Skip to main content
Log in

Homogeneous dispersion of cellulose/graphite oxide nanofibers in water-based urushiol coatings with improved mechanical properties and corrosion resistance

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

A polymeric coating based on a reactive urushiol-based polymeric emulsion was synthesized by grafting cellulose nanofibers (CNF) and graphene oxide (GO) onto the urushiol backbone, followed by phase inversion to obtain a cellulose nanofiber-graphene oxide/water-based urushiol emulsion (GO-CNF/WU). Following silane treatment (APTES), well-dispersed CNF-GO composites were obtained due to molecular interactions at the interface (including covalent, π-π and hydrogen bonding) between CNF and GO, resulting in a WU polymer which served as a mixing matrix to stabilize and improve the resulting GO-CNF through chemical-crosslinking. As expected, the mechanical properties (hardness and adhesion) and anticorrosion protection of the WU films were improved considerably after incorporating GO-CNF composites at fairly low concentrations. Compared to the WU film, the coated tinplate with the GO-CNF/WU coating displayed higher anticorrosion efficiency, with a PE of 99%. In addition, the pencil hardness of the GO-CNF/WU coatings increased significantly, from 2 to 6H, and adhesion was remarkably enhanced from grade 6 to 1 after the addition of 10% MGO to the films. Due to the synergistic protective effect of CNF and GO, the method may represent a facile and environmentally friendly approach to integrate multi-nanoscale blocks into WU polymer with excellent mechanical properties and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bi, JL, Liu, Y, Gao, FJ, Ge, SS, “Improving Water Resistance and Mechanical Properties of Waterborne Acrylic Resin Modified by 3,3′,5,5′-Tetramethyl-4,4′-Biphenyl Diglycidyl Ether.” Surf. Interfaces, 35 102426. https://doi.org/10.1016/j.surfin.2022.102426 (2022)

    Article  CAS  Google Scholar 

  2. Lian, MY, Sun, JX, Jiang, DW, Xu, MJ, “Waterwheel-Inspired High-Performance Hybrid Electromagnetic-Triboelectric Nanogenerators Based on Fluid Pipeline Energy Harvesting for Power Supply Systems and Data Monitoring.” Nanotechnology, 34 025401. https://doi.org/10.1088/1361-6528/ac97f1 (2023)

    Article  Google Scholar 

  3. Yu, ZH, Yan, ZY, Zhang, FH, Wang, JX, “Waterborne Acrylic Resin Co-Modified by Itaconic Acid and γ-Methacryloxypropyl Triisopropoxidesilane for Improved Mechanical Properties, Thermal Stability, and Corrosion Resistance.” Prog. Org. Coat., 168 106875. https://doi.org/10.1016/j.porgcoat.2022.106875 (2022)

    Article  CAS  Google Scholar 

  4. Cai, JC, Murugadoss, V, Jiang, JY, Gao, X, “Waterborne Polyurethane and Its Nanocomposites: A Mini-Review for Anti-Corrosion Coating, Flame Retardancy, and Biomedical Applications.” Adv. Compos. Hybrid Mater., 5 641–650. https://doi.org/10.1007/s42114-022-00473-8 (2022)

    Article  CAS  Google Scholar 

  5. Zhu, QS, Zhao, Y, Miao, BJ, Abo-Dief, HM, “Hydrothermally Synthesized ZnO-RGO-PPy for Water-Borne Epoxy Nanocomposite Coating with Anticorrosive Reinforcement.” Prog. Org. Coat., 172 107153. https://doi.org/10.1016/j.porgcoat.2022.107153 (2022)

    Article  CAS  Google Scholar 

  6. Yan, ZY, Wang, S, Bi, JL, He, QM, “Strengthening Waterborne Acrylic Resin Modified with Trimethylolpropane Triacrylate and Compositing with Carbon Nanotubes for Enhanced Anticorrosion.” Adv. Compos. Hybrid Mater., 5 2116–2130. https://doi.org/10.1007/s42114-022-00554-8 (2022)

