Skip to main content
Log in

Plasma deposition of silver nanoparticles onto poly(ethylene terephthalate) surfaces for the preparation of antimicrobial materials

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Poly(ethylene terephthalate) (PET) films were surface-modified according to microwave plasma activation allowing for dithiol functions grafting (1,6-hexanedithiol) in order to fabricate self-assembled photogenerated silver nanoparticles monolayers. The present study was carried out in constant discharge power conditions and the impact of the plasma treatment on PET wettability properties were reported. PET material modifications were characterized at various stages of the process: plasma activation, dithiol functionalization, and nanosilver grafting according to several experimental techniques: water contact angle measurements and X-ray photoelectron spectroscopy (XPS). The surface topography was studied by atomic force microscopy (AFM). Finally, antibacterial properties of PET material including silver nanoparticles were evaluated to determine the probability to reduce the surface bacterial adhesion of Staphylococcus aureus strain selected as pathogenic bacteria model. Surface grafted with silver nanoparticles was found to be particularly reactive and led to an inhibition of S. aureus adhesion around 96.2% in comparison with the unmodified PET material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barber, NA, Polyethylene Terephthalate: Uses Properties and Degradation. Nova Science Publishers, Hauppauge (2017)

    Google Scholar 

  2. Visakh, PM, Liang, M, Poly(ethylene terephthalate) Based Blends Composites and Nanocomposites. William Andrew, Norwich (2015)

    Book  Google Scholar 

  3. Thomas, S, Visakh, PM, Handbook of Engineering and Specialty Thermoplastics: Polyethers and Polyesters. Wiley, Hoboken (2011)

    Book  Google Scholar 

  4. Bach, C, Dauchy, X, Chagnon, M-C, Etienne, S, “Chemical Compounds and Toxicological Assessments of Drinking Water Stored in Polyethylene Terephthalate (PET) Bottles: A Source of Controversy Reviewed.” Water Res., 46 571–583. https://doi.org/10.1016/j.watres.2011.11.062 (2012)

    Article  CAS  Google Scholar 

  5. Lange, J, Wyser, Y, “Recent Innovations in Barrier Technologies for Plastic Packaging? A Review.” Packag. Technol. Sci., 16 149–158. https://doi.org/10.1002/pts.621 (2003)

    Article  CAS  Google Scholar 

  6. Kim, YJ, Kang, I-K, Huh, MW, Yoon, S-C, “Surface Characterization and In Vitro Blood Compatibility of Poly(ethylene terephthalate) Immobilized with Insulin and/or Heparin Using Plasma Glow Discharge.” Biomaterials, 21 121–130. https://doi.org/10.1016/S0142-9612(99)00137-4 (2000)

    Article  CAS  Google Scholar 

  7. Wang, J, Pan, CJ, Huang, N, Sun, H, Yang, P, Leng, YX, Chen, JY, Wan, GJ, Chu, PK, “Surface Characterization and Blood Compatibility of Poly(ethylene terephthalate) Modified by Plasma Surface Grafting.” Surf. Coat. Technol., 196 307–311. https://doi.org/10.1016/j.surfcoat.2004.08.161 (2005)

    Article  CAS  Google Scholar 

  8. Ueda, T, Oshida, H, Kurita, K, Ishihara, K, Nakabayashi, N, “Preparation of 2-Methacryloyloxyethyl Phosphorylcholine Copolymers with Alkyl Methacrylates and Their Blood Compatibility.” Polym. J., 24 1259–1269. https://doi.org/10.1295/polymj.24.1259 (1992)

    Article  CAS  Google Scholar 

  9. Stamm, WE, “Infections Related to Medical Devices.” Ann. Int. Med., 89 764–769. https://doi.org/10.7326/0003-4819-89-5-764 (1978)

    Article  CAS  Google Scholar 

  10. von Eiff, C, Jansen, B, Kohnen, W, Becker, K, “Infections Associated with Medical Devices.” Drugs, 65 179–214. https://doi.org/10.2165/00003495-200565020-00003 (2005)

    Article  Google Scholar 

  11. Raad, II, Darouiche, RO, "Antibacterial Coated Medical Implants." https://patents.google.com/patent/US5217493A/en (1993)

