Skip to main content

Advertisement

Log in

In Vitro Anti-cancer Effect of Crataegus oxyacantha Berry Extract on Hormone Receptor Positive and Triple Negative Breast Cancers via Regulation of Canonical Wnt Signaling Pathway

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer treatment strategy depends mainly on the receptor status. Our aim was to identify a herbal preparation, effective against breast cancer, irrespective of hormone sensitivity, and to understand its molecular mechanism. The rich antioxidant composition of hawthorn (Crataegus oxyacantha) makes it a promising anti-cancer drug candidate. Polyphenol-rich methanolic extract of C. oxyacantha berry (M.Co) was found to be cytotoxic on hormone receptor positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines, at a dose (75 μg/ml) safe on normal cells. It could effectively inhibit tumor cell proliferation and arrest cell cycle at G1/S transition in both cell lines. Molecular targets were selected from different levels of canonical Wnt signaling pathway (such as autocrine and antagonistic ligands, receptor, effector, cytoplasmic components, downstream targets, and pathway antagonist), since they are frequently found dysregulated in all breast cancers and their aberrant activation is associated with cancer stem cell expansion. M.Co could significantly downregulate the expression of Wnt pathway agonists and upregulate that of Wnt antagonists at transcriptional and translational levels, in both cell lines. To conclude, C. oxyacantha berry extract is effective against breast cancer irrespective of its hormone dependency, and cancer growth inhibition at stem cell level can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Yes. Data have been generated as part of the routine work.

References

  1. Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lønning, P. E., Børresen-Dale, A. L., Brown, P. O., & Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  2. Powell, K. (2012). Molecular oncology: The positive in the negative. Nature, 485(7400), S52–S53. https://doi.org/10.1038/485S52a

    Article  CAS  PubMed  Google Scholar 

  3. Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., Lickley, L. A., Rawlinson, E., Sun, P., & Narod, S. A. (2007). Triple-negative breast cancer: Clinical features and patterns of recurrence. Clinical cancer research : An official journal of the American Association for Cancer Research, 13(15 Pt 1), 4429–4434. https://doi.org/10.1158/1078-0432.CCR-06-3045

    Article  PubMed  Google Scholar 

  4. Mense, S. M., Hei, T. K., Ganju, R. K., & Bhat, H. K. (2008). Phytoestrogens and breast cancer prevention: Possible mechanisms of action. Environmental Health Perspectives, 116(4), 426–433. https://doi.org/10.1289/ehp.10538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnston, S. R. D. (2010). New strategies in estrogen receptor–positive breast cancer. Clinical Cancer Research, 16(7), 1979 LP – 1987. https://doi.org/10.1158/1078-0432.CCR-09-1823

    Article  Google Scholar 

  6. Hudis, C. A., & Gianni, L. (2011). Triple-negative breast cancer: An unmet medical need. The Oncologist, 16(Suppl 1), 1–11. https://doi.org/10.1634/theoncologist.2011-S1-01

    Article  PubMed  Google Scholar 

  7. Rastelli, F., Biancanelli, S., Falzetta, A., Martignetti, A., Casi, C., Bascioni, R., Giustini, L., & Crispino, S. (2010). Triple-negative breast cancer: Current state of the art. Tumori, 96(6), 875–888. https://doi.org/10.1700/548.6505

    Article  PubMed  Google Scholar 

  8. Lyons, T. G. (2019). Targeted therapies for triple-negative breast cancer. Current Treatment Options in Oncology, 20(11), 82. https://doi.org/10.1007/s11864-019-0682-x

    Article  PubMed  Google Scholar 

  9. Verma, S., Jain, V., Verma, D., & Khamesra, A. (2007). Crataegus oxyacantha-A cardioprotective herb. Journal of Herbal Medicine and Toxicology, 1, 65–71.