    Article  CAS  Google Scholar 

  7. Du, HY, Ren, XJ, Pan, D, An, YL, “Effect of Phosphating Solution pH Value on the Formation of Phosphate Conversion Coatings for Corrosion Behaviors on AZ91D.” Adv. Compos. Hybrid Mater., 4 401–414. https://doi.org/10.1007/s42114-021-00222-3 (2021)

    Article  CAS  Google Scholar 

  8. Zhang, JR, Kang, ZY, Hou, DS, Dong, BQ, “Wavelet Power and Shannon Entropy Applied to Acoustic Emission Signals for Corrosion Detection and Evaluation of Reinforced Concrete.” ES Mater. Manuf., 16 46–55. https://doi.org/10.30919/esmm5f554 (2022)

    Article  CAS  Google Scholar 

  9. Nambiar, NK, Brindha, D, Punniyakotti, P, Venkatraman, BR, “Derris Indica Leaves Extract as a Green Inhibitor for the Corrosion of Aluminium in Alkaline Medium.” Eng. Sci., 17 167–175. https://doi.org/10.30919/es8d540 (2022)

    Article  CAS  Google Scholar 

  10. Wu, X, Zhong, J, Zhang, HQ, Liu, HJ, “Garnet Li7La3Zr2O12 Solid-State Electrolyte: Environmental Corrosion, Countermeasures and Applications.” ES Energy Environ., 14 22–33. https://doi.org/10.30919/esee8c494 (2021)

    Article  CAS  Google Scholar 

  11. Jalgham, RTT, “Theoretical, Monte Carlo Simulations and Quantitative Structure Activity Relationship Studies on Some Triazole Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl.” ES Energy Environ., 13 37–49. https://doi.org/10.30919/esee8c476 (2021)

    Article  CAS  Google Scholar 

  12. Liu, JP, Zhang, JX, Tang, JJ, Pu, LY, “Polydimethylsiloxane Resin Nanocomposite Coating with Alternating Multilayer Structure for Corrosion Protection Performance.” ES Mater. Manuf., 10 29–38. https://doi.org/10.30919/esmm5f912 (2020)

    Article  CAS  Google Scholar 

  13. Qiao, GQ, Wang, SC, Wang, XH, Chen, XY, “Ni/Co/black Phosphorus Nanocomposites for Q235 Carbon Steel Corrosion–Resistant Coating.” Adv. Compos. Hybrid Mater., 5 438–449. https://doi.org/10.1007/s42114-021-00268-3 (2022)

    Article  CAS  Google Scholar 

  14. Zhu, QS, Huang, YX, Li, YL, Zhou, MT, “Aluminum Dihydric Tripolyphosphate/Polypyrrole–Functionalized Graphene Oxide Waterborne Epoxy Composite Coatings for Impermeability and Corrosion Protection Performance of Metals.” Adv. Compos. Hybrid Mater., 4 780–792. https://doi.org/10.1007/s42114-021-00265-6 (2021)

    Article  CAS  Google Scholar 

  15. Farahmandian, M, Saidi, M, Fazlinejad, S, “Synthesis and Characterization of Nickel–Cobalt Spin Coatings Reinforced with Carbon Nanotubes: Microstructural Properties, Microhardness, and Corrosion Resistance.” Adv. Compos. Hybrid Mater., 5 1490–1507. https://doi.org/10.1007/s42114-021-00220-5 (2022)

    Article  CAS  Google Scholar 

  16. Guo, J, Chen, ZR, El–Bahy, ZM, Liu, H, “Tunable Negative Dielectric Properties of Magnetic CoFe2O4/Graphite–Polypyrrole Metacomposites.” Adv. Compos. Hybrid Mater., 5 899–906. https://doi.org/10.1007/s42114-022-00485-4 (2022)

    Article  CAS  Google Scholar 

  17. Ouyang, LF, Huang, W, Huang, M, Qiu, B, “Polyaniline Improves Granulation and Stability of Aerobic Granular Sludge.” Adv. Compos. Hybrid Mater., 5 1126–1136. https://doi.org/10.1007/s42114-022-00450-1 (2022)