  12. Vasilev, K, Cook, J, Griesser, HJ, “Antibacterial Surfaces for Biomedical Devices.” Expert Rev. Med. Devices, 6 553–567. https://doi.org/10.1586/erd.09.36 (2009)

    Article  Google Scholar 

  13. Qiu, H, Si, Z, Luo, Y, Feng, P, Wu, X, Hou, W, Zhu, Y, Chan-Park, MB, Xu, L, Huang, D, “The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices.” Front. Bioeng. Biotechnol., 8 910. https://doi.org/10.3389/fbioe.2020.00910 (2020)

    Article  Google Scholar 

  14. Dixit, A, Wazarkar, K, Sabnis, AS, “Antimicrobial UV Curable Wood Coatings Based on Citric Acid.” Pigm. Resin Technol., 50 533–544. https://doi.org/10.1108/PRT-07-2020-0067 (2021)

    Article  Google Scholar 

  15. Dixit, A, Sabnis, A, Shetty, A, “Antimicrobial Edible Films and Coatings based on N, O-Carboxymethyl Chitosan Incorporated with Ferula Asafoetida (Hing) and Adhatoda Vasica (Adulsa) Extract.” Adv. Mater. Process. Technolhttps://doi.org/10.1080/2374068X.2021.1939982 (2021)

    Article  Google Scholar 

  16. Huh, MW, Kang, I-K, Lee, DH, Kim, WS, Lee, DH, Park, LS, Min, KE, Seo, KH, “Surface Characterization and Antibacterial Activity Of Chitosan-Grafted Poly(ethylene terephthalate) Prepared by Plasma Glow Discharge.” J. Appl. Polym. Sci., 81 2769–2778. https://doi.org/10.1002/app.1723 (2001)

    Article  CAS  Google Scholar 

  17. Jacobs, T, Morent, R, De Geyter, N, Dubruel, P, Leys, C, “Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction.” Plasma Chem. Plasma Process., 32 1039–1073. https://doi.org/10.1007/s11090-012-9394-8 (2012)

    Article  CAS  Google Scholar 

  18. Špitalský, Z, Rástočná Illová, D, Žigo, O, Mičušík, M, Nógellová, Z, Procházka, M, Kleinová, A, Kováčová, M, Novák, I, “Assessment of the Antibacterial Behavior of Polyester Fabric Pre-treated with Atmospheric Discharge Plasma.” Fibers Polym., 20 1649–1657. https://doi.org/10.1007/s12221-019-1127-7 (2019)

    Article  CAS  Google Scholar 

  19. Agnihotri, S, Mukherji, S, Mukherji, S, “Antimicrobial Chitosan–PVA Hydrogel as a Nanoreactor and Immobilizing Matrix for Silver Nanoparticles.” Appl. Nanosci., 2 179–188. https://doi.org/10.1007/s13204-012-0080-1 (2012)

    Article  CAS  Google Scholar 

  20. Liao, Y, Wang, Y, Feng, X, Wang, W, Xu, F, Zhang, L, “Antibacterial Surfaces Through Dopamine Functionalization and Silver Nanoparticle Immobilization.” Mater. Chem. Phys., 121 534–540. https://doi.org/10.1016/j.matchemphys.2010.02.019 (2010)

    Article  CAS  Google Scholar 

  21. Lin, J-J, Lin, W-C, Li, S-D, Lin, C-Y, Hsu, S, “Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets.” ACS Appl. Mater. Interfaces, 5 433–443. https://doi.org/10.1021/am302534k (2013)

    Article  CAS  Google Scholar 

  22. Vasil’kov, A, Budnikov, A, Gromovykh, T, Pigaleva, M, Sadykova, V, Arkharova, N, Naumkin, A, “Effect of Bacterial Cellulose Plasma Treatment on the Biological Activity of Ag Nanoparticles Deposited Using Magnetron Deposition.” Polymers, 14 3907. https://doi.org/10.3390/polym14183907 (2022)

    Article  CAS  Google Scholar 

  23. Ribeiro, AI, Mehravani, B, Magalhães, C, Nicolau, T, Melro, L, Fernandes, RDV, Shvalya, V, Cvelbar, U, Padrão, J, Zille, A, “Enhancing the Antimicrobial Efficacy of Polyester Fabric Impregnated with Silver Nanoparticles Using DBD Plasma Treatment.” Mater. Sci. Forum, 1063 91–97. https://doi.org/10.4028/p-256i32 (2022)

