Skip to main content
Log in

Screening of Chitinolytic Microfungi and Optimization of Parameters for Hyperproduction of Chitinase Through Solid-State Fermentation Technique

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study is intended for the production of chitinase enzyme from locally isolated fungal strains. Out of 10 isolated fungal strains from district Gujrat, Punjab, Pakistan, Aspergillus terreus SB3 (accession number ON738571) was found with maximum chitinolytic potential (80.8 U/mL/min). By applying central composite design (CCD) through response surface methodology (RSM) under solid-state fermentation (SSF), eight nutritional and physical parameters were optimized. Among these, temperature, substrate concentration, and pH were found as significant factors toward chitinase production in the first phase. Moisture and nitrogen source were found as significant factors during second phase of chitinase production. The effect of incubation period, inoculum size, and magnesium source was observed as non-significant. The chitinase activity was successfully enhanced more than 2 folds up to 198.5 U/mL/min at optimized conditions of 35 °C temperature, 4.5 pH, 20 g substrate concentration, 4-day incubation period, 55% moisture content, 4.5 mL inoculum size, 0.25 g ammonium sulfate, and 0.30 g magnesium sulfate using RSM design. It was also found that Ganoderma lucidum (bracket fungus) has more potential to be used for the production of chitinase compared to fish scales. The present study exhibited Aspergillus terreus SB3 (ON738571) as a potential indigenous strain capable for hyperproduction of chitinase through cheap fermentation technology that might be employed for the eradication of chitin-based sea waste to remove the marine pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Murtaza, H., Ayesha, Z., Irum, S., Fan, L., Shahbaz, G. H., Tuba, T., Sadaf, Z., Tauseef, M., Faisal, I., & Xugang, S. (2020). Fractionation of biomolecules in Withania coagulans extract for bioreductive nanoparticle synthesis, antifungal and biofilm activity. Molecules, 25, 3478.

    Article  Google Scholar 

  2. Fan, L., Wenxiong, W., Meiquan, C., Zhanjia, Z., Dandan, Z., Murtaza, H., Zhihuan, Fu., & Xugang, S. (2020). Synthesis and efficacy of the n-carbamoyl-methionine copper on the growth performance, tissue mineralization, immunity and enzymatic antioxidant capacity of Nile tilapia (Oreochromis niloticus). ACS Omega, 5, 22578–22586.

    Article  Google Scholar 

  3. Ayesha, Z., Tuba, T., Murtaza, H., Maryum, N., Muhammad, N. R., Nasir, M., & Xugang, S. (2021). Green-maturation of cobalt-oxide nano-sponges for reinforced bacterial apoptosis. Colloid and Interface Science Communications, 45, 100531.

    Article  Google Scholar 

  4. Muhammad, S. S., Ayesha, Z., Muhammad, W., Shahbaz, G. H., Ain, U. H., Tuba, T., Sana, B., Momina, D., Murtaza, H., & Xugang, S. (2021). Phyto-reflexive zinc oxide nano-flowers synthesis: An advanced photocatalytic degradation and infectious therapy. Journal of Materials Research and Technology, 13, 2375–2391.

    Article  Google Scholar 

  5. Murtaza, H., Mahrukh, A., Ayesha, Z., Shahbaz, G. H., Zeeshan, A., Ghazala, M., Tauseef, M., Muhammad, S. S., Tuba, T., Faisal, I., Muhammad, W. K., Asif, M., Nasir, M., & Xugang, S. (2021). Bioinspired synthesis of zinc oxide nano-flowers: A surface enhanced antibacterial and harvesting efficiency. Materials Science and Engineering: C, 119, 11280.

    Google Scholar 

  6. Popoola, B. M., & Onilude, A. (2017). Microorganisms associated with vegetable oil polluted soil. Advances in Microbiology, 7(5), 377–386.

    Article  CAS  Google Scholar 

  7. Bommarius, A. S., & Paye, M. F. (2013). Stabilizing biocatalysts. Chemical Society Reviews, 42(15), 6534–6565.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, J.-M., Han, S.-S., & Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis, current status and future aspects. Biotechnology Advances, 33(7), 1443–1454.

    Article  CAS  PubMed  Google Scholar 

  9. Madhavan, A., Sindhu, R., Binod, P., Sukumaran, R. K., & Pandey, A. (2017). Strategies for design of improved biocatalysts for industrial applications. Bioresource Technology, 245, 1304–1313.

    Article  CAS  PubMed  Google Scholar 

  10. Prasad, S., & Roy, I. (2018). Converting enzymes into tools of industrial importance. Recent Patents on Biotechnology, 12(1), 33–56.

    CAS  PubMed  Google Scholar 

  11. Patel, A. K., Singhania, R. R., & Pandey, A. (2017). Production, Purification, and Application of Microbial Enzymes. In G. Brahmachari (Ed.), Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. Academic Press, Cambridge, pp. 13–41.