    Article  CAS  Google Scholar 

  18. Li, GX, Wang, L, Lei, XN, Peng, ZF, “Flexible, Yet Robust Polyaniline Coated Foamed Polylactic Acid Composite Electrodes for High–Performance Supercapacitors.” Adv. Compos. Hybrid Mater., 5 853–863. https://doi.org/10.1007/s42114-022-00501-7 (2022)

    Article  CAS  Google Scholar 

  19. Xie, WH, Yao, FC, Gu, HB, Du, A, “Magnetoresistive and Piezoresistive Polyaniline Nanoarrays In–Situ Polymerized Surrounding Magnetic Graphene Aerogel.” Adv. Compos. Hybrid Mater., 5 1003–1016. https://doi.org/10.1007/s42114-021-00413-y (2022)

    Article  CAS  Google Scholar 

  20. Li, HY, Huang, W, Qiu, B, Thabet, HK, “Effective Removal of Proteins and Polysaccharides From Biotreated Wastewater by Polyaniline Composites.” Adv. Compos. Hybrid Mater., 5 1888–1898. https://doi.org/10.1007/s42114-022-00508-0 (2022)

    Article  CAS  Google Scholar 

  21. Xu, XJ, Yao, FC, Abu Ali, OA, Xie, WH, “Adjustable Core–Sheath Architecture of Polyaniline–Decorated Hollow Carbon Nanofiber Nanocomposites with Negative Permittivity for Superb Electromagnetic Interference Shielding.” Adv. Compos. Hybrid Mater., 5 2002–2011. https://doi.org/10.1007/s42114-022-00538-8 (2022)

    Article  CAS  Google Scholar 

  22. Yan, XL, Zhang, SM, Tang, W, Xia, MG, “Thermal Conductivity of PBX Calculated by Phonons of Explosive and Binder Molecular Crystals.” ES Energy Environ., 11 74–83. https://doi.org/10.30919/esee8c1036 (2021)

    Article  Google Scholar 

  23. Sun, DW, Yan, JH, Ma, XY, Lan, MZ, “Tribological Investigation of Self-Healing Composites Containing Metal/Polymer Microcapsules.” ES Mater. Manuf., 14 59–72. https://doi.org/10.30919/esmm5f469 (2021)

    Article  CAS  Google Scholar 

  24. Sardon, H, Irusta, L, González, A, Fernández-Berridi, MJ, “Waterborne Hybrid Polyurethane Coatings Functionalized with (3-Aminopropyl) Triethoxysilane: Adhesion Properties.” Prog. Org. Coat., 76 1230–1235. https://doi.org/10.1016/j.porgcoat.2013.03.025 (2013)

    Article  CAS  Google Scholar 

  25. Kasaeian, M, Ghasemi, E, Ramezanzadeh, B, Mahdavian, M, Bahlakeh, G, “A Combined Experimental and Electronic-Structure Quantum Mechanics Approach for Studying the Kinetics and Adsorption Characteristics of Zinc Nitrate Hexahydrate Corrosion Inhibitor on the Graphene Oxide Nanosheets.” Appl. Surf. Sci., 462 963–979. https://doi.org/10.1016/j.apsusc.2018.08.054 (2018)

    Article  CAS  Google Scholar 

  26. Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Polyaniline-Cerium Oxide (PAni–CeO2) Coated Graphene Oxide for Enhancement of Epoxy Coating Corrosion Protection Performance on Mild Steel.” Corros. Sci., 137 111–126. https://doi.org/10.1016/j.corsci.2018.03.038 (2018)

    Article  CAS  Google Scholar 

  27. Dang, CC, Mu, Q, Xie, XB, Sun, XQ, “Recent Progress in Cathode Catalyst for Nonaqueous Lithium Oxygen Batteries—A Review.” Adv. Compos. Hybrid Mater., 5 606–626. https://doi.org/10.1007/s42114-022-00500-8 (2022)

