Skip to main content
Log in

A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The surface sands of the Sahara Desert are exposed to extremes of ultraviolet light irradiation, desiccation and temperature variation. Nonetheless, the presence of bacteria has recently been demonstrated in this environment by cultivation methods and by 16S rDNA analyses from total DNA isolated from surface sands. To discern the presence of bacteriophages in this harsh environment, we searched for extracellular phages and intracellularly located phages present as prophages or within pseudolysogens. Mild sonication of the sand, in different liquid culture media, incubated with and without Mitomycin-C, was followed by differential centrifugation to enrich for dsDNA phages. The resulting preparations, examined by electron microscopy, revealed the presence of virus-like particles with a diversity of morphotypes representative of all three major double-stranded DNA bacteriophage families (Myoviridae, Siphoviridae and Podoviridae). Moreover, pulsed-field gel electrophoresis of DNA, extracted from the enriched bacteriophage preparations, revealed the presence of distinct bands suggesting the presence of putative dsDNA phage genomes ranging in size from 45 kb to 270 kb. Characterization of the bacteriophages present in the surface sands of the Sahara Desert extends the range of environments from which bacteriophages can be isolated, and provides an important point of departure for the study of phages in extreme terrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann H, DuBow M (1987) Viruses of procaryotes. CRC Press, Boca Raton, Florida, USA

  • Alonso MC, Jimenez-Gomez F, Rodriguez J, Borrego JJ (2001) Distribution of virus-like particles in an oligotrophic marine environment (Alboran Sea, Western Mediterranean). Microb Ecol 42:407–415

    Google Scholar 

  • Ashelford KE, Day MJ, Bailey MJ, Lilley AK, Fry JC (1999) In situ population dynamics of bacterial viruses in a terrestrial environment. Appl Environ Microbiol 65:169–174

    Google Scholar 

  • Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Google Scholar 

  • Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70:1633–1640

    Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  Google Scholar 

  • Dobrindt U, Reidl J (2000) Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. Int J Med Microbiol 290:519–527

    CAS  PubMed  Google Scholar 

  • Donlon RM (2002) Biofilms: microbial life on surfaces. Emerging Infect Diseases 8:881–890

    Google Scholar 

  • Drexler H (1988) Bacteriophage T1. In: Calendar R (ed) The Bacteriophages. Plenum, New York, pp 235–258

    Google Scholar 

  • Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031

    Google Scholar 

  • Elasri MO, Reid T, Hutchens S, Miller RV (2000) Response of a Pseudomonas aeruginosa biofilm community to DNA-damaging chemical agents. FEMS Microbiol Ecol 33:21–25

    Google Scholar 

  • Forterre P (2001) New viruses for the new millennium. Trends Microbiol 9:114

    Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanorgr 40:1236–1242

    Google Scholar 

  • Fuhrman JA, Schwalbach M (2003) Viral influence on aquatic bacterial communities. Biol Bull 204:192–195

    CAS  PubMed  Google Scholar 

  • Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “ Pyrococcus abyssi”. J Bacteriol 185:3888–3894

    Article  CAS  PubMed  Google Scholar 

  • Heulin T, Barakat M, Christen R, Lesourd M, Sutra L, De Luca G, Achouak W (2003) Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evo Microbiol 53:589–594

    Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787

    Google Scholar 

  • Lucchini S, Desiere F, Brussow H (1999) Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 263:427–435

    Article  CAS  PubMed  Google Scholar 

  • Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52

    Google Scholar 

  • Paul J (2000) Ecology of bacteriophages in nature. In: Hurst C (ed) Viral ecology. Academic Press, San Diego, pp 211–246

    Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Blum H, She Q, Mallok S, Brugger K, Garrett RA, Zillig W, Prangishvili D (2001) Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. Virology 291:226–234

    Article  CAS  PubMed  Google Scholar 

  • Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62

    Google Scholar 

  • Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci USA 98:13341–13345

    Article  CAS  PubMed  Google Scholar 

  • Ripp S, Miller RV (1998) Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiology 144 :2225–2232

    Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Williamson SJ, McLaughlin MR, Paul JH (2001) Interaction of the PhiHSIC virus with its host: lysogeny or pseudolysogeny?. Appl Environ Microbiol 67:1682–1688

    Google Scholar 

  • Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633

    Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jeril Degrouard and Danielle Jaillard for their help with the electron microscopy, Suzanne Sommer and the members of her group for their generosity and aid, and the Referees for their insightful comments and criticisms. This work was supported by the GEOMEX program of the Centre National de la Recherche Scientifique (CNRS), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. DuBow.

Additional information

Communicated by G. Antranikian

Magali Prigent and Magali Leroy contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prigent, M., Leroy, M., Confalonieri, F. et al. A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 9, 289–296 (2005). https://doi.org/10.1007/s00792-005-0444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0444-5

Keywords

Navigation