    Article  Google Scholar 

  24. Hurtuková, K, Fajstavrová, K, Rimpelová, S, Vokatá, B, Fajstavr, D, Kasálková, NS, Siegel, J, Švorčík, V, Slepička, P, “Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles.” Materials, 14 4051. https://doi.org/10.3390/ma14144051 (2021)

    Article  CAS  Google Scholar 

  25. Malapit, GM, Baculi, RQ, “Bactericidal Efficiency of Silver Nanoparticles Deposited on Polyester Fabric Using Atmospheric Pressure Plasma Jet System.” J. Text. Inst., 113 1878–1886. https://doi.org/10.1080/00405000.2021.1954426 (2022)

    Article  CAS  Google Scholar 

  26. Baculi, RQ, Malapit, GM, Abayao, LE, “Atmospheric Pressure Plasma Deposition of Silver Nanoparticles on Bark Fabric for Bacterial Growth Inhibition.” J. Textile Inst.https://doi.org/10.1080/00405000.2021.2024378 (2022)

    Article  Google Scholar 

  27. Haider, A, Kang, I-K, “Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review.” Adv. Mater. Sci. Eng., 2015 1–16. https://doi.org/10.1155/2015/165257 (2015)

    Article  Google Scholar 

  28. Burdusel, A-C, Gherasim, O, Grumezescu, AM, Mogoantă, L, Ficai, A, Andronescu, E, “Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview.” Nanomaterials, 8 681. https://doi.org/10.3390/nano8090681 (2018)

    Article  CAS  Google Scholar 

  29. García-Barrasa, J, López-de-Luzuriaga, J, Monge, M, “Silver Nanoparticles: Synthesis Through Chemical Methods in Solution and Biomedical Applications.” Open Chem., 9 7–19. https://doi.org/10.2478/s11532-010-0124-x (2011)

    Article  CAS  Google Scholar 

  30. Mathur, P, Jha, S, Ramteke, S, Jain, NK, “Pharmaceutical Aspects of Silver Nanoparticles.” Artif. Cells, Nanomed. Biotechnol., 46 115–126. https://doi.org/10.1080/21691401.2017.1414825 (2018)

    Article  CAS  Google Scholar 

  31. Rai, MK, Deshmukh, SD, Ingle, AP, Gade, AK, “Silver Nanoparticles: The Powerful Nanoweapon Against Multidrug-Resistant Bacteria.” J. Appl. Microbiol., 112 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x (2012)

    Article  CAS  Google Scholar 

  32. Rai, M, Yadav, A, Gade, A, “Silver Nanoparticles as a New Generation of Antimicrobials.” Biotechnol. Adv., 27 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002 (2009)

    Article  CAS  Google Scholar 

  33. Franci, G, Falanga, A, Galdiero, S, Palomba, L, Rai, M, Morelli, G, Galdiero, M, “Silver Nanoparticles as Potential Antibacterial Agents.” Molecules, 20 8856–8874. https://doi.org/10.3390/molecules20058856 (2015)

    Article  CAS  Google Scholar 

  34. Mulani, MS, Kamble, EE, Kumkar, SN, Tawre, MS, Pardesi, KR, “Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review.” Front. Microbiol., 10 539. https://doi.org/10.3389/fmicb.2019.00539 (2019)

    Article  Google Scholar 

  35. Morones, JR, Elechiguerra, JL, Camacho, A, Holt, K, Kouri, JB, Ramírez, JT, Yacaman, MJ, “The Bactericidal Effect of Silver Nanoparticles.” Nanotechnology, 16 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059 (2005)

    Article  CAS  Google Scholar 

  36. Reddy, PN, Srirama, K, Dirisala, VR, “An Update on Clinical Burden, Diagnostic Tools, and Therapeutic Options of Staphylococcus aureus.” Infect. Dis. (Auckl), 10 1179916117703999. https://doi.org/10.1177/1179916117703999 (2017)