    Google Scholar 

  10. Tassell, M. C., Kingston, R., Gilroy, D., Lehane, M., & Furey, A. (2010). Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacognosy Reviews, 4(7), 32–41. https://doi.org/10.4103/0973-7847.65324

    Article  PubMed  PubMed Central  Google Scholar 

  11. Degenring, F. H., Suter, A., Weber, M., & Saller, R. (2003). A randomised double blind placebo controlled clinical trial of a standardised extract of fresh Crataegus berries (Crataegisan) in the treatment of patients with congestive heart failure NYHA II. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 10(5), 363–369. https://doi.org/10.1078/0944-7113-00312

    Article  CAS  PubMed  Google Scholar 

  12. Jayalakshmi, R., Thirupurasundari, C. J., & Devaraj, S. N. (2006). Pretreatment with alcoholic extract of Crataegus oxycantha (AEC) activates mitochondrial protection during isoproterenol - Induced myocardial infarction in rats. Molecular and Cellular Biochemistry, 292(1–2), 59–67. https://doi.org/10.1007/s11010-006-9218-3

    Article  CAS  PubMed  Google Scholar 

  13. Swaminathan, J. K., Khan, M., Mohan, I. K., Selvendiran, K., Niranjali Devaraj, S., Rivera, B. K., & Kuppusamy, P. (2010). Cardioprotective properties of Crataegus oxycantha extract against ischemia-reperfusion injury. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 17(10), 744–752. https://doi.org/10.1016/j.phymed.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J. D., Wu, Y. Z., Tao, Z. L., Chen, Z. M., & Liu, X. P. (1995). Hawthorn (Shan Zha) drink and its lowering effect on blood lipid levels in humans and rats. In World Review of Nutrition and Dietetics (pp. 147–154). https://doi.org/10.1159/000424470.

  15. Rajendran, S., Deepalakshmi, P. D., Parasakthy, K., Devaraj, H., & Devaraj, S. N. (1996). Effect of tincture of Crataegus on the LDL-receptor activity of hepatic plasma membrane of rats fed an atherogenic diet. Atherosclerosis, 123(1), 235–241. https://doi.org/10.1016/0021-9150(96)05813-3

    Article  CAS  PubMed  Google Scholar 

  16. Jouad, H., Lemhadri, A., Maghrani, M., Burcelin, R., & Eddouks, M. (2003). Hawthorn evokes a potent anti-hyperglycemic capacity in streptozotocin-induced diabetic rats. Journal of Herbal Pharmacotherapy, 3(2), 19–29. https://doi.org/10.1300/J157v03n02_03

    Article  PubMed  Google Scholar 

  17. Bahorun, T., Gressier, B., Trotin, F., Brunet, C., Dine, T., Luyckx, M., Vasseur, J., Cazin, M., Cazin, J. C., & Pinkas, M. (1996). Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel-Forschung, 46(11), 1086–1089.

    CAS  PubMed  Google Scholar 

  18. Zhang, Z., Chang, Q., Zhu, M., Huang, Y., Ho, W. K. K., & Chen, Z.-Y. (2001). Characterization of antioxidants present in hawthorn fruits. The Journal of Nutritional Biochemistry, 12(3), 144–152. https://doi.org/10.1016/s0955-2863(00)00137-6

    Article  CAS  PubMed  Google Scholar 

  19. Kao, E.-S., Wang, C.-J., Lin, W.-L., Yin, Y.-F., Wang, C.-P., & Tseng, T.-H. (2005). Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo. Journal of Agricultural and Food Chemistry, 53(2), 430–436. https://doi.org/10.1021/jf040231f

    Article  CAS  PubMed  Google Scholar 

  20. Tadić, V. M., Dobrić, S., Marković, G. M., Dordević, S. M., Arsić, I. A., Menković, N. R., & Stević, T. (2008). Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. Journal of Agricultural and Food Chemistry, 56(17), 7700–7709. https://doi.org/10.1021/jf801668c

    Article  CAS  PubMed  Google Scholar 

  21. Li, C., & Wang, M.-H. (2011). Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells. Nutrition Research and Practice, 5(2), 101–106. https://doi.org/10.4162/nrp.2011.5.2.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sáenz, M. T., Ahumada, M. C., & García, M. D. (1997). Extracts from Viscum and Crataegus are cytotoxic against larynx cancer cells. Zeitschrift fur Naturforschung. C Journal of Biosciences, 52(1–2), 42–44.