    Article  Google Scholar 

  28. Ma, YP, Xie, XB, Yang, WY, Yu, ZP, “Recent Advances in Transition Metal Oxides with Different Dimensions as Electrodes for High–Performance Supercapacitors.” Adv. Compos. Hybrid Mater., 4 906–924. https://doi.org/10.1007/s42114-021-00358-2 (2021)

    Article  CAS  Google Scholar 

  29. Hou, CX, Wang, B, Murugadoss, V, Vupputuri, S, “Recent Advances in Co3O4 as Anode Materials for High-Performance Lithium–Ion Batteries.” Eng. Sci., 11 19–30. https://doi.org/10.30919/es8d1128 (2020)

    Article  CAS  Google Scholar 

  30. He, YX, Zhou, MY, Mahmoud, MHH, Lu, XS, “Multifunctional Wearable Strain/Pressure Sensor Based on Conductive Carbon Nanotubes/Silk Nonwoven Fabric with High Durability and Low Detection Limit.” Adv. Compos. Hybrid Mater., 5 1939–1950. https://doi.org/10.1007/s42114-022-00525-z (2022)

    Article  CAS  Google Scholar 

  31. Tang, RB, Xu, P, Dong, JW, Gui, HG, “Carbon Foams Derived From Emulsion-Templated Porous Polymeric Composites for Electromagnetic Interference Shielding.” Carbon, 188 492–502. https://doi.org/10.1016/j.carbon.2021.12.026 (2022)

    Article  CAS  Google Scholar 

  32. Gao, SL, Zhao, XH, Fu, Q, Zhang, TC, “Highly Transmitted Silver Nanowires-SWCNTs Conductive Flexible Film by Nested Density Structure and Aluminum-Doped Zinc Oxide Capping Layer for Flexible Amorphous Silicon Solar Cells.” J. Mater. Sci. Technol., 126 152–160. https://doi.org/10.1016/j.jmst.2022.03.012 (2022)

    Article  CAS  Google Scholar 

  33. Yuan, BN, Wang, YN, Elnaggar, AY, El Azab, IH, “Physical vapor deposition of Graphitic Carbon Nitride (g–C3N4) Films on Biomass Substrate: Optoelectronic Performance Evaluation and Life Cycle Assessment.” Adv. Compos. Hybrid Mater., 5 813–822. https://doi.org/10.1007/s42114-022-00505-3 (2022)

    Article  CAS  Google Scholar 

  34. Marks, JG, Demelfi, T, Mccarthy, MA, Witte, EJ, Castagnoli, N, Epstein, WL, Aber, RC, “Dermatitis from Cashew Nuts.” J. Am. Acad. Dermatol., 10 627–631. https://doi.org/10.1016/S0190-9622(84)80269-8 (1984)

    Article  Google Scholar 

  35. Zheng, YY, Hu, BH, Lin, JH, “Synthesis and Property of Urushiol-Based Emulsifier (UE8).” Chem. Ind. Forest. Prod., 27 81–84 (2007)

    CAS  Google Scholar 

  36. Di, H, Yu, Z, Ma, Y, Zhang, C, Li, F, Lv, L, Pan, Y, Shi, H, He, Y, “Corrosion-Resistant Hybrid Coatings Based on Graphene Oxide-Zirconia Dioxide/Epoxy System.” J. Taiwan Inst. Chem. Eng., 67 511–520. https://doi.org/10.1016/j.jtice.2016.08.008 (2016)

    Article  CAS  Google Scholar 

  37. Bai, W, Lin, J, “Characterisation of Urushiol Formaldehyde Polymer/Multihydroxyl Polyacrylate/SiO2 Nanocomposites Prepared by the Sol–Gel Method.” Prog. Org. Coat., 71 43–47. https://doi.org/10.1016/j.porgcoat.2010.12.008 (2011)

    Article  CAS  Google Scholar 

  38. Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A Facile Route of Making Silica Nanoparticles-Covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance.” Chem. Eng. J., 303 511–528. https://doi.org/10.1016/j.cej.2016.06.028 (2016)