  12. Cao, S., Xu, P., Ma, Y., Yao, X., Yao, Y., Zong, M., Li, X., & Lou, W. (2016). Recent advances in immobilized enzymes on nanocarriers. Chinese Journal of Catalysis, 37(11), 1814–1823.

    Article  CAS  Google Scholar 

  13. Cipolatti, E. P., Valerio, A., Henriques, R. O., Moritz, D. E., Ninow, J. L., Freire, D. M., Manoel, E. A., Fernandez-Lafuente, R., & De Oliveira, D. (2016). Nanomaterials for biocatalyst immobilization-state of the art and future trends. RSC Advances, 6(106), 104675–104692.

    Article  CAS  Google Scholar 

  14. Grigoras, A. G. (2017). Catalase immobilization-a review. Biochemical Engineering Journal, 117, 1–20.

    Article  CAS  Google Scholar 

  15. Tracewell, C. A., & Arnold, F. H. (2009). Directed enzyme evolution, climbing fitness peaks one amino acid at a time. Current Opinion in Chemical Biology, 13(1), 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirana, S., Arshada, Z., Nosheenb, S., Kamala, S., Gulzara, T., Majeeda, M. S., Jannata, M., & Rafiquec, M. A. (2016). Microbial lipases: Production and applications, a review. Journal of Biochemistry Biotechnology and Biomaterials, 1(2), 7–20.

    Google Scholar 

  17. Adrangi, S., & Faramarzi, M. A. (2013). From bacteria to human, a journey into the world of chitinases. Biotechnology Advances, 31(8), 1786–1795.

    Article  CAS  PubMed  Google Scholar 

  18. Howard, M. B., Ekborg, N. A., Weiner, R. M., & Hutcheson, S. W. (2003). Detection and characterization of chitinases and other chitin-modifying enzymes. Journal of Industrial Microbiology and Biotechnology, 30(11), 627–635.

    Article  CAS  PubMed  Google Scholar 

  19. Felse, P. A., & Panda, T. (2000). Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors-the influence of agitator speed. Biochemical Engineering Journal, 4(2), 115–120.

    Article  CAS  Google Scholar 

  20. Karthik, N., Akanksha, K., Binod, P., & Pandey, A. (2014). Production, purification and properties of fungal chitinases-a review. Indian Journal of Experimental Biology, 52(11), 1025–1035.

    PubMed  Google Scholar 

  21. Hamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J., & Javed, S. (2013). Chitinases, an update. Journal of Pharmacy and Bioallied Sciences, 5(1), 21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karasuda, S., Tanaka, S., Kajihara, H., Yamamoto, Y., & Koga, D. (2003). Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Bioscience, Biotechnology, and Biochemistry, 67(1), 221–224.

    Article  CAS  PubMed  Google Scholar 

  23. Berini, F., Katz, C., Gruzdev, N., Casartelli, M., Tettamanti, G., & Marinelli, F. (2018). Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnology Advances, 36(3), 818–838.

    Article  CAS  PubMed  Google Scholar 

  24. Roopavathi, A. S., Vigneshwari, R., & Jayapradha, R. (2015). Chitinase, production and applications. Journal of Chemical and Pharmaceutical Research, 7(5), 924–931.

    CAS  Google Scholar 

  25. Sukma, A., Jos, B., & Sumardiono, S. (2018). Kinetic of biomass growth and protein formation on rice bran fermentation using Rhizopus oryzae. MATEC Web of Conferences, EDP Sciences, 156, 01023.

    Article  Google Scholar 

  26. Londoño-Hernandez, L., Ruiz, H. A., Toro, C. R., Ascacio-Valdes, A., Rodriguez-Herrera, R., Aguilera-Carbo, A., Tubio, G., Pico, G., Prado-Barragan, A., Gutierrez-Sanchez, G., & Aguilar, C. N. (2020). In Advantages and progress innovations of solid-state fermentation to produce industrial enzymes, Vol 11: Microbial enzymes, roles and applications in industries. pp. 87–113.

  27. Ghoshal, G., Basu, S., & Shivhare, U. (2012). Solid state fermentation in food processing. International Journal of Food Engineering, 8(3). https://doi.org/10.1515/1556-3758.1246

  28. Çakmak, M., & Aydoğdu, H. (2021). Screening of microfungi for lipolytic activity and optimization of process parameters in lipase production by solid substrate fermentation using selected microfungi (Penicillium aurantiogriseum). Kuwait Journal of Science, 48(1), 98–105.

    Google Scholar 

  29. Nirmal, N. P., Santivarangkna, C., Rajput, M. S., & Benjakul, S. (2020). Trends in shrimp processing waste utilization, an industrial prospective. Trends in Food Science and Technology, 103, 20–35.

