Skip to main content

Advertisement

Log in

Influence of impingement flows with sand particles on the barrier properties of organic coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The installations of offshore wind farms, especially the type with monopile structures, increase the number of suspended particles in the surrounding area. The offshore wind structures are usually coated with several layers of coatings, including a thin layer of organic coating as a topcoat. In this study, we aim to investigate the influence of the stresses on the organic coatings due to the kinetic energy of the suspended sand particles. To accomplish the goal, impingement flow jets with particles were applied on coated steel samples for a week in a lab-scale impingement chamber. The working fluid for the experiments was 3.5 wt% NaCl solution with 1 wt% suspended sand particles. Electrochemical impedance spectroscopy (EIS) was conducted to monitor the degradation of organic coatings while exposed to the impingement flow. Computational fluid dynamics (CFD) modeling was utilized to calculate the magnitude of the applied fluid stresses on the coatings. Thermodynamics of electrochemical reactions and the activation theories were utilized to compare with the electrochemical parameters. It was concluded that for the lowest flow rate (Q1 = 6.31 cm3/s), the added sand particles started to show destructive influence after the first three days of exposure. As the flow rate increased, the destructive influence of sand particles on coating samples appeared earlier at the beginning of the exposure, and the elements of equivalent circuit model showed larger difference between coatings exposed to pure NaCl solution and those exposed to solution with sand particles. For the highest flow rate (Q3 = 18.93 cm3/s), the destructive influence of sand particles was significant, indicating that for the particulate flows with the velocity of 1 m/s, which is the regular velocity of the underwater zone in shallow sea regions (with a depth of 30 m), the momentum impact of the sand particles plays a vital role in the degradation of the organic coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

A :

Surface area (cm2)

d in :

Inlet diameter of the impingement chamber (mm)

CPE:

Constant phase element (S.sn)

C dl :

Double-layer capacitance (µF cm2)

C c :

Coating capacitance (µF cm2)

E k :

Kinetic energy (J)

k B :

Boltzmann constant (J/K)

L :

Thickness of the coating (µm)

L :

Height of the impingement chamber (mm)

L jet :

Distance between the inlet pipe and the coating’s surface (mm)

L 1 :

Distance between the exit orifices and the coating’s surface (mm)

M t :

Total amount of diffusing fluid (kg)

Q :

Volume flow rate (cm3/s)

R ct :

Charge transfer resistance (Ω cm2)

R po :

Pore resistance (Ω cm2)

T :

Absolute temperature (K)

T :

Time (s–h)

V a :

Activation volume (m3)

α :

Ratio of the film’s capacitance constant (−)

\({\varvec{\Gamma}}\) :

Pre-exponential factor (−)

\({{\varvec{\varepsilon}}}_{\mathbf{f}}\) :

Dielectric constant of the fluid (−)

\({{\varvec{\varepsilon}}}_{0}\) :

Absolute permittivity (F/cm)

\({{\varvec{\varepsilon}}}_{\mathbf{c}}\) :

Dielectric constant of the coating (−)

\({\varvec{\rho}}\) :

Density of the fluid (kg/m3)

\({\varvec{\sigma}}\) :

Normal stress (Pa)

\({{\varvec{\tau}}}_{\mathbf{w}}\) :

Wall shear stress (Pa)

µ :

Dynamic viscosity (Pa.s)

\({\varvec{\phi}}\) :

Volume fraction of absorbed fluid (−)

References

  1. Price, SJ, Figueira, RB, “Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives.” Coatingshttps://doi.org/10.3390/coatings7020025 (2017)

    Article  Google Scholar 

  2. Vedadi, A, Wang, X, Subbir Parvej, M, Yuan, Q, Azarmi, F, Battocchi, D, Lin, Z, Wang, Y, “Degradation of Epoxy Coatings Exposed to Impingement Flow.” J. Coat. Technol. Res., 18 (4) 1153–1164. https://doi.org/10.1007/s11998-021-00472-2 (2021)

    Article  CAS  Google Scholar 

  3. Wang, Y, Bierwagen, G, “A New Acceleration Factor for the Testing of Corrosion Protective Coatings: Flow-Induced Coating Degradation.” J. Coat. Technol. Res., 6 429–436. https://doi.org/10.1007/s11998-008-9161-1 (2009)