    Article  CAS  Google Scholar 

  39. Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings.” Surf. Coat. Technol., 311 282–294. https://doi.org/10.1016/j.surfcoat.2017.01.013 (2017)

    Article  CAS  Google Scholar 

  40. Yang, H, Li, F, Shan, C, Han, D, Zhang, Q, Niu, L, Ivaska, A, “Covalent Functionalization of Chemically Converted Graphene Sheets via Silane and Its Reinforcement.” J. Mater. Chem., 19 4632–4638. https://doi.org/10.1039/b901421g (2009)

    Article  CAS  Google Scholar 

  41. Zhang, WL, Choi, HJ, “Silica-Graphene Oxide Hybrid Composite Particles and Their Electroresponsive Characteristics.” Langmuir, 28 7055–7062. https://doi.org/10.1021/la3009283 (2012)

    Article  CAS  Google Scholar 

  42. Koga, H, Kitaoka, T, Isogai, A, “In Situ Modification of Cellulose Paper with Amino Groups for Catalytic Applications.” J. Mater. Chem., 21 9356–9361. https://doi.org/10.1039/c1jm10543d (2011)

    Article  CAS  Google Scholar 

  43. Abdelmouleh, M, Boufi, S, Belgacem, MN, Duarte, AP, Salah, AB, Gandini, A, “Modification of Cellulosic Fibres with Functionalised Silanes: Development of Surface Properties.” Int. J. Adhes. Adhes., 24 43–54. https://doi.org/10.1016/S0143-7496(03)00099-X (2004)

    Article  CAS  Google Scholar 

  44. Zhang, S, Xia, C, Dong, Y, Yan, Y, Li, J, Shi, SQ, “Soy Protein Isolatebased Films Reinforced by Surface Modified Cellulose Nanocrystal.” Ind. Crop Prod., 80 207–213. https://doi.org/10.1016/j.indcrop.2015.11.070 (2016)

    Article  CAS  Google Scholar 

  45. Pu, X, “Thermally Conductive and Electrically Insulating Epoxy Nanocomposites with Silica-Coated Graphene.” RSC Adv., 4 15297–15303. https://doi.org/10.1039/c4ra00518j (2014)

    Article  CAS  Google Scholar 

  46. Okita, Y, Saito, T, Isogai, A, “Entire Surface Oxidation of Various Cellulose Microfibrils by TEMPO-Mediated Oxidation.” Biomacromolecules, 11 1696–1700. https://doi.org/10.1021/bm100214b (2010)

    Article  CAS  Google Scholar 

  47. Sadasivuni, KK, Kafy, A, Zhai, LD, Ko, HU, Mun, S, Kim, J, “Transparent and Flexible Cellulose Nanocrystal/Reduced Graphene Oxide Film for Proximity Sensing.” Small, 11 994–1002. https://doi.org/10.1002/smll.201402109 (2015)

    Article  CAS  Google Scholar 

  48. Wang, Z, Kang, HJ, Zhao, SJ, Zhang, W, Zhang, SF, Li, JZ, “Polyphenol-Induced Cellulose Nanofibers Anchored Graphene Oxide as Nanohybrids for Strong Yet Tough Soy Protein Nanocomposites.” Carbohyd. Polym., 180 354–364. https://doi.org/10.1016/j.carbpol.2017.09.102 (2018)

    Article  CAS  Google Scholar 

  49. Lim, MY, Choi, YS, Kim, J, Kim, K, Shin, H, Kim, JJ, “Cross-Linked Graphene Oxide Membrane Having High Ion Selectivity and Antibacterial Activity Prepared Using Tannic Acid-Functionalized Graphene Oxide and Polyethyleneimine.” J. Membr. Sci., 521 1–9. https://doi.org/10.1016/j.memsci.2016.08.067 (2017)