    Article  PubMed  Google Scholar 

  23. Satoh, K., Anzai, S., & Sakagami, H. (1998). Enhancement of radical intensity and cytotoxic activity of ascorbate by Crataegus cuneata Sieb et Zucc. extracts. Anticancer Research, 18(4A), 2749–2753.

    CAS  PubMed  Google Scholar 

  24. Min, B. S., Kim, Y. H., Lee, S. M., Jung, H. J., Lee, J. S., Na, M. K., Lee, C. O., Lee, J. P., & Bae, K. (2000). Cytotoxic triterpenes from Crataegus pinnatifida. Archives of Pharmacal Research, 23(2), 155–158. https://doi.org/10.1007/BF02975505

    Article  CAS  PubMed  Google Scholar 

  25. Elango, C., & Devaraj, S. N. (2010). Immunomodulatory effect of Hawthorn extract in an experimental stroke model. Journal of Neuroinflammation, 7, 97. https://doi.org/10.1186/1742-2094-7-97

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thirupurasundari, C. J., Jayalakshmi, R., & Niranjali Devaraj, S. (2005). Liver architecture maintenance by tincture of Crataegus against isoproterenol-induced myocardially infarcted rats. Journal of Medicinal Food, 8(3), 400–404. https://doi.org/10.1089/jmf.2005.8.400

    Article  CAS  PubMed  Google Scholar 

  27. Kao, E.-S., Wang, C.-J., Lin, W.-L., Chu, C.-Y., & Tseng, T.-H. (2007). Effects of polyphenols derived from fruit of Crataegus pinnatifida on cell transformation, dermal edema and skin tumor formation by phorbol ester application. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 45(10), 1795–1804. https://doi.org/10.1016/j.fct.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  28. Cui, T., Li, J.-Z., Kayahara, H., Ma, L., Wu, L.-X., & Nakamura, K. (2006). Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 54(13), 4574–4581. https://doi.org/10.1021/jf060310m

    Article  CAS  PubMed  Google Scholar 

  29. Svedström, U., Vuorela, H., Kostiainen, R., Laakso, I., & Hiltunen, R. (2006). Fractionation of polyphenols in hawthorn into polymeric procyanidins, phenolic acids and flavonoids prior to high-performance liquid chromatographic analysis. Journal of chromatography. A, 1112(1–2), 103–111. https://doi.org/10.1016/j.chroma.2005.12.080

    Article  CAS  PubMed  Google Scholar 

  30. Davies, J. R. (2000). Hawthorn: Crataegus monogyna (in a nutshell) (in a nutshell S.: healing herbs). Element. Retrieved from https://www.amazon.in/Hawthorn-Crataegus-Monogyna-Nutshell-Healing/dp/1862045577. Accessed 3 Feb 2000.

  31. Moon, R. T., Kohn, A. D., De Ferrari, G. V., & Kaykas, A. (2004). WNT and beta-catenin signalling: Diseases and therapies. Nature Reviews. Genetics, 5(9), 691–701. https://doi.org/10.1038/nrg1427

    Article  CAS  PubMed  Google Scholar 

  32. Katoh, M. (2017). Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). International Journal of Oncology, 51(5), 1357–1369. https://doi.org/10.3892/ijo.2017.4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chu, E. Y., Hens, J., Andl, T., Kairo, A., Yamaguchi, T. P., Brisken, C., Glick, A., Wysolmerski, J. J., & Millar, S. E. (2004). Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development (Cambridge, England), 131(19), 4819–4829. https://doi.org/10.1242/dev.01347