    Article  CAS  Google Scholar 

  30. Gunalan, G., Sadhana, D., & Ramya, P. (2012). Production, optimization of chitinase using Aspergillus flavus and its biocontrol of phytopathogenic fungi. Journal of Pharmacy Research, 5(6), 3151–3154.

    CAS  Google Scholar 

  31. Vahed, M., Motalebi, E., Rigi, G., Noghabi, K. A., Soudi, M. R., Sadeghi, M., & Ahmadian, G. (2013). Improving the chitinolytic activity of Bacillus pumilus SG2 by random mutagenesis. Journal of Microbiology and Biotechnology, 23(11), 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  32. Ali, M. B., Irshad, M., Anwar, Z., Zafar, M., & Imran, M. (2016). Screening and statistical optimization of physiochemical parameters for the production of xylanases from agro-industrial wastes. Advances in Enzyme Research, 4(1), 20–33.

    Article  CAS  Google Scholar 

  33. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4, molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  34. Walia, N. K., Sekhon, K. K., Chaudhary, D. P., Cameotra, S. S., Srivastava, P., & Kumar, A. (2014). Optimization of fermentation parameters for bioconversion of corn to ethanol using response surface methodology. Journal of Petroleum and Environmental Biotechnology, 5(3), 178.

    Google Scholar 

  35. Kumar, D. P., Singh, R. K., Anupama, P., Solanki, M. K., Kumar, S., Srivastava, A. K., Singhal, P. K., & Arora, D. K. (2012). Studies on exo-chitinase production from Trichoderma asperellum UTP-16 and its characterization. Indian journal of Microbiology, 52(3), 388–395.

    Article  CAS  PubMed  Google Scholar 

  36. Nawani, N., & Kapadnis, B. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochemistry, 40(2), 651–660.

    Article  CAS  Google Scholar 

  37. Lopes, M. A., Gomes, D. S., Koblitz, M. G. B., Pirovani, C. P., De Mattos Cascardo, J. C., Góes-Neto, A., & Micheli, F. (2008). Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa. Mycological Research, 112(3), 399–406.

    Article  CAS  PubMed  Google Scholar 

  38. Sharaf, E. F. (2005). A potent chitinolytic activity of Alternaria alternata isolated from Egyptian black sand. Polish Journal of Microbiology, 54(2), 145.

    PubMed  Google Scholar 

  39. Jung, W. J., Kuk, J. H., Kim, K. Y., Jung, K. C., & Park, R. D. (2006). Purification and characterization of exo-β-D-glucosaminidase from Aspergillus fumigatus S-26. Protein Expression and Purification, 45(1), 125–131.

    Article  CAS  PubMed  Google Scholar 

  40. Mishra, P., Kshirsagar, P., Nilegaonkar, S., & Singh, S. (2012). Statistical optimization of medium components for production of extracellular chitinase by Basidiobolus ranarum, a novel biocontrol agent against plant pathogenic fungi. Journal of Basic Microbiology, 52(5), 539–548.

    Article  CAS  PubMed  Google Scholar 

  41. Souza, R., Gomes, R., Coelho, R., Alviano, C., & Soares, R. (2003). Purification and characterization of an endochitinase produced by Colletotrichum gloeosporioides. FEMS Microbiology Letters, 222(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, W. M., Chen, C. S., & Jiang, S. T. (2013). Purification and characterization of an extracellular chitinase from Rhizopus oryzae. Journal of Marine Science and Technology, 21(3), 361–366.

    CAS  Google Scholar 

  43. Agrawal, T., & Kotasthane, A. S. (2012). Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus, 1(1), 1–10.

    Article  Google Scholar 

  44. Sandhya, C., Adapa, L. K., Nampoothiri, K. M., Binod, P., Szakacs, G., & Pandey, A. (2004). Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 44(1), 49–58.

    Article  CAS  Google Scholar 

  45. Sudhakar, P., & Nagarajan, P. (2011). Process optimization for chitinase production by Trichoderma harzianum. Asian Journal of Food and Agro-Industry, 4(2), 91–102.

    Google Scholar 

  46. Wasli, A. S., Salleh, M. M., Abd-Aziz, S., Hassan, O., & Mahadi, N. M. (2009). Medium optimization for chitinase production from Trichoderma virens using central composite design. Biotechnology and Bioprocess Engineering, 14(6), 781–787.

    Article  CAS  Google Scholar 

  47. Li, D.-C., Zhang, S.-H., Liu, K.-Q., & Lu, J. (2004). Purification and partial characterization of a chitinase from the mycoparasitic fungus Trichothecium roseum. The Journal of General and Applied Microbiology, 50(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  48. Abu-Tahon, M. A., & Isaac, G. S. (2020). Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. The Journal of General and Applied Microbiology, 66(1), 32–40.