    Article  CAS  Google Scholar 

  4. Zhou, Q, Wang, Y, Bierwagen, GP, “Flow Accelerated Degradation of Organic Clear Coat: The Effect of Fluid Shear.” Electrochim. Acta, 142 25–33. https://doi.org/10.1016/j.electacta.2014.07.082 (2014)

    Article  CAS  Google Scholar 

  5. Zhou, Q, Wang, Y, Bierwagen, G, “Influence of the Composition of Working Fluids on Flow-Accelerated Organic Coating Degradation: Deionized Water Versus Electrolyte Solution.” Corros. Sci., 55 97–106. https://doi.org/10.1016/j.corsci.2011.10.006 (2012)

    Article  CAS  Google Scholar 

  6. Newton, PP, Liss, PS, “Particles in the Oceans (and Other Natural Waters).” Sci. Prog. 1933-, 74 (1, 293) 91–114 (1990)

    Google Scholar 

  7. Osmond, DL, et al. “Watersheds: A Decision Support System for Watershed-Scale Nonpoint Source Water Quality Problems.” J. Am. Water Resour. Assoc., 33 (2) 327–341. https://doi.org/10.1111/j.1752-1688.1997.tb03513.x (1997)

    Article  CAS  Google Scholar 

  8. Hu, W, “Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development,” Thesis, University of Missouri--Columbia, 2014. Accessed: Jul. 29, 2021. [Online]. Available: https://mospace.umsystem.edu/xmlui/handle/10355/46477

  9. Winterwerp, JC, Kranenburg, C, Fine Sediment Dynamics in the Marine Environment, Vol. 5, 1st Edn. Elsevier, Amsterdam (2002)

    Google Scholar 

  10. Forster, R, “The Effect of Monopile-Induced Turbulence on Local Suspended Sediment Pattern Around UK Wind Farms,” Rep. Univ. Hull Rep. Crown Estate, p. 88, 2018.

  11. Håkanson, L, “The Relationship Between Salinity, Suspended Particulate Matter and Water Clarity in Aquatic Systems.” Ecol. Res., 21 (1) 75–90. https://doi.org/10.1007/s11284-005-0098-x (2006)

    Article  Google Scholar 

  12. Vanhellemont, Q, Ruddick, K, “Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat 8.” Remote Sens. Environ., 145 105–115. https://doi.org/10.1016/j.rse.2014.01.009 (2014)

    Article  Google Scholar 

  13. Baeye, M, Fettweis, M, “In Situ Observations of Suspended Particulate Matter Plumes at an Offshore Wind Farm, Southern North Sea.” Geo-Mar. Lett., 35 (4) 247–255. https://doi.org/10.1007/s00367-015-0404-8 (2015)

    Article  CAS  Google Scholar 

  14. English, PA, et al. "Improving Efficiencies of National Environmental Policy Act Documentation for Offshore Wind Facilities—Case Studies Report.” Rep. Fugro EMU, no. BOEM 2017–026, p. 296 (2017)

  15. Horwath, S, Hassrick, J, Grismala, R, Diller, E., “Comparison of Environmental Effects from Different Offshore Wind Turbine Foundations.” Rep. ICF Int. Rep. ICF Int., no. OCS Study BOEM 2020-041, p. 53 (2020)

  16. Dong Energy et al., Danish Offshore Wind: Key Environmental Issues. Copenhagen: Published by DONG Energy, Vattenfall, the Danish Energy Authority and the Danish Forest and Nature Agency (2006)

  17. Zu, JB, Burstein, GT, Hutchings, IM, “A Comparative Study of the Slurry Erosion and Free-Fall Particle Erosion of Aluminium.” Wear, 149 (1–2) 73–84. https://doi.org/10.1016/0043-1648(91)90365-2 (1991)

    Article  CAS  Google Scholar 

  18. Rickerby, DG, Macmillan, NH, “On the Oblique Impact of a Rigid Sphere Against a Rigid-Plastic Solid.” Int. J. Mech. Sci., 22 (8) 491–494. https://doi.org/10.1016/0020-7403(80)90004-1 (1980)

    Article  Google Scholar 

  19. Hutchings, IM, Winter, RE, Field, JE, Tabor, D, “Solid Particle Erosion of Metals: The Removal of Surface Material by Spherical Projectiles.” Proc. R. Soc. Lond. Math. Phys. Sci., 348 (1654) 379–392. https://doi.org/10.1098/rspa.1976.0044 (1976)