    Article  CAS  PubMed  Google Scholar 

  34. Roelink, H., Wagenaar, E., Lopes da Silva, S., & Nusse, R. (1990). Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4519–4523. https://doi.org/10.1073/pnas.87.12.4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ugolini, F., Charafe-Jauffret, E., Bardou, V. J., Geneix, J., Adélaïde, J., Labat-Moleur, F., Penault-Llorca, F., Longy, M., Jacquemier, J., Birnbaum, D., & Pébusque, M. J. (2001). WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene, 20(41), 5810–5817. https://doi.org/10.1038/sj.onc.1204706

    Article  CAS  PubMed  Google Scholar 

  36. Smalley, M. J., & Dale, T. C. (2001). Wnt signaling and mammary tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 6(1), 37–52. https://doi.org/10.1023/a:1009564431268

    Article  CAS  PubMed  Google Scholar 

  37. Saitoh, T., Mine, T., & Katoh, M. (2002). Up-regulation of Frizzled-10 (FZD10) by β-estradiol in MCF-7 cells and by retinoic acid in NT2 cells. International Journal of Oncology, 20(1), 117–120. https://doi.org/10.3892/ijo.20.1.117

    Article  CAS  PubMed  Google Scholar 

  38. Matsuda, Y., Schlange, T., Oakeley, E. J., Boulay, A., & Hynes, N. E. (2009). WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Research: BCR, 11(3), R32. https://doi.org/10.1186/bcr2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benhaj, K., Akcali, K. C., & Ozturk, M. (2006). Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncology Reports, 15(3), 701–707.

    CAS  PubMed  Google Scholar 

  40. Kim, J., Zhang, X., Rieger-Christ, K. M., Summerhayes, I. C., Wazer, D. E., Paulson, K. E., & Yee, A. S. (2006). Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. The Journal of Biological Chemistry, 281(16), 10865–10875. https://doi.org/10.1074/jbc.M513378200

    Article  CAS  PubMed  Google Scholar 

  41. Ryu, M.-J., Cho, M., Song, J.-Y., Yun, Y.-S., Choi, I.-W., Kim, D.-E., Park, B.-S., & Oh, S. (2008). Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochemical and Biophysical Research Communications, 377(4), 1304–1308. https://doi.org/10.1016/j.bbrc.2008.10.171

    Article  CAS  PubMed  Google Scholar 

  42. Park, S., & Choi, J. (2010). Inhibition of beta-catenin/Tcf signaling by flavonoids. Journal of Cellular Biochemistry, 110(6), 1376–1385. https://doi.org/10.1002/jcb.22654

    Article  CAS  PubMed  Google Scholar 

  43. Tarapore, R. S., Siddiqui, I. A., & Mukhtar, H. (2012). Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis, 33(3), 483–491. https://doi.org/10.1093/carcin/bgr305

    Article  CAS  PubMed  Google Scholar 

  44. Dashwood, W.-M., Orner, G. A., & Dashwood, R. H. (2002). Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): Minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations. Biochemical and Biophysical Research Communications, 296(3), 584–588. https://doi.org/10.1016/s0006-291x(02)00914-2

    Article  CAS  PubMed  Google Scholar 

  45. Choe, Y., Na, B., & Park, S. (2011). Screening of β-catenin/TCF transcription factor inhibitors in medicinal herb extracts. The Journal of Korean Oriental Medicine, 32(3), 35–43.

    Google Scholar 

  46. Kanof, M. E., Smith, P. D., & Zola, H. (2001). Isolation of whole mononuclear cells from peripheral blood and cord blood. Current protocols in immunology, Chapter 7, Unit 7.1. https://doi.org/10.1002/0471142735.im0701s19.

