Skip to main content
Log in

CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The development and emergence of clustered regularly interspaced short palindromic repeats (CRISPR) as a genome-editing technology have created a plethora of opportunities in genetic engineering. The ability of sequence-specific addition or removal of DNA in an efficient and cost-effective manner has revolutionized modern research in the field of life science and healthcare. CRISPR is widely used as a genome engineering tool in clinical studies for observing gene expression and metabolic pathway regulations in detail. Even in the case of transgenic research and personalized gene manipulation studies, CRISPR-based technology is used extensively. To understand and even to correct the underlying genetic problem is of cancer, CRISPR-based technology can be used. Various kinds of work is going on throughout the world which are attempting to target different genes in order to discover novel and effective methodologies for the treatment of cancer. In this review, we provide a brief overview on the application of CRISPR gene editing technology in cancer treatment focusing on the key aspects of cancer screening, modelling and therapy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sawyers, C. (2004). Targeted cancer therapy. Nature, 432(2015), 294–297.

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization. (2020). WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization Licence: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  4. Shinwari, Z. K., Tanveer, F., & Khalil, A. T. (2018). Ethical issues regarding CRISPR mediated genome editing. Current Issues in Molecular Biology, 26(1), 103–110.

    Article  PubMed  Google Scholar 

  5. Ayanoğlu, F. B., Elçin, A. E., & Elçin, Y. M. (2020). Bioethical issues in genome editing by CRISPR-Cas9 technology. Turkish Journal of Biology, 44(2), 110–120.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lander, E. S. (2015). Brave new genome. New England Journal of Medicine, 373, 5–8. https://doi.org/10.1056/NEJMp1506446

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, A., & Scot, C. T. (2015). The ethics of publishing human germline research. Nature Biotechnology, 33, 590–592. https://doi.org/10.1038/nbt.3252

    Article  CAS  PubMed  Google Scholar 

  8. Li, C. X., & Qian, H. L. (2015). A double-edged sword: CRISPR-Cas9 is emerging as a revolutionary technique for genome editing. Military Medical Research, 2, 25. https://doi.org/10.1186/s40779-015-0054-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Janssens, A. C. (2016). Designing babies through gene editing: Science or science fiction? Genetics in Medicine, 18, 1186–1187. https://doi.org/10.1038/gim.2016.28

    Article  CAS  PubMed  Google Scholar 

  10. Sugarman, J. (2015). Ethics and germline gene editing. EMBO Reports, 16, 879–880. https://doi.org/10.15252/embr.201540879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brokowski, C., & Adli, M. (2019). CRISPR ethics: Moral considerations for applications of a powerful tool. Journal of Molecular Biology, 431, 101. https://doi.org/10.1016/j.jmb.2018.05.044

    Article  CAS  Google Scholar 

  12. Faiq, M. A. (2020). B cell engineering: A promising approach towards vaccine development for COVID-19. Medical Hypotheses, 144, 109948. https://doi.org/10.1016/j.mehy.2020.109948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R., & Moriarity, B. S. (2018). Engineering of primary human B cells with CRISPR/ Cas9 targeted nuclease. Scientific Reports. https://doi.org/10.1038/s41598-018-30358-0

  14. Straiton, J. (2020). CRISPR vs COVID-19: How can gene editing help beat a virus? BioTechniques, 69, 327–329.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, C., Tian, T., Sun, J., Hu, M., Wang, X., Xiong, E., Cheng, M., Bao, Y., Lin, W., Jiang, J., Yang, C., Chen, Q., Zhang, H., Wang, H., Wang, X., Dengm, X., Liaom, X., Liu, Y., Wang, Z., et al. (2020). Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.9b05597

  16. Abbott, T. R., Dhamdhere, G., Liu, Y., Lin, X., Goudy, L., Zeng, L., Chemparathy, A., Chmura, S., Heaton, N. S., Debs, R., Pande, T., Endy, D., Rudda, M. F. L., Lewis, D. B., & Qi, L. S. (2020). Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell, 181(4), 865–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of bacteriology, 200(7):e00580–17.

  18. Mojica, F. J., & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends in microbiology, 24(10), 811–820.

    Article  CAS  PubMed  Google Scholar 

  19. Koonin, E. V., & Makarova, K. S. (2019). Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B, 374(1772), 20180087.

    Article  CAS  Google Scholar 

  20. Lei, Y., Lu, L., Liu, H. Y., Li, S., Xing, F., & Chen, L. L. (2014). CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular plant, 7(9), 1494–1496.