    Article  Google Scholar 

  20. Neville, A, Hodgkiess, T, Dallas, JT, “A Study of the Erosion-Corrosion Behaviour of Engineering Steels for Marine Pumping Applications.” Wear, 186–187 497–507. https://doi.org/10.1016/0043-1648(95)07145-8 (1995)

    Article  Google Scholar 

  21. Li, Y, Burstein, GT, Hutchings, IM, “The Influence of Corrosion on the Erosion of Aluminium by Aqueous Silica Slurries.” Wear, 186–187 515–522. https://doi.org/10.1016/0043-1648(95)07181-4 (1995)

    Article  Google Scholar 

  22. Oka, YI, Ohnogi, H, Hosokawa, T, Matsumura, M, “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact.” Wear, 203–204 573–579. https://doi.org/10.1016/S0043-1648(96)07430-3 (1997)

    Article  Google Scholar 

  23. Burstein, GT, Sasaki, K, “Effect of Impact Angle on the Slurry Erosion–Corrosion of 304L Stainless Steel.” Wear, 240 (1) 80–94. https://doi.org/10.1016/S0043-1648(00)00344-6 (2000)

    Article  CAS  Google Scholar 

  24. Zu, JB, Hutchings, IM, Burstein, GT, “Design of a Slurry Erosion Test Rig.” Wear, 140 (2) 331–344. https://doi.org/10.1016/0043-1648(90)90093-P (1990)

    Article  CAS  Google Scholar 

  25. Burstein, GT, Sasaki, K, “The Birth of Corrosion Pits as Stimulated by Slurry Erosion.” Corros. Sci., 42 (5) 841–860. https://doi.org/10.1016/S0010-938X(99)00100-6 (2000)

    Article  CAS  Google Scholar 

  26. Neville, A, Reyes, M, Xu, H, “Examining Corrosion Effects and Corrosion/Erosion Interactions on Metallic Materials in Aqueous Slurries.” Tribol. Int., 35 (10) 643–650. https://doi.org/10.1016/S0301-679X(02)00055-5 (2002)

    Article  CAS  Google Scholar 

  27. Lu, BT, Luo, JL, Mohammadi, F, Wang, K, Wan, XM, “Correlation Between Repassivation Kinetics and Corrosion Rate Over a Passive Surface in Flowing Slurry.” Electrochim. Acta, 53 (23) 7022–7031. https://doi.org/10.1016/j.electacta.2008.02.083 (2008)

    Article  CAS  Google Scholar 

  28. Lu, BT, Luo, JL, Guo, HX, Mao, LC, “Erosion-Enhanced Corrosion of Carbon Steel at Passive State.” Corros. Sci., 53 (1) 432–440. https://doi.org/10.1016/j.corsci.2010.09.054 (2011)

    Article  CAS  Google Scholar 

  29. Lu, BT, Mao, LC, Luo, JL, “Hydrodynamic Effects on Erosion-Enhanced Corrosion of Stainless Steel in Aqueous Slurries.” Electrochim. Acta, 56 (1) 85–92. https://doi.org/10.1016/j.electacta.2010.09.047 (2010)

    Article  CAS  Google Scholar 

  30. Stack, MM, Corlett, N, Turgoose, S, “Some Thoughts on Modelling the Effects of Oxygen and Particle Concentration on the Erosion–Corrosion of Steels in Aqueous Slurries.” Wear, 255 (1) 225–236. https://doi.org/10.1016/S0043-1648(03)00205-9 (2003)

    Article  CAS  Google Scholar 

  31. Jiang, X, Zheng, YG, Ke, W, “Effect of Flow Velocity and Entrained Sand on Inhibition Performances of Two Inhibitors for CO2 Corrosion of N80 Steel in 3% NaCl Solution.” Corros. Sci., 47 (11) 2636–2658. https://doi.org/10.1016/j.corsci.2004.11.012 (2005)

    Article  CAS  Google Scholar 

  32. Niu, L, Cheng, YF, “Erosion–Corrosion of Aluminium Alloys in Ethylene Glycol–Water Solutions in Absence and Presence of Sand Particles.” Corros. Eng. Sci. Technol., 44 (5) 389–393. https://doi.org/10.1179/174327808X310024 (2009)