  47. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  48. Hagedorn, C., Baiker, A., Postberg, J., Ehrhardt, A., & Lipps, H. J. (2012). A colony-forming assay for determining the establishment efficiency of S/MAR-containing nonviral episomal expression vectors. Cold Spring Harbor Protocols, 2012(6), 706–708. https://doi.org/10.1101/pdb.prot069500

    Article  PubMed  Google Scholar 

  49. Hsu, Y.-L., Kuo, P.-L., Lin, L.-T., & Lin, C.-C. (2005). Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. The Journal of Pharmacology and Experimental Therapeutics, 313(1), 333–344. https://doi.org/10.1124/jpet.104.078808

    Article  CAS  PubMed  Google Scholar 

  50. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156–159. https://doi.org/10.1006/abio.1987.9999

    Article  CAS  PubMed  Google Scholar 

  51. Kawasaki, E. (1990). Amplification of RNA. In M. A. T. Innis, D. H. Gefland, J. J. Sninsky, & White (Ed.), PCR protocols, a guide to methods and applications (pp. 21–27).

  52. Marone, M., Mozzetti, S., De Ritis, D., Pierelli, L., & Scambia, G. (2001). Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biological Procedures Online, 3, 19–25. https://doi.org/10.1251/bpo20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Donaldson, J. G. (2001). Immunofluorescence staining. Current Protocols in Cell Biology, Chapter 4, Unit-4.3. https://doi.org/10.1002/0471143030.cb0403s00.

  54. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  PubMed  Google Scholar 

  55. Le, T., Yu, H., Guo, Y., Ngom, B., Shen, Y., & Bi, D. (2009). Development of an indirect competitive ELISA for the detection of doxycycline residue in animal edible tissues. Food and Agricultural Immunology, 20(2), 111–124. https://doi.org/10.1080/09540100902849740

    Article  CAS  Google Scholar 

  56. Vierling, W., Brand, N., Gaedcke, F., Sensch, K. H., Schneider, E., & Scholz, M. (2003). Investigation of the pharmaceutical and pharmacological equivalence of different Hawthorn extracts. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 10(1), 8–16. https://doi.org/10.1078/094471103321648601

    Article  CAS  PubMed  Google Scholar 

  57. Duthie, S. J. (2007). Berry phytochemicals, genomic stability and cancer: Evidence for chemoprotection at several stages in the carcinogenic process. Molecular Nutrition & Food Research, 51(6), 665–674. https://doi.org/10.1002/mnfr.200600257

    Article  CAS  Google Scholar 

  58. Seeram, N. P. (2008). Berry fruits for cancer prevention: Current status and future prospects. Journal of Agricultural and Food Chemistry, 56(3), 630–635. https://doi.org/10.1021/jf072504n

    Article  CAS  PubMed  Google Scholar 

  59. Rao, Y. K., Geethangili, M., Fang, S.-H., & Tzeng, Y.-M. (2007). Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: A comparative study. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 45(9), 1770–1776. https://doi.org/10.1016/j.fct.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  60. Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of Cell Biology, 124(4), 619–626. https://doi.org/10.1083/jcb.124.4.619

    Article  CAS  PubMed  Google Scholar 

  61. Kaur, M., Agarwal, C., & Agarwal, R. (2009). Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. The Journal of Nutrition, 139(9), 1806S-S1812. https://doi.org/10.3945/jn.109.106864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  63. Hoffman, R. M. (1991). In vitro sensitivity assays in cancer: A review, analysis, and prognosis. Journal of Clinical Laboratory Analysis, 5(2), 133–143. https://doi.org/10.1002/jcla.1860050211

    Article  CAS  PubMed  Google Scholar 

  64. Johansson, M., & Persson, J. L. (2008). Cancer therapy: Targeting cell cycle regulators. Anti-Cancer Agents in Medicinal Chemistry, 8(7), 723–731. https://doi.org/10.2174/187152008785914833

    Article  CAS  PubMed  Google Scholar 

  65. Jordan, M. A., Thrower, D., & Wilson, L. (1991). Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Research, 51(8), 2212–2222.