    Article  CAS  PubMed  Google Scholar 

  21. Carte, J., Wang, R., Li, H., Terns, R. M., & Terns, M. P. (2008). Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & development, 22(24), 3489–3496.

    Article  CAS  Google Scholar 

  22. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K., & Doudna, J. A. (2010). Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 329(5997), 1355–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garside, E. L., Schellenberg, M. J., Gesner, E. M., Bonanno, J. B., Sauder, J. M., Burley, S. K., et al. (2012). Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. Rna, 18(11), 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nam, K. H., Haitjema, C., Liu, X., Ding, F., Wang, H., DeLisa, M. P., & Ke, A. (2012). Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype IC/Dvulg CRISPR-Cas system. Structure, 20(9), 1574–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sashital, D. G., Jinek, M., & Doudna, J. A. (2011). An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nature structural & molecular biology, 18(6), 680.

    Article  CAS  Google Scholar 

  27. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., et al. (2009). RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5), 945–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hatoum-Aslan, A., Maniv, I., & Marraffini, L. A. (2011). Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proceedings of the National Academy of Sciences, 108(52), 21218–21222.

    Article  CAS  Google Scholar 

  29. Gupta, R., Kazi, T. A., Dey, D., Ghosh, A., Ravichandiran, V., Swarnakar, S., Syamal, R., Swades, R. B., & Ghosh, D. (2021). CRISPR detectives against SARS-CoV-2: a major setback against COVID-19 blowout. Applied Microbiology and Biotechnology, 105(20), 7593–7605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan, K. A., & Duceppe, M. O. (2021). Cross-reactivity and inclusivity analysis of CRISPR-based diagnostic assays of coronavirus SARS-CoV-2. PeerJ, 9, e12050.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hille, F., & Charpentier, E. (2016). CRISPR-Cas: Biology, mechanisms and relevance. Philosophical transactions of the royal society B: biological sciences, 371(1707), 20150496.

    Article  Google Scholar 

  32. Liu, D., Zhao, X., Tang, A., Xu, X., Liu, S., Zha, L., Ma, W., Zheng, J., & Shi, M. (2020). CRISPR screen in mechanism and target discovery for cancer immunotherapy. BiochimicaetBiophysicaActa (BBA) - Reviews on Cancer, 1874(1), 188378.

    Article  CAS  PubMed  Google Scholar 

  33. Chong, Z.-S., Wright, G. J., & Sharma, S. (2020). Investigating cellular recognition using CRISPR/Cas9 genetic screening. Trends in Cell Biology, 30(8), 619–627.

    Article  CAS  PubMed  Google Scholar 

  34. Cai, J., Chen, J., Wu, T., Cheng, Z., Tian, Y., Pu, C., Shi, W., Suo, X., Wu, X., & Zhang, K. (2020). Genome-scale CRISPR activation screening identifies a role of LRP8 in Sorafenib resistance in Hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 526(4), 1170–1176.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, L., Li, Y., Chen, Q., Xia, Y., Zheng, W., & Jiang, X. (2018). The construction of drug-resistant cancer cell lines by CRISPR/Cas9 system for drug screening. Science Bulletin, 63(21), 1411–1419.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, Q., Derti, A., Ruddy, D., Rakiec, D., Kao, I., Lira, M., Gibaja, V., Chan, H., Yang, Y., Min, J., Schlabach, M. R., & Stegmeier, F. (2015). A chemical genetics approach for the functional assessment of novel cancer genes. Cancer research, 75(10), 1949–1958.

    Article  CAS  PubMed  Google Scholar 

  37. Torres, R., Martin, M. C., Garcia, A., Cigudosa, J. C., Ramirez, J. C., & Rodriguez-Perales, S. (2014). Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nature communications, 5, 3964.

    Article  CAS  PubMed  Google Scholar 

  38. Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Watanabe, T., Kanai, T., & Sato, T. (2015). Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nature medicine, 21(3), 256–262.

    Article  CAS  PubMed  Google Scholar 

  39. Dekkers, J. F., Whittle, J. R., Vaillant, F., Chen, H. R., Dawson, C., Liu, K., Geurts, M. H., Herold, M. J., Clevers, H., Lindeman, G. J., & Visvader, J. E. (2020). Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. Journal of the National Cancer Institute, 112(5), 540–544.

    Article  PubMed  Google Scholar 

  40. Ng, S. R., Rideout, W. M., Akama-Garren, E. H., Bhutkar, A., Mercer, K. L., Schenkel, J. M., et al. (2020). CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proceedings of the National Academy of Sciences, 117(1), 513–521.