    Article  CAS  Google Scholar 

  33. Zhao, Y, Zhou, F, Yao, J, Dong, S, Li, N, “Erosion–Corrosion Behavior and Corrosion Resistance of AISI 316 Stainless Steel in Flow Jet Impingement.” Wear, 328–329 464–474. https://doi.org/10.1016/j.wear.2015.03.017 (2015)

    Article  CAS  Google Scholar 

  34. Xu, Y, Tan, MY, “Probing the Initiation and Propagation Processes of Flow Accelerated Corrosion and Erosion Corrosion Under Simulated Turbulent Flow Conditions.” Corros. Sci., 151 163–174. https://doi.org/10.1016/j.corsci.2019.01.028 (2019)

    Article  CAS  Google Scholar 

  35. Matthewson, MJ, “Axi-Symmetric Contact on Thin Compliant Coatings.” J. Mech. Phys. Solids, 29 (2) 89–113. https://doi.org/10.1016/0022-5096(81)90018-1 (1981)

    Article  Google Scholar 

  36. Zhou, S, Guo, P, Stolle, DFE, “Interaction Model for ``Shelled Particles’’ and Small-Strain Modulus of Granular Materials.” J. Appl. Mech., 85 101001. https://doi.org/10.1115/1.4040408 (2018)

    Article  CAS  Google Scholar 

  37. Galli, M, Oyen, ML, “Spherical Indentation of a Finite Poroelastic Coating.” Appl. Phys. Lett., 93 031911. https://doi.org/10.1063/1.2957993 (2008)

    Article  CAS  Google Scholar 

  38. Math, S, Jayaram, V, Biswas, SK, “Deformation and Failure of a Film/Substrate System Subjected to Spherical Indentation: Part I. Experimental Validation of Stresses and Strains Derived Using Hankel Transform Technique in an Elastic Film/Substrate System.” J. Mater. Res., 21 774–782. https://doi.org/10.1557/jmr.2006.0094 (2006)

    Article  CAS  Google Scholar 

  39. Wood, RJK, “The Sand Erosion Performance of Coatings.” Mater. Des., 20 (4) 179–191. https://doi.org/10.1016/S0261-3069(99)00024-2 (1999)

    Article  CAS  Google Scholar 

  40. Tan, KS, Wharton, JA, Wood, RJK, “Solid Particle Erosion–Corrosion Behaviour of a Novel HVOF Nickel Aluminium Bronze Coating for Marine Applications—Correlation Between Mass Loss and Electrochemical Measurements.” Wear, 258 (1) 629–640. https://doi.org/10.1016/j.wear.2004.02.019 (2005)

    Article  CAS  Google Scholar 

  41. Papini, M, Spelt, JK, “Organic Coating Removal by Particle Impact.” Wear, 213 (1) 185–199. https://doi.org/10.1016/S0043-1648(97)00062-8 (1997)

    Article  CAS  Google Scholar 

  42. Papini, M, Spelt, JK, “The Plowing Erosion of Organic Coatings by Spherical Particles.” Wear, 222 (1) 38–48. https://doi.org/10.1016/S0043-1648(98)00274-9 (1998)

    Article  CAS  Google Scholar 

  43. Papini, M, Spelt, JK, “Indentation-Induced Buckling of Organic Coatings Part II: Measurements with Impacting Particles.” Int. J. Mech. Sci., 40 (10) 1061–1068. https://doi.org/10.1016/S0020-7403(98)00018-6 (1998)

    Article  Google Scholar 

  44. Zouari, B, Touratier, M, “Simulation of Organic Coating Removal by Particle Impact.” Wear, 253 (3) 488–497. https://doi.org/10.1016/S0043-1648(02)00141-2 (2002)

    Article  CAS  Google Scholar 

  45. Kaundal, R, “Role of Process Variables on the Solid Particle Erosion of Polymer Composites: A Critical Review.” Silicon, 1 (6) 5–20. https://doi.org/10.1007/s12633-013-9166-y (2014)

    Article  CAS  Google Scholar 

  46. Harsha, AP, Jha, SK, “Erosive Wear Studies of Epoxy-Based Composites at Normal Incidence.” Wear, 265 (7) 1129–1135. https://doi.org/10.1016/j.wear.2008.03.003 (2008)