    CAS  PubMed  Google Scholar 

  66. Hogan, F. S., Krishnegowda, N. K., Mikhailova, M., & Kahlenberg, M. S. (2007). Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. The Journal of Surgical Research, 143(1), 58–65. https://doi.org/10.1016/j.jss.2007.03.080

    Article  CAS  PubMed  Google Scholar 

  67. Pozo-Guisado, E., Alvarez-Barrientos, A., Mulero-Navarro, S., Santiago-Josefat, B., & Fernandez-Salguero, P. M. (2002). The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: Cell-specific alteration of the cell cycle. Biochemical Pharmacology, 64(9), 1375–1386. https://doi.org/10.1016/s0006-2952(02)01296-0

    Article  CAS  PubMed  Google Scholar 

  68. Schlange, T., Matsuda, Y., Lienhard, S., Huber, A., & Hynes, N. E. (2007). Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Research: BCR, 9(5), R63. https://doi.org/10.1186/bcr1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geyer, F. C., Lacroix-Triki, M., Savage, K., Arnedos, M., Lambros, M. B., MacKay, A., Natrajan, R., & Reis-Filho, J. S. (2011). β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Modern Pathology : An Official Journal of the United States and Canadian Academy of Pathology, Inc, 24(2), 209–231. https://doi.org/10.1038/modpathol.2010.205

    Article  CAS  PubMed  Google Scholar 

  70. Eisenmann, D. (2005). Wnt signaling. In The worm Book. The C. elegans Research Community. Retrieved from http://www.wormbook.org/chapters/www_wntsignaling.2/wntsignal.html.

  71. Medrek, C., Landberg, G., Andersson, T., & Leandersson, K. (2009). Wnt-5a-CKIα signaling promotes β-catenin/E-cadherin complex formation and intercellular adhesion in human breast epithelial cells. The Journal of Biological Chemistry, 284(16), 10968–10979. https://doi.org/10.1074/jbc.M804923200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., Moon, R. T., Ninomiya-Tsuji, J., & Matsumoto, K. (2003). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and Cellular Biology, 23(1), 131–139. https://doi.org/10.1128/MCB.23.1.131-139.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Michaelson, J. S., & Leder, P. (2001). Beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene, 20(37), 5093–5099. https://doi.org/10.1038/sj.onc.1204586

    Article  CAS  PubMed  Google Scholar 

  74. Khramtsov, A. I., Khramtsova, G. F., Tretiakova, M., Huo, D., Olopade, O. I., & Goss, K. H. (2010). Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. The American Journal of Pathology, 176(6), 2911–2920. https://doi.org/10.2353/ajpath.2010.091125

    Article  PubMed  PubMed Central  Google Scholar 

  75. Howe, L. R., & Brown, A. M. C. (2004). Wnt signaling and breast cancer. Cancer Biology & Therapy, 3(1), 36–41. https://doi.org/10.4161/cbt.3.1.561

    Article  CAS  Google Scholar 

  76. Pahlke, G., Ngiewih, Y., Kern, M., Jakobs, S., Marko, D., & Eisenbrand, G. (2006). Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. Journal of Agricultural and Food Chemistry, 54(19), 7075–7082. https://doi.org/10.1021/jf0612530

    Article  CAS  PubMed  Google Scholar 

  77. Park, C. H., Chang, J. Y., Hahm, E. R., Park, S., Kim, H.-K., & Yang, C. H. (2005). Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochemical and Biophysical Research Communications, 328(1), 227–234. https://doi.org/10.1016/j.bbrc.2004.12.151

    Article  CAS  PubMed  Google Scholar 

  78. Sharma, M., Li, L., Celver, J., Killian, C., Kovoor, A., & Seeram, N. P. (2010). Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. Journal of Agricultural and Food Chemistry, 58(7), 3965–3969. https://doi.org/10.1021/jf902857v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Su, Y., & Simmen, R. C. M. (2009). Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis, 30(2), 331–339. https://doi.org/10.1093/carcin/bgn279

    Article  CAS  PubMed  Google Scholar 

  80. Hope, C., Planutis, K., Planutiene, M., Moyer, M. P., Johal, K. S., Woo, J., Santoso, C., Hanson, J. A., & Holcombe, R. F. (2008). Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: Implications for colon cancer prevention. Molecular Nutrition & Food Research, 52 Suppl 1(Suppl 1), S52-61. https://doi.org/10.1002/mnfr.200700448