    Article  Google Scholar 

  37. Kuroda, M, Ohta, T, Uchiyama, I, Baba, T, Yuzawa, H, Kobayashi, I, Cui, L, Oguchi, A, Aoki, K, Nagai, Y, Lian, J, Ito, T, Kanamori, M, Matsumaru, H, Maruyama, A, Murakami, H, Hosoyama, A, Mizutani-Ui, Y, Takahashi, NK, Sawano, T, Inoue, R, Kaito, C, Sekimizu, K, Hirakawa, H, Kuhara, S, Goto, S, Yabuzaki, J, Kanehisa, M, Yamashita, A, Oshima, K, Furuya, K, Yoshino, C, Shiba, T, Hattori, M, Ogasawara, N, Hayashi, H, Hiramatsu, K, “Whole Genome Sequencing of Meticillin-Resistant Staphylococcus aureus.” Lancet, 357 1225–1240. https://doi.org/10.1016/S0140-6736(00)04403-2 (2001)

    Article  CAS  Google Scholar 

  38. Mediavilla, JR, Chen, L, Mathema, B, Kreiswirth, BN, “Global Epidemiology of Community-Associated Methicillin Resistant Staphylococcus aureus (CA-MRSA).” Curr. Opin. Microbiol., 15 588–595. https://doi.org/10.1016/j.mib.2012.08.003 (2012)

    Article  Google Scholar 

  39. Prigent, M, Leroy, M, Confalonieri, F, Dutertre, M, DuBow, MS, “A Diversity of Bacteriophage Forms and Genomes can be Isolated from the Surface Sands of the Sahara Desert.” Extremophiles, 9 289–296. https://doi.org/10.1007/s00792-005-0444-5 (2005)

    Article  CAS  Google Scholar 

  40. Prestel, E, Regeard, C, Salamitou, S, Neveu, J, Dubow, MS, “The Bacteria and Bacteriophages from a Mesquite Flats Site of the Death Valley Desert.” Antonie Van Leeuwenhoek, 103 1329–1341. https://doi.org/10.1007/s10482-013-9914-4 (2013)

    Article  Google Scholar 

  41. Bech, L, Lepoittevin, B, El Achhab, A, Lepleux, E, Teulé-Gay, L, Boisse-Laporte, C, Roger, P, “Double Plasma Treatment-Induced Graft Polymerization of Carbohydrated Monomers on Poly(ethylene terephthalate) Fibers.” Langmuir, 23 10348–10352. https://doi.org/10.1021/la701400b (2007)

    Article  CAS  Google Scholar 

  42. Horcas, I, Fernández, R, Gómez-Rodríguez, JM, Colchero, J, Gómez-Herrero, J, Baro, AM, “WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology.” Rev. Sci. Instrum., 78 013705. https://doi.org/10.1063/1.2432410 (2007)

    Article  CAS  Google Scholar 

  43. Fang, Z, Yang, J, Liu, Y, Shao, T, Zhang, C, “Surface Treatment of Polyethylene Terephthalate to Improving Hydrophilicity Using Atmospheric Pressure Plasma Jet.” IEEE Trans. Plasma Sci., 41 1627–1634. https://doi.org/10.1109/TPS.2013.2259508 (2013)

    Article  CAS  Google Scholar 

  44. Švorčík, V, Řezníčková, A, Sajdl, P, Kolská, Z, Makajová, Z, Slepička, P, “Au Nanoparticles Grafted on Plasma Treated Polymers.” J Mater Sci., 46 7917–7922. https://doi.org/10.1007/s10853-011-5920-y (2011)

    Article  CAS  Google Scholar 

  45. Švorčík, V, Chaloupka, A, Záruba, K, Král, V, Bláhová, O, Macková, A, Hnatowicz, V, “Deposition of Gold Nano-Particles and Nano-Layers on Polyethylene Modified by Plasma Discharge and Chemical Treatment.” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms, 267 2484–2488. https://doi.org/10.1016/j.nimb.2009.05.071 (2009)

    Article  CAS  Google Scholar 

  46. Kolská, Z, Řezníčková, A, Nagyová, M, Slepičková Kasálková, N, Sajdl, P, Slepička, P, Švorčík, V, “Plasma Activated Polymers Grafted with Cysteamine Improving Surfaces Cytocompatibility.” Polym. Degrad. Stab., 101 1–9. https://doi.org/10.1016/j.polymdegradstab.2014.01.024 (2014)