    Article  CAS  Google Scholar 

  50. Zhi, MY, Huang, WX, Shi, QW, Ran, K, “Improving Water Dispersibility of Non-Covalent Functionalized Reduced Graphene Oxide with L-Tryptophan via Cleaning Oxidative Debris.” J. Mater. Sci: Mater. Electron., 7 7361–7368. https://doi.org/10.1007/s10854-016-4708-x (2016)

    Article  CAS  Google Scholar 

  51. Haeri, SZ, Asghari, M, Ramezanzadeh, B, “Enhancement of the Mechanical Properties of an Epoxy Composite Through Inclusion of Graphene Oxide Nanosheets Functionalized with Silica Nanoparticles Through One and Two Steps Sol–Gel Routes.” Prog. Org. Coat., 111 1–12. https://doi.org/10.1016/j.porgcoat.2017.05.003 (2017)

    Article  CAS  Google Scholar 

  52. Tan, Y, Liu, YZ, Chen, WS, Liu, YX, Wang, QW, Li, J, Yu, HP, “Homogeneous Dispersion of Cellulose Nanofibers in Waterborne Acrylic Coatings with Improved Properties and Unreduced Transparency.” ACS Sustain. Chem. Eng., 4 3766–3772. https://doi.org/10.1021/acssuschemeng.6b00415 (2016)

    Article  CAS  Google Scholar 

  53. Tan, Y, Shao, ZB, Chen, XF, Long, JW, Chen, L, Wang, YZ, “Novel Multifunctional Organic-Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin.” ACS Appl. Mater. Interfaces, 7 17919–17928. https://doi.org/10.1021/acsami.5b04570 (2015)

    Article  CAS  Google Scholar 

  54. Acres, RG, Ellis, AV, Alvino, J, “Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces.” J. Phys. Chem. C, 116 6289–6297. https://doi.org/10.1021/jp212056s (2012)

    Article  CAS  Google Scholar 

  55. Huang, N, Zhang, S, Yang, L, Liu, M, Li, H, Zhang, Y, “Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.” ACS Appl. Mater. Interfaces, 7 17935–17946. https://doi.org/10.1021/acsami.5b04597 (2015)

    Article  CAS  Google Scholar 

  56. Liu, Y, Wolf, LK, Messmer, MC, “A Study of Alkyl Chain Conformational Changes in Self-Assembled n-Octadecyltrichlorosilane Monolayers on Fused Silica Surfaces.” Langmuir, 17 4329–4335. https://doi.org/10.1021/la010123c (2001)

    Article  CAS  Google Scholar 

  57. Yang, WY, Peng, DN, Kimura, H, Zhang, XY, “Honeycomb–Like Nitrogen–Doped Porous Carbon Decorated with Co3O4 Nanoparticles for Superior Electrochemical Performance Pseudo–Capacitive Lithium Storage and Supercapacitors.” Adv. Compos. Hybrid Mater., 5 3146–3157. https://doi.org/10.1007/s42114-022-00556-6 (2022)

    Article  CAS  Google Scholar 

  58. Abd El-Fattah, M, Hasan, AMA, Keshawy, M, El Saeed, AM, Aboelenien, OM, “Nanocrystalline Cellulose as an Eco-Friendly Reinforcing Additive to Polyurethane Coating for Augmented Anticorrosive Behavior.” Carbohyd. Polym., 183 311–318. https://doi.org/10.1016/j.carbpol.2017.12.084 (2018)

    Article  CAS  Google Scholar 

  59. Wang, Y, Yuan, H, Ma, P, Bai, H, Chen, M, Dong, W, “Superior Performance of Artificial Nacre Based on Graphene Oxide Nanosheets.” ACS Appl. Mater. Interfaces, 9 4215–4222. https://doi.org/10.1016/j.carbon.2016.10.067 (2017)

    Article  CAS  Google Scholar 

  60. Li, W, Shang, T, Yang, W, Yang, H, Lin, S, Jia, X, “Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.” ACS Appl. Mater. Interfaces, 8 13037–13050. https://doi.org/10.1021/acsami.6b02496 (2016)