    Article  CAS  Google Scholar 

  41. Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., Dahlman, J. E., Parnas, O., Eisenhaure, T. M., Jovanovic, M., Graham, D. B., Jhunjhunwala, S., Heidenreich, M., Xavier, R. J., Langer, R., Anderson, D. G., Hacohen, N., Regev, A., Feng, G., et al. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 159(2), 440–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilmut, I., Beaujean, N., De Sousa, P. A., Dinnyes, A., King, T. J., Paterson, L. A., et al. (2002). Somatic cell nuclear transfer. Nature, 419(6907), 583–587.

    Article  CAS  PubMed  Google Scholar 

  43. Hao, Z., & Su, X. (2019). Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex. BMC Biotechnology, 19, 2. https://doi.org/10.1186/s12896-018-0498-y

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu, R., Chen, L., Jiang, Y., Zhou, Z., & Zou, G. (2015). Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discovery, 1, 15007. https://doi.org/10.1038/celldisc.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weld, R. J., Plummer, K. M., Carpenter, M. A., & Ridgway, H. W. (2006). Approaches to functional genomics in filamentous fungi. Cell Research, 16, 31–44. https://doi.org/10.1038/sj.cr.7310006

    Article  CAS  PubMed  Google Scholar 

  46. Mollanoori, H., Shahraki, H., Rahmati, Y., & Teimourian, S. (2018). CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Human Immunology, 79(12), 876–882.

    Article  CAS  PubMed  Google Scholar 

  47. Liao, Y., Chen, L., Feng, Y., Shen, J., Gao, Y., Cote, G., et al. (2017). Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget, 8(18), 30276.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patel, S. P., & Kurzrock, R. (2015). PD-L1 expression as a predictive biomarker in cancer immunotherapy. Molecular cancer therapeutics, 14(4), 847–856.

    Article  CAS  PubMed  Google Scholar 

  49. Li, H., Shen, C. R., Huang, C. H., Sung, L. Y., Wu, M. Y., & Hu, Y. C. (2016). CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic Engineering, 38, 293–302. https://doi.org/10.1016/j.ymben.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  50. Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.

    Article  CAS  PubMed  Google Scholar 

  51. Li, Q., Chen, J., Minton, N. P., Zhang, Y., Wen, Z., Liu, J., Yang, H., Zeng, Z., Ren, X., Yang, J., Gu, Y., Jiang, W., Jiang, Y., & Yang, S. (2016). CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Journal. https://doi.org/10.1002/biot.201600053

  52. Hidalgo-Cantabrana, C., Goh, Y. J., Pan, M., Sanozky-Dawes, R., & Barrangou, R. (2019). Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proceedings of the National Academy of Sciences, 116, 15774–15783.

    Article  CAS  Google Scholar 

  53. Liang, C., Li, F., Wang, L., Zhang, Z. K., Wang, C., He, B., et al. (2017). Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials, 147, 68–85.

    Article  CAS  PubMed  Google Scholar 

  54. CRISPR-mediated NELL-1 gene deletion demonstrates essential roles in osteosarcoma cell proliferation, migration, and osteogenic differentiation. (2018). Available from: https://www.ors.org/Transactions/64/0053.pdf. Accessed January 29, 2021

  55. Pan, M., & Barrangou, R. (2020). Combining omics technologies with CRISPR-based genome editing to study food microbes. Current Opinion in Biotechnology, 61, 198–208. https://doi.org/10.1016/j.copbio.2019.12.027

    Article  CAS  PubMed  Google Scholar 

  56. Wu, J., Zhi, L., Dai, X., Cai, Q., & Ma, W. (2015). Decreased RECQL5 correlated with disease progression of osteosarcoma. Biochemical and biophysical research communications, 467(4), 617–622.

    Article  CAS  PubMed  Google Scholar 

  57. Jamil, NS., Azfer, A., Worrell H, Salter DM (2016) Functional roles of CSPG4/NG2 in chondrosarcoma. Int J Exp Pathol 97(2):178–86. https://doi.org/10.1111/iep.12189

  58. Ma, W., Yang, L., Liu, H., Chen, P., Ren, H., & Ren, P. (2020). PAXX is a novel target to overcome resistance to doxorubicin and cisplatin in osteosarcoma. Biochemical and biophysical research communications, 521(1), 204–211.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, S., Sun, H., Miao, K., & Deng, C. X. (2016). CRISPR-Cas9: From genome editing to cancer research. International Journal of Biological Sciences, 12, 1427–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dekkers, J. F., Whittle, J. R., Vaillant, F., Chen, H. R., Dawson, C., Liu, K., ...&Visvader, J. E. (2020). Modeling breast cancer using CRISPR-Cas9–mediated engineering of human breast organoids. JNCI: Journal of the National Cancer Institute, 112(5), 540-544.

