mitochondria-dependent mechanisms. Biol Trace Elem Res 187:151. https://doi.org/10.1007/s12011-018-1358-2

    Article  CAS  PubMed  Google Scholar 

  39. Jamshidzadeh A, Niknahad H, Heidari R, Zarei M, Ommati MM, Khodaei F (2017) Carnosine protects brain mitochondria under hyperammonemic conditions: relevance to hepatic encephalopathy treatment. PharmaNutrition 5(2):58–63

    Article  Google Scholar 

  40. Niknahad H, Heidari R, Mohammadzadeh R, Ommati MM, Khodaei F, Azarpira N, Abdoli N, Zarei M, Asadi B, Rasti M, Shirazi Yeganeh B, Taheri V, Saeedi A, Najibi A (2017) Sulfasalazine induces mitochondrial dysfunction and renal injury. Ren Fail 39(1):745–753. https://doi.org/10.1080/0886022x.2017.1399908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, Abdoli N (2017) N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PharmaNutrition 5(4):141–147. https://doi.org/10.1016/j.phanu.2017.10.003

    Article  Google Scholar 

  42. Jamshidzadeh A, Heidari R, Abazari F, Ramezani M, Khodaei F, Ommati MM, Ayarzadeh M, Firuzi R, Saeedi A, Azarpira N, Najibi A (2016) Antimalarial drugs-induced hepatic injury in rats and the protective role of carnosine. Pharm Sci 22(3):170–180. https://doi.org/10.15171/ps.2016.27

    Article  Google Scholar 

  43. Ommati MM, Heidari R, Ghanbarinejad V, Abdoli N, Niknahad H (2018) Taurine treatment provides neuroprotection in a mouse model of manganism. Biol Trace Elem Res:1–12. https://doi.org/10.1007/s12011-018-1552-2

  44. Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O’brien PJ (2006) Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38(4):733–744

    Article  CAS  Google Scholar 

  45. Meeks RG, Harrison S (1991) Hepatotoxicology. CRC Press, Boca Raton

    Google Scholar 

  46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254

    Article  CAS  Google Scholar 

  47. Ommati MM, Heidari R, Jamshidzadeh A, Zamiri MJ, Sun Z, Sabouri S, Wang J, Ahmadi F, Javanmard N, Seifi K, Mousapour S, ShiraziYeganeh B (2018) Dual effects of sulfasalazine on rat sperm characteristics, spermatogenesis, and steroidogenesis in two experimental models. Toxicol Lett 284:46–55. https://doi.org/10.1016/j.toxlet.2017.11.034

    Article  CAS  PubMed  Google Scholar 

  48. Sun Z, Li S, Yu Y, Chen H, Ommati MM, Manthari RK, Niu R, Wang J (2017) Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92:169. https://doi.org/10.1007/s00204-017-2054-2

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Zhao H, Shao Y, Liu J, Li J, Xing M (2018) Interplay between elemental imbalance-related PI3K/Akt/mTOR-regulated apoptosis and autophagy in arsenic (III)-induced jejunum toxicity of chicken. Environ Sci Pollut Res 25:18662. https://doi.org/10.1007/s11356-018-2059-2

    Article  CAS  Google Scholar 

  50. Li S, Zhao H, Wang Y, Shao Y, Wang B, Wang Y, Xing M (2018) Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. Ecotoxicol Environ Saf 148:125–134

    Article  CAS  Google Scholar 

  51. Shao Y, Zhao H, Wang Y, Liu J, Li J, Luo L, Xing M (2018) The apoptosis in arsenic-induced oxidative stress is associated with autophagy in the testis tissues of chicken. Poult Sci 97(9):3248–3257. https://doi.org/10.3382/ps/pey156