    Article  CAS  Google Scholar 

  61. Khan, A, Salmieri, S, Le Tien, C, Riedl, B, Bouchard, J, Chauve, G, Tan, V, Kamal, MR, Lacroix, M, “Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films.” Carbohyd. Polym., 90 1601–1608. https://doi.org/10.1016/j.carbpol.2012.07.037 (2012)

    Article  CAS  Google Scholar 

  62. Uhlig, HH, Triadis, HH, Stern, M, “Effect of Oxygen, Chlorides, and Calcium Ion on Corrosion Inhibition of Iron by Polyphosphates.” J. Electrochem. Soc., 102 59–66. https://doi.org/10.1149/1.2429995 (1955)

    Article  CAS  Google Scholar 

  63. Hassani, S, Vu, TN, Rosli, NR, Esmaeely, SN, Choi, YS, Young, D, Nesic, S, “Wellbore Integrity and Corrosion of Low Alloy and Stainless Steels in High Pressure CO2 Geologic Storage Environments: An Experimental Study.” Int. J. Greenh. Gas Control., 23 30–43. https://doi.org/10.1016/j.ijggc.2014.01.016 (2014)

    Article  CAS  Google Scholar 

  64. Ma, HY, Yang, C, Li, GY, Guo, WJ, Chen, SH, Luo, JL, “Influence of Nitrate and Chloride Ions on the Corrosion of Iron.” Corrosion, 59 1112–1119. https://doi.org/10.5006/1.3277530 (2003)

    Article  CAS  Google Scholar 

  65. Gu, L, Liu, S, Zhao, H, Yu, H, “Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings.” ACS Appl. Mater. Interfaces, 7 17641–17648. https://doi.org/10.1021/acsami.5b05531 (2015)

    Article  CAS  Google Scholar 

  66. Zhou, YY, Ma, YB, Sun, YY, Xiong, ZY, Qi, CH, Zhang, YH, Liu, YQ, “Robust Superhydrophobic Surface Based on Multiple Hybrid Coatings for Application in Corrosion Protection.” ACS Appl. Mater. Interfaces, 11 6512–6526. https://doi.org/10.1021/acsami.8b19663 (2019)

    Article  CAS  Google Scholar 

  67. Li, ZX, Yang, WB, Yu, QL, Wu, Y, Wang, DA, Liang, J, Zhou, F, “New Method for the Corrosion Resistance of AZ31 Mg Alloy with a Porous Micro-Arc Oxidation Membrane as an Ionic Corrosion Inhibitor Container.” Langmuir, 35 1134–1145. https://doi.org/10.1021/acs.langmuir.8b01637 (2018)

    Article  CAS  Google Scholar 

  68. Wang, X, Liu, F, Zheng, X, Sun, J, “Water-Enabled Self-Healing of Polyelectrolyte Multilayer Coatings.” Angew. Chem., 123 11580–11583. https://doi.org/10.1002/anie.201105822 (2011)

    Article  CAS  Google Scholar 

  69. Zhang, L, Wu, HT, Zheng, ZY, He, HC, Wei, M, Huang, XH, “Fabrication of Graphene Oxide/Multi-Walled Carbon Nanotube/Urushiol Formaldehyde Polymer Composite Coatings and Evaluation of Their Physicomechanical Properties and Corrosion Resistance.” Prog. Org. Coat., 127 131–139. https://doi.org/10.1016/j.porgcoat.2018.10.026 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Key Research and Development Program in Shaanxi Province of China (Grant No. 2022GY-414) and the National Key R&D Program of China (Grant No. 2017YFD0600705).

Funding

The National Key R & D Program of China, 2017YFD0600705, Lei Zhang, the Key Research and Development Program in Shaanxi Province of China, 2022GY-414, Lei Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chonglin Zhao or Xiaohua Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, H., Zhao, C. et al. Homogeneous dispersion of cellulose/graphite oxide nanofibers in water-based urushiol coatings with improved mechanical properties and corrosion resistance. J Coat Technol Res 20, 1649–1660 (2023). https://doi.org/10.1007/s11998-023-00770-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00770-x

Keywords

Navigation