    Article  Google Scholar 

  81. Sarkar, F. H., Li, Y., Wang, Z., & Kong, D. (2010). The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Reviews, 29(3), 383–394. https://doi.org/10.1007/s10555-010-9233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, W., Lin, H., Zhang, Y., Chen, X., Hua, B., Hou, W., Qi, X., Pei, Y., Zhu, X., Zhao, Z., & Yang, L. (2011). Compound Kushen Injection suppresses human breast cancer stem-like cells by down-regulating the canonical Wnt/β-catenin pathway. Journal of Experimental & Clinical Cancer Research : CR, 30(1), 103. https://doi.org/10.1186/1756-9966-30-103

    Article  CAS  PubMed Central  Google Scholar 

  83. Bi, X., Zhao, Y., Fang, W., & Yang, W. (2009). Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling. Clinical and Experimental Pharmacology & Physiology, 36(11), 1074–1078. https://doi.org/10.1111/j.1440-1681.2009.05203.x

    Article  CAS  Google Scholar 

  84. Dai, Z., Nair, V., Khan, M., & Ciolino, H. P. (2010). Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncology Reports, 24(4), 1087–1091.

    CAS  PubMed  Google Scholar 

  85. Hseu, Y.-C., Tsou, H.-T., Kumar, K. J. S., Lin, K.-Y., Chang, H.-W., & Yang, H.-L. (2012). The antitumor activity of Antrodia camphorata in melanoma cells: Modulation of Wnt/β-catenin signaling pathways. Evidence-Based Complementary and Alternative Medicine : ECAM, 2012, 197309. https://doi.org/10.1155/2012/197309

    Article  PubMed  Google Scholar 

Download references

Funding

This work is funded by Department of Biotechnology (DBT), Government of India, in the form of Junior and Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Niranjali Devaraj Sivasithamparam: Guidance and analysis

Salini Kombiyil: Study design and execution

Corresponding author

Correspondence to Niranjali Devaraj Sivasithamparam.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

The authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

(PNG 904 kb)

High resolution image (TIF 555 kb)

Supplementary file2

(PNG 1050 kb)

High resolution image (TIF 605 kb)

Supplementary file3

(PNG 823 kb)

High resolution image (TIF 519 kb)

Supplementary file4

(PNG 863 kb)

High resolution image (TIF 525 kb)

Supplementary file5

(PNG 946 kb)

High resolution image (TIF 553 kb)

Supplementary file6

(PNG 850 kb)

High resolution image (TIF 511 kb)

Supplementary file7

(PNG 1377 kb)

High resolution image (TIF 743 kb)

Supplementary file8

(PNG 624 kb)

High resolution image (TIF 397 kb)

Supplementary file9

(PNG 681 kb)

High resolution image (TIF 448 kb)

Supplementary file10

(PNG 571 kb)

High resolution image (TIF 376 kb)

Supplementary file11

(PNG 1021 kb)

High resolution image (TIF 616 kb)

Supplementary file12

(PNG 748 kb)

High resolution image (TIF 461 kb)

Supplementary file13

(PNG 516 kb)

High resolution image (TIF 364 kb)

Supplementary file14

(PNG 576 kb)

High resolution image (TIF 447 kb)

Supplementary file15

(PDF 2888 kb)

Supplementary file16

(PDF 440 kb)

Supplementary file17

(PDF 359 kb)

Supplementary file18

(PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kombiyil, S., Sivasithamparam, N.D. In Vitro Anti-cancer Effect of Crataegus oxyacantha Berry Extract on Hormone Receptor Positive and Triple Negative Breast Cancers via Regulation of Canonical Wnt Signaling Pathway. Appl Biochem Biotechnol 195, 2687–2708 (2023). https://doi.org/10.1007/s12010-021-03724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03724-4

Keywords

Navigation