    Article  CAS  PubMed  Google Scholar 

  52. Ommati MM, Tanideh N, Rezakhaniha B, Wang J, Vahedi M, Dormanesh B, Koohi O, Rahmanifar F, Akhlaghi A, Moosapour S, Heidari R, Zamiri MJ (2017) Is immunosuppression, induced by neonatal thymectomy, compatible with poor reproductive performance in adult male rats? Andrology 6(1):199–213. https://doi.org/10.1111/andr.12448

    Article  CAS  PubMed  Google Scholar 

  53. Ommati M, Zamiri M, Akhlaghi A, Atashi H, Jafarzadeh M, Rezvani M, Saemi F (2013) Seminal characteristics, sperm fatty acids, and blood biochemical attributes in breeder roosters orally administered with sage (Salvia officinalis) extract. Anim Prod Sci 53(6):548–554

    Article  CAS  Google Scholar 

  54. Chen H, Liu J, Luo L, Baig MU, Kim J-M, Zirkin BR (2005) Vitamin E, aging and Leydig cell steroidogenesis. Exp Gerontol 40(8):728–736. https://doi.org/10.1016/j.exger.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  55. Song G, Wang RL, Chen ZY, Zhang B, Wang HL, Liu ML, Gao JP, Yan XY (2014) Toxic effects of sodium fluoride on cell proliferation and apoptosis of Leydig cells from young mice. J Physiol Biochem 70(3):761–768. https://doi.org/10.1007/s13105-014-0344-1

    Article  CAS  PubMed  Google Scholar 

  56. Diemer T, Allen JA, Hales KH, Hales DB (2003) Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144(7):2882–2891. https://doi.org/10.1210/en.2002-0090

    Article  CAS  PubMed  Google Scholar 

  57. Georgiou M, Perkins LM, Payne AH (1987) Steroid synthesis-dependent, oxygen-mediated damage of mitochondrial and microsomal cytochrome P-450 enzymes in rat Leydig cell cultures. Endocrinology 121(4):1390–1399. https://doi.org/10.1210/endo-121-4-1390

    Article  CAS  PubMed  Google Scholar 

  58. Sarkar M, Biswas NM, Ghosh D (1991) Effect of sodium arsenite on testicular delta 5 beta and 17 beta hydroxysteroid dehydrogenase activities in albino rats dose and duration dependent responses. Med Sci Res 19(22):789–790

    CAS  Google Scholar 

  59. Yu H, Kuang M, Wang Y, Rodeni S, Wei Q, Wang W, Mao D (2019) Sodium arsenite injection induces ovarian oxidative stress and affects steroidogenesis in rats. Biol Trace Elem Res 189:186. https://doi.org/10.1007/s12011-018-1467-y

    Article  CAS  PubMed  Google Scholar 

  60. Omura M, Hirata M, Tanaka A, Zhao M, Makita Y, Inoue N, Gotoh K, Ishinishi N (1996) Testicular toxicity evaluation of arsenic-containing binary compound semiconductors, gallium arsenide and indium arsenide, in hamsters. Toxicol Lett 89(2):123–129. https://doi.org/10.1016/S0378-4274(96)03796-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Innovation Fund of Shanxi Agricultural University (2018YJ33) and the Pharmaceutical Sciences Research Center of Shiraz University of Medical Sciences, Shiraz, Iran (Grant No. 18842/17549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Ommati.

Ethics declarations

The study was carried out in compliance with the guidelines for maintenance and handling of laboratory animals and techniques suggested by the Ethics Committee of Shiraz University of Medical Sciences, Iran.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ommati, M.M., Heidari, R., Zamiri, M.J. et al. The Footprints of Oxidative Stress and Mitochondrial Impairment in Arsenic Trioxide-Induced Testosterone Release Suppression in Pubertal and Mature F1-Male Balb/c Mice via the Downregulation of 3β-HSD, 17β-HSD, and CYP11a Expression. Biol Trace Elem Res 195, 125–134 (2020). https://doi.org/10.1007/s12011-019-01815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01815-2

Keywords

Navigation