    Article  CAS  Google Scholar 

  47. Zeng, L, Liu, M, Wu, L, Zhou, C, Abi, E, “Erosion Characteristics of Viscoelastic Anticorrosive Coatings for Steel Structures Under Sand Flow.” Constr. Build. Mater., 258 120360. https://doi.org/10.1016/j.conbuildmat.2020.120360 (2020)

    Article  Google Scholar 

  48. Vedadi, A, Ullah, AH, Fabijanic, C, Estevadeordal, J, Wang, Y, “Thermo–Chemo-Mechanical Influences of Impingement Flow on the Degradation of Organic Coatings in the Underwater Zone of Offshore Wind Turbines.” J. Coat. Technol. Res.https://doi.org/10.1007/s11998-022-00677-z (2021)

    Article  Google Scholar 

  49. Harirchi, P, Yang, M, “Exploration of Carbon Dioxide Curing of Low Reactive Alkali-Activated Fly Ash.” Materialshttps://doi.org/10.3390/ma15093357 (2022)

    Article  Google Scholar 

  50. Varvara, S, et al. “Propolis as a Green Corrosion Inhibitor for Bronze in Weakly Acidic Solution.” Appl. Surf. Sci., 426 1100–1112. https://doi.org/10.1016/j.apsusc.2017.07.230 (2017)

    Article  CAS  Google Scholar 

  51. Wang, N, Li, C, Yang, L, Zhou, Y, Zhu, W, Cai, C, “Experimental Testing and FEM Calculation of Impedance Spectra of Thermal Barrier Coatings: Effect of Measuring Conditions.” Corros. Sci., 107 155–171. https://doi.org/10.1016/j.corsci.2016.02.029 (2016)

    Article  CAS  Google Scholar 

  52. Zhou, Q, Wang, Y, “Comparisons of Clear Coating Degradation in NaCl Solution and Pure Water.” Prog. Org. Coat., 76 (11) 1674–1682. https://doi.org/10.1016/j.porgcoat.2013.07.018 (2013)

    Article  CAS  Google Scholar 

  53. Fredj, N, Cohendoz, S, Feaugas, X, Touzain, S, “Ageing of Marine Coating in Natural and Artificial Seawater Under Mechanical Stresses.” Prog. Org. Coat., 74 (2) 391–399. https://doi.org/10.1016/j.porgcoat.2011.10.002 (2012)

    Article  CAS  Google Scholar 

  54. Wong, F, Buchheit, RG, “Utilizing the Structural Memory Effect of Layered Double Hydroxides for Sensing Water Uptake in Organic Coatings.” Prog. Org. Coat., 51 (2) 91–102. https://doi.org/10.1016/j.porgcoat.2004.07.001 (2004)

    Article  CAS  Google Scholar 

  55. Hinderliter, BR, Allahar, KN, Bierwagen, GP, Tallman, DE, Croll, SG, “Water Sorption and Diffusional Properties of a Cured Epoxy Resin Measured Using Alternating Ionic Liquids/Aqueous Electrolytes in Electrochemical Impedance Spectroscopy.” J. Coat. Technol. Res., 5 (4) 431–438. https://doi.org/10.1007/s11998-008-9107-7 (2008)

    Article  CAS  Google Scholar 

  56. Yang, C, Xing, X, Li, Z, Zhang, S, “A Comprehensive Review on Water Diffusion in Polymers Focusing on the Polymer-Metal Interface Combination.” Polymershttps://doi.org/10.3390/polym12010138 (2020)

    Article  Google Scholar 

  57. De Rosa, L, Monetta, T, Bellucci, F, “Moisture Uptake in Organic Coatings Monitored with EIS.” Mater. Sci. Forum, 289–292 315–326. https://doi.org/10.4028/www.scientific.net/MSF.289-292.315 (1998)

    Article  Google Scholar 

  58. Bellucci, F, Nicodemo, L, “Water Transport in Organic Coatings.” Corrosion, 49 (3) 235–247. https://doi.org/10.5006/1.3316044 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yechun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedadi, A., Estevadeordal, J., Wang, X. et al. Influence of impingement flows with sand particles on the barrier properties of organic coatings. J Coat Technol Res 20, 1235–1255 (2023). https://doi.org/10.1007/s11998-022-00739-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00739-2

Keywords

Navigation