    Article  PubMed  Google Scholar 

  61. Yang, M., Zeng, C., Li, P., Qian, L., Ding, B., Huang, L., et al. (2019). Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of triple-negative breast cancer cells. OncoTargets and therapy, 12, 3849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carlisle, S. M., Trainor, P. J., Hong, K. U., Doll, M. A., & Hein, D. W. (2020). CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism. Scientific reports, 10(1), 1–15.

    Article  Google Scholar 

  63. Sorek, R., Lawrence, C. M., & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry, 82, 237–266. https://doi.org/10.1146/annurev-biochem-072911-172315

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, R., Kaakati, R., Liu, X., Liu, L., Lee, A. K., Bachelder, R., et al. (2019). CRISPR/Cas9-Mediated BRCA1 knockdown adipose stem cells promote breast cancer progression. Plastic and reconstructive surgery, 143(3), 747.

    Article  CAS  PubMed  Google Scholar 

  65. Grissa, I., Vergnaud, G., & Pourcel, C. (2007). CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 35, W52–W57. https://doi.org/10.1093/nar/gkm360

    Article  PubMed  PubMed Central  Google Scholar 

  66. Singhal, J., Chikara, S., Horne, D., Awasthi, S., Salgia, R., & Singhal, S. S. (2020). Targeting RLIP with CRISPR/Cas9 controls tumor growth. Carcinogenesis, 42(1), 48–57. https://doi.org/10.1093/carcin/bgaa048

    Article  CAS  PubMed Central  Google Scholar 

  67. Mendes de Almeida, R., Bandarra, S., Clara Ribeiro, A., Mascarenhas, P., Bekman, E., & Barahona, I. (2019). Inactivation of APOBEC3G gene in breast cancer cells using the CRISPR/Cas9 system. Annals of Medicine, 51(sup1), 40–40.

    Article  PubMed Central  Google Scholar 

  68. Gonzalez-Salinas, F., Rojo, R., Martinez-Amador, C., Herrera-Gamboa, J., & Trevino, V. (2020). Transcriptomic and cellular analyses of CRISPR/Cas9-mediated edition of FASN show inhibition of aggressive characteristics in breast cancer cells. Biochemical and Biophysical Research Communications, 529(2), 321–327.

    Article  CAS  PubMed  Google Scholar 

  69. Li, C. G., Pu, M. F., Li, C. Z., Gao, M., Liu, M. X., Yu, C. Z., et al. (2017). MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. ActaPharmacologicaSinica, 38(1), 110–119.

    Google Scholar 

  70. Zhou, X., Curbo, S., Li, F., Krishnan, S., & Karlsson, A. (2018). Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose. BMC cancer, 18(1), 1–14.

    Article  CAS  Google Scholar 

  71. Yan, S. Z., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., & Lai, C. (2018). A Huntingtin Knockin PIG model capitulates features of selective neurodegeneration in Huntington’s disease. Cell, 173(989–1002), e1013.

    Google Scholar 

  72. Koo, T., Yoon, A. R., Cho, H. Y., Bae, S., Yun, C. O., & Kim, J. S. (2017). Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic acids research, 45(13), 7897–7908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qiu, P. Y., Jiang, J., Liu, Z., Cai, Y. L., Huang, T., Wang, Y., Liu, Q. M., Nie, Y. H., Liu, F., & Cheng, J. M. (2019). BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. National Science Review, 6, 87–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang, K. J., Constanzo, J. D., Venkateswaran, N., Melegari, M., Ilcheva, M., Morales, J. C., et al. (2016). Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clinical Cancer Research, 22(23), 5851–5863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, F., Zhang, Y., Lu, M., Wang, C., Li, Q., Gao, Y., et al. (2017). Nestin servers as a promising prognostic biomarker in non-small cell lung cancer. American journal of translational research, 9(3), 1392.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu, W., Guo, G., Chi, Y., & Li, F. (2019). Construction of Traf3 knockout liver cancer cell line using CRISPR/Cas9 system. Journal of cellular biochemistry, 120(9), 14908–14915.