    Article  CAS  Google Scholar 

  47. Castner, DG, Hinds, K, Grainger, DW, “X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces.” Langmuir, 12 5083–5086. https://doi.org/10.1021/la960465w (1996)

    Article  CAS  Google Scholar 

  48. Castaño, JG, Arroyave, C, Morcillo, M, “Characterization of Atmospheric Corrosion Products of Zinc Exposed to SO2 and NO2 Using XPS and GIXD.” J. Mater. Sci., 42 9654–9662. https://doi.org/10.1007/s10853-007-1964-4 (2007)

    Article  CAS  Google Scholar 

  49. Brust, M, Kiely, CJ, “Some Recent Advances in Nanostructure Preparation from Gold and Silver Particles: A Short Topical Review.” Colloids Surf. A Physicochem. Eng. Aspects, 202 175–186. https://doi.org/10.1016/S0927-7757(01)01087-1 (2002)

    Article  CAS  Google Scholar 

  50. Misra, RDK, Girase, B, Depan, D, Shah, JS, “Hybrid Nanoscale Architecture for Enhancement of Antimicrobial Activity: Immobilization of Silver Nanoparticles on Thiol-Functionalized Polymer Crystallized on Carbon Nanotubes.” Adv. Eng. Mater., 14 B93–B100. https://doi.org/10.1002/adem.201180081 (2012)

    Article  CAS  Google Scholar 

  51. Dong, X, Shannon, HD, Amirsoleimani, A, Brion, GM, Escobar, IC, “Thiol-Affinity Immobilization of Casein-Coated Silver Nanoparticles on Polymeric Membranes for Biofouling Control.” Polymers, 11 2057. https://doi.org/10.3390/polym11122057 (2019)

    Article  CAS  Google Scholar 

  52. Reznickova, A, Kolska, Z, Zaruba, K, Svorcik, V, “Grafting of Gold Nanoparticles on Polyethyleneterephthalate Using Dithiol Interlayer.” Mater. Chem. Phys., 145 484–490. https://doi.org/10.1016/j.matchemphys.2014.03.001 (2014)

    Article  CAS  Google Scholar 

  53. Quang, DV, Lee, JE, Kim, J-K, Kim, YN, Shao, GN, Kim, HT, “A Gentle Method to Graft Thiol-Functional Groups onto Silica Gel for Adsorption of Silver Ions and Immobilization of Silver Nanoparticles.” Powder Technol., 235 221–227. https://doi.org/10.1016/j.powtec.2012.10.015 (2013)

    Article  CAS  Google Scholar 

  54. Suzuki, H, Chiba, H, Futamata, M, “Efficient Immobilization of Silver Nanoparticles on Metal Substrates Through Various Thiol Molecules to Utilize a Gap Mode in Surface Enhanced Raman Scattering.” Vib. Spectrosc., 72 105–110. https://doi.org/10.1016/j.vibspec.2014.03.002 (2014)

    Article  CAS  Google Scholar 

  55. Malval, J-P, Jin, M, Balan, L, Schneider, R, Versace, D-L, Chaumeil, H, Defoin, A, Soppera, O, “Photoinduced Size-Controlled Generation of Silver Nanoparticles Coated with Carboxylate-Derivatized Thioxanthones.” J. Phys. Chem. C., 114 10396–10402. https://doi.org/10.1021/jp102189u (2010)

    Article  CAS  Google Scholar 

  56. Versace, D-L, Ramier, J, Grande, D, Andaloussi, SA, Dubot, P, Hobeika, N, Malval, J-P, Lalevee, J, Renard, E, Langlois, V, “Versatile Photochemical Surface Modification of Biopolyester Microfibrous Scaffolds with Photogenerated Silver Nanoparticles for Antibacterial Activity.” Adv. Healthcare Mater., 2 1008–1018. https://doi.org/10.1002/adhm.201200269 (2013)

    Article  CAS  Google Scholar 

  57. Huang, L, Zhao, S, Wang, Z, Wu, J, Wang, J, Wang, S, “In Situ Immobilization of Silver Nanoparticles for Improving Permeability, Antifouling and Anti-Bacterial Properties of Ultrafiltration Membrane.” J. Membr. Sci., 499 269–281. https://doi.org/10.1016/j.memsci.2015.10.055 (2016)