    Article  CAS  PubMed  Google Scholar 

  49. Brzezinska, M. S., & Jankiewicz, U. (2012). Production of antifungal chitinase by Aspergillus niger LOCK 62 and its potential role in the biological control. Current Microbiology, 65(6), 666–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alves, T. B., De Oliveira Ornela, P. H., De Oliveira, A. H. C., Jorge, J. A., & Guimarães, L. H. S. (2018). Production and characterization of a thermostable antifungal chitinase secreted by the filamentous fungus Aspergillus niveus under submerged fermentation. 3 Biotech, 8(8), 1–10.

    Article  Google Scholar 

  51. Rawway, M., Beltagy, E. A., Abdul-Raouf, U. M., Elshenawy, M. A., & Kelany, M. S. (2018). Optimization of process parameters for chitinase production by a marine Aspergillus Flavus MK20. Journal of Ecology of Health and Environment, 6(1), 1–8.

    Article  Google Scholar 

  52. Thadathil, N., Kuttappan, A. K. P., Vallabaipatel, E., Kandasamy, M., & Velappan, S. P. (2014). Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Annals of Microbiology, 64(2), 671–681.

    Article  CAS  Google Scholar 

  53. Xia, J. L., Xiong, J., Xu, T., Zhang, C. G., Zhang, R. Y., Zhang, Q., Wu, S., & Qiu, G. Z. (2009). Purification and characterization of extracellular chitinase from a novel strain Aspergillus fumigatus CS-01. Journal of Central South University of Technology, 16(4), 552–557.

    Article  CAS  Google Scholar 

  54. Gui-Zhen, M., Hui-Lan, G., Yong-Hua, Z., Shi-Dong, L., Bing-Yan, X., & Sheng-Jun, W. (2012). Purification and characterization of chitinase from Gliocladium catenulatum strain HL-1-1. African Journal of Microbiology Research, 6(20), 4377–4383.

    Google Scholar 

  55. Binod, P., Sandhya, C., Suma, P., Szakacs, G., & Pandey, A. (2007). Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-D-glucosamine from colloidal chitin. Bioresource Technology, 98(14), 2742–2748.

    Article  CAS  PubMed  Google Scholar 

  56. Nampoothiri, K. M., Baiju, T., Sandhya, C., Sabu, A., Szakacs, G., & Pandey, A. (2004). Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 39(11), 1583–1590.

    Article  CAS  Google Scholar 

  57. Wang, S. L., Hsiao, W. J., & Chang, W. T. (2002). Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry, 50(8), 2249–2255.

    Article  CAS  PubMed  Google Scholar 

  58. Matsumoto, Y., Saucedo-Castañeda, G., Revah, S., & Shirai, K. (2004). Production of β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochemistry, 39(6), 665–671.

    Article  CAS  Google Scholar 

  59. Iqbal, H. M. N., Asgher, M., & Bhatti, H. N. (2011). Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. BioResources, 6(2), 1273–1287.

    Article  CAS  Google Scholar 

  60. Koser, S., Anwar, Z., Iqbal, Z., Anjum, A., Aqil, T., Mehmood, S., & Irshad, M. (2014). Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues. Journal of Radiation Research and Applied Sciences, 7(3), 327–332.

    Article  Google Scholar 

  61. Baldoni, D. B., Antoniolli, Z. I., Mazutti, M. A., Jacques, R. J. S., Dotto, A. C., De Oliveira Silveira, A., Ferraz, R. C., Soares, V. B., & De Souza, A. R. C. (2020). Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. Brazilian Journal of Microbiology, 51(4), 1897–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rattanakit, N., Yang, S., Wakayama, M., Plikomol, A., & Tachiki, T. (2003). Saccharification of chitin using solid-state culture of Aspergillus sp. S1–13 with shellfish waste as a substrate. Journal of Bioscience and Bioengineering, 95(4), 391–396.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present research work was conducted utilizing the funds provided by the Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat campus, Gujrat, Pakistan, through funding no. 2022/BCH-UoG.

Author information

Authors and Affiliations

Authors

Contributions

Z Anwar contributed to the experimental design, M Adnan was involved in the laboratory work, and M Zafar interpreted research data. All the authors also contributed to paper writing.

Corresponding author

Correspondence to Muddassar Zafar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All the authors have agreed to participate in the publication of this manuscript.

Consent for Publication

All the authors have agreed to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, M., Zafar, M. & Anwar, Z. Screening of Chitinolytic Microfungi and Optimization of Parameters for Hyperproduction of Chitinase Through Solid-State Fermentation Technique. Appl Biochem Biotechnol 196, 1840–1862 (2024). https://doi.org/10.1007/s12010-023-04663-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04663-y

Keywords

Navigation