    Article  CAS  PubMed  Google Scholar 

  77. Liu, Z., Cai, Y., Wang, Y., Nie, Y., Zhang, C., Xu, Y., Zhang, X., Lu, Y., Wang, Z., & Poo, M. (2018). Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 172(881–887), e887 41.

    Google Scholar 

  78. Chol., K, Ri., J, Kim., Su, Kim., C. (2017). Identification of Klf6-related super enhancer in human hepatoma (HepG2) cells by CRISPR technique. Genetics and Molecular Research, 16(4):gmr16039841. https://doi.org/10.4238/gmr16039841

  79. Wang, X., Zhang, W., Ding, Y., Guo, X., Yuan, Y., & Li, D. (2017). CRISPR/Cas9-mediated genome engineering of CXCR4 decreases the malignancy of hepatocellular carcinoma cells in vitro and in vivo. Oncology reports, 37(6), 3565–3571.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, C., Jin, H., Gao, D., Wang, L., Evers, B., Xue, Z., et al. (2018). A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell research, 28(6), 690–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai, J., Chen, J., Wu, T., Cheng, Z., Tian, Y., Pu, C., et al. (2020). Genome-scale CRISPR activation screening identifies a role of LRP8 in Sorafenib resistance in Hepatocellular carcinoma. Biochemical and biophysical research communications, 526(4), 1170–1176.

    Article  CAS  PubMed  Google Scholar 

  82. Nelson, C. E., Wu, Y., Gemberling, M. P., Oliver, M. L., Waller, M. A., Bohning, J. D., Robinson-Hamm, J. N., Bulaklak, K., Castellanos Rivera, R. M., & Collier, J. H. (2019). Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nature Medicine, 25, 427–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W. H., Pan, B., Hu, Y. J., Hu, J. H., Thompson, D. B., & Shu, Y. (2018). Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 553, 217–221.

    Article  CAS  PubMed  Google Scholar 

  84. Garcia-Peterson, L. M., Ndiaye, M. A., Chhabra, G., Singh, C. K., Guzmán-Pérez, G., Iczkowski, K. A., & Ahmad, N. (2020). CRISPR/Cas9-mediated knockout of SIRT6 imparts remarkable antiproliferative response in human melanoma cells in vitro and in vivo. Photochemistry and Photobiology, 96(6), 1314–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ercolano, G., De Cicco, P., Rubino, V., Terrazzano, G., Ruggiero, G., Carriero, R., et al. (2019). Knockdown of PTGS2 by CRISPR/CAS9 system designates a new potential gene target for melanoma treatment. Frontiers in pharmacology, 10, 1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cui, Y., Wu, B. O., Flamini, V., Evans, B. A., Zhou, D., & Jiang, W. G. (2017). Knockdown of EPHA1 using CRISPR/CAS9 suppresses aggressive properties of ovarian cancer cells. Anticancer research, 37(8), 4415–4424.

    CAS  PubMed  Google Scholar 

  87. Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T. R., Massey, C., & Shelton, J. M. (2018). Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 362, 86–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schokrpur, S., Hu, J., Moughon, D. L., Liu, P., Lin, L. C., Hermann, K., et al. (2016). CRISPR-mediated VHL knockout generates an improved model for metastatic renal cell carcinoma. Scientific reports, 6(1), 1–13.

    Article  Google Scholar 

  89. Bao, M. H., Yang, C., Tse, A. P., Wei, L., Lee, D., Zhang, M. S., et al. (2021). Genome-wide CRISPR-Cas9 knockout library screening identified PTPMT1 in cardiolipin synthesis is crucial to survival in hypoxia in liver cancer. Cell Reports, 34(4), 108676.

    Article  CAS  PubMed  Google Scholar 

  90. Kwon, C. T., Heo, J., Lemmon, Z. H., Capua, Y., Hutton, S. F., Van Eck, J., Park, S. J., & Lippman, Z. P. (2019). Rapid customization of Solanaceae fruit crops for urban agriculture. Nature Biotechnology, 38, 182–188.

    Article  PubMed  Google Scholar 

  91. Li, R., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant Journal, 94(3), 513–552.

    Article  CAS  PubMed  Google Scholar 

  92. Cui, Y., Wu, B., Flamini, V., Evans, B. A., Zhou, D., & Jiang, W. G. (2017). Knockdown of EPHA1 using CRISPR/CAS9 suppresses aggressive properties of ovarian cancer cells. Anticancer Research, 37(8):4415–4424.