    Article  CAS  Google Scholar 

  58. Liang, M, Su, R, Huang, R, Qi, W, Yu, Y, Wang, L, He, Z, “Facile In Situ Synthesis of Silver Nanoparticles on Procyanidin-Grafted Eggshell Membrane and Their Catalytic Properties.” ACS Appl. Mater. Interfaces, 6 4638–4649. https://doi.org/10.1021/am500665p (2014)

    Article  CAS  Google Scholar 

  59. Zhang, P, Shao, C, Zhang, Z, Zhang, M, Mu, J, Guo, Z, Liu, Y, “In Situ Assembly of Well-Dispersed Ag Nanoparticles (AgNPs) on Electrospun Carbon Nanofibers (CNFs) for Catalytic Reduction of 4-Nitrophenol.” Nanoscale, 3 3357–3363. https://doi.org/10.1039/C1NR10405E (2011)

    Article  CAS  Google Scholar 

  60. Marambio-Jones, C, Hoek, EMV, “A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment.” J. Nanopart. Res., 12 1531–1551. https://doi.org/10.1007/s11051-010-9900-y (2010)

    Article  CAS  Google Scholar 

  61. Figueiredo, EP, Ribeiro, JM, Nishio, EK, Scandorieiro, S, Costa, AF, Cardozo, VF, Oliveira, AG, Durán, N, Panagio, LA, Kobayashi, R, Nakazato, G, “New Approach For Simvastatin As an Antibacterial: Synergistic Effect with Bio-Synthesized Silver Nanoparticles Against Multidrug-Resistant Bacteria.” Int. J. Nanomed., 14 7975–7985. https://doi.org/10.2147/IJN.S211756 (2019)

    Article  CAS  Google Scholar 

  62. Ghodake, G, Kim, M, Sung, J-S, Shinde, S, Yang, J, Hwang, K, Kim, D-Y, “Extracellular Synthesis and Characterization of Silver Nanoparticles-Antibacterial Activity Against Multidrug-Resistant Bacterial Strains.” Nanomaterials (Basel), 10 360. https://doi.org/10.3390/nano10020360 (2020)

    Article  CAS  Google Scholar 

  63. Yang, WJ, Neoh, K-G, Kang, E-T, Lay-Ming Teo, S, Rittschof, D, “Stainless Steel Surfaces with Thiol-Terminated Hyperbranched Polymers for Functionalization Via Thiol-Based Chemistry.” Polym. Chem., 4 3105. https://doi.org/10.1039/c3py00009e (2013)

    Article  CAS  Google Scholar 

  64. Hegedűs, O, Juriga, D, Sipos, E, Voniatis, C, Juhász, Á, Idrissi, A, Zrínyi, M, Varga, G, Jedlovszky-Hajdú, A, Nagy, KS, “Free Thiol Groups on Poly(Aspartamide) Based Hydrogels Facilitate Tooth-Derived Progenitor Cell Proliferation and Differentiation.” PLoS One, 14 (12) e0226363 (2019)

    Article  Google Scholar 

  65. Galli, C, Parisi, L, Elviri, L, Bianchera, A, Smerieri, A, Lagonegro, P, Lumetti, S, Manfredi, E, Bettini, R, Macaluso, GM, “Chitosan Scaffold Modified with D-(+) Raffinose and Enriched with Thiol-Modified Gelatin for Improved Osteoblast Adhesion.” Biomed. Mater., 11 015004. https://doi.org/10.1088/1748-6041/11/1/015004 (2016)

    Article  CAS  Google Scholar 

  66. Mun, EA, “Adhesion of Thiolated Silica Nanoparticles to Urinary Bladder Mucosa: Effects of PEGylation, Thiol Content and Particle Size.” Int. J. Pharmaceut., 7 32–38 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanène Salmi-Mani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmi-Mani, H., Balthazar, G., Atkins, C.J. et al. Plasma deposition of silver nanoparticles onto poly(ethylene terephthalate) surfaces for the preparation of antimicrobial materials. J Coat Technol Res 20, 1395–1405 (2023). https://doi.org/10.1007/s11998-022-00752-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00752-5

Keywords

Navigation