  93. Yu, Q. H., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., Xu, J., Guo, C., Yan, P., Wang, Q., & Asmutola, P. (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports, 7(1), 1–9.

    Google Scholar 

  94. Lu, T., Zhang, L., Zhu, W., Zhang, Y., Zhang, S., Wu, B., & Deng, N. (2020). CRISPR/Cas9-Mediated OC-2 Editing inhibits the tumor growth and angiogenesis of ovarian cancer. Frontiers in Oncology, 10.

  95. Feng, Y., Sassi, S., Shen, J. K., Yang, X., Gao, Y., Osaka, E., et al. (2014). Targeting Cdk11 in OSTEOSARCOMA cells using the crispr-cas9 system. Journal of Orthopaedic Research, 33(2), 199–207.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Slotta, C., Schlüter, T., Ruiz-Perera, L. M., Kadhim, H. M., Tertel, T., Henkel, E., et al. (2017). CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in PROFOUND defects of the cell cycle. Plos One, 12(8):e0182373.

  97. Bungsy, M., Palmer, M. C. L., Jeusset, L. M., et al. (2021). Reduced RBX1 expression induces chromosome instability and promotes cellular transformation in high-grade serous ovarian cancer precursor cells. Cancer Letters, 500, 194–207. https://doi.org/10.1016/j.canlet.2020.11.051

    Article  CAS  PubMed  Google Scholar 

  98. Gao, S. P., Kiliti, A. J., Zhang, K., Vasani, N., Mao, N., Jordan, E., Wise, H. C., Bhattarai, T. S., Hu, W., Dorso, M., & Rodrigues, J. A. (2021). AKT1 E17K inhibits cancer cell migration by abrogating β-catenin signaling. Molecular Cancer Research, 19(4), 573–584.

    Article  CAS  PubMed  Google Scholar 

  99. Li, M., Xie, H., Liu, Y., Xia, C., Cun, X., Long, Y., et al. (2019). Knockdown of HYPOXIA-INDUCIBLE FACTOR-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer. Journal of Controlled Release, 304, 204–215.

    Article  CAS  PubMed  Google Scholar 

  100. Prattapong, P., Ngernsombat, C., Aimjongjun, S., & Janvilisri, T. (2020). CRISPR/Cas9-mediated double knockout OF Srpk1 and SRPK2 in a nasopharyngeal Carcinoma cell line. Cancer Reports, 3(2):e1224. https://doi.org/10.1002/cnr2.1224.

  101. Eyquem, J., Mansilla-Soto, J., Giavridis, T., Van Der Stegen, S. J., Hamieh, M., Cunanan, K. M., Odak, A., Gonen, M., & Sadelain, M. (2017). Targeting a CAR to the € TRAC locus with CRISPR/Cas9 enhances tumor rejection. Nature, 543(7643), 113–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reyes, A. P., & Lanner, F. (2017). Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development, 144(1), 3–7.

    Article  CAS  Google Scholar 

  103. Zhang, F. (2015). CRISPR-Cas9: Prospects and challenges. Human gene therapy, 26(7), 409–410.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Krishan, K., Kanchan, T., & Singh, B. (2016). Human genome editing and ethical considerations. Science and engineering ethics, 22(2), 597–599.

    Article  PubMed  Google Scholar 

  105. Polstein, L. R., Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Bledsoe, P., Song, L., et al. (2015). Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome research, 25, 1158–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sanseau, P. (2001). Impact of human genome sequencing for in silico target discovery. Drug Discov Today, 6, 316–323.

    Article  CAS  PubMed  Google Scholar 

  107. Miri, S. M., Tafsiri, E., Cho, W. C. S., & Ghaemi, A. (2020). CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy. Cancer cell international, 20, 456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Akram, F., Sahreen, S., Aamir, F., Haq, M. K., Imtiaz, M., Naseem, W., Nasir, N., & Waheed, H. M. (2022). An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Molecular Biotechnology. https://doi.org/10.1007/s12033-022-00501-4

  109. Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.01387

  110. Mansinho, A., Boni, V., Miguel, M., & Calvo, E. (2017). The future of oncology therapeutics. Expert Review of Anticancer Therapy, 17(7), 563–565.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author sincerely acknowledges the University of Engineering and Management.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally.

Corresponding author

Correspondence to Pratik Talukder.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors give the consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukder, P., Chanda, S., Chaudhuri, B. et al. CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04708-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04708-2

Keywords

Navigation