Skip to main content
Log in

Role of Process Variables on the Solid Particle Erosion of Polymer Composites: A Critical Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents a review of the reported research investigations that are related to the solid particle erosion behavior of polymers and polymeric composites. Attention is paid to the effects of test parameters such as erodent type, size of the erodent, impingement angle, impact velocity and stand of distance. On the erosion wear rate of polymer composites. Various predictions and models proposed by different authors to describe and quantify the erosion rate are discussed and their suitability is checked. Recent findings on the erosion response of multi-component hybrid composites are also presented. Lastly the implementation of the design of experiments and statistical techniques in making a parametric appraisal of the erosion processes of composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finnie I (1996) Some reflections on the past and future of erosion. Wear 186(187):1–10

    Google Scholar 

  2. Meng HC, Ludema KC (1995) Solid particle erosion resistance of ductile wrought super alloys and their weld overlay coatings. ibid 443:181–183

    Google Scholar 

  3. Pool KV, Dharan CKH, Finnie I (1986) Erosion wear of composite materials. Wear 107:1–12

    CAS  Google Scholar 

  4. Aglan HA, Chenock TA Jr (1993) Erosion damage features of polyimide thermoset composites. SAMPE Q 24:41–47

    CAS  Google Scholar 

  5. Rao PV (1995) Characterization of optical and surface parameters during particle impact damage. ASME/Fluids Eng Publ 23:87–96

    Google Scholar 

  6. Tennyson RC (1991) LDEF mission upyear: composites in space. Adv Mater Process 5:33–36

    Google Scholar 

  7. Kulkarani SM (2001) Influence of matrix modification on the solid particle erosion of glass/epoxy composites. Polym Compos 9:25–30

    Google Scholar 

  8. Tilly GP (1973) A two stage mechanisms of ductile erosion. Wear 23:87–96

    Google Scholar 

  9. Ruff AW, Wiederhorn SM (1979) Erosion by solid particle impact. In: Preece CM (ed) Treatise on materials science and technology, vol 16. Academic, New York, pp 69–125

    Google Scholar 

  10. Humphrey JAC (1990) Fundamentals of fluid motion in erosion by solid particle impact. Int J Heat Fluid Flow 11(3):170–195

    CAS  Google Scholar 

  11. Hollaway L (1994) Handbook of polymer composites for engineers. Woodhead Publishing Ltd., Cambridge, p 1

    Google Scholar 

  12. Pritchard G (1999) Reinforced plastics durability. Woodhead Publishing Ltd., Cambridge, p 1

    Google Scholar 

  13. Mason JS, Smith BV (1972) The erosion of bends by pneumatically conveyed suspensions of abrasive particles. Powder Technol 6:323–335

    Google Scholar 

  14. Tsai W, Humphrey JAC, Cornet I, Levy AV (1981) Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68:289–303

    CAS  Google Scholar 

  15. Hojo H, Tsuda K, Yabu T (1986) Erosion damage of polymeric material by slurry. Wear 112:17–28

    CAS  Google Scholar 

  16. Kumar R, Verma AP, Lal GK (1983) Nozzle wear during the flow of a gas–particle mixture. Wear 91:33–43

    Google Scholar 

  17. Crowley MS (1969) Influence of particle size on erosion resistance of refractory concretes. Am Ceram Soc Bull 48:707–710

    Google Scholar 

  18. Wright IG (1979) Proceedings corrosion/erosion of coal conversion systems materials. Conference, Berkeley, pp 103–138

  19. Jansson SA (1982) Proceedings corrosion-erosion-wear of materials in emerging fossil energy systems. Berkeley, pp 548–560

  20. Neilson JH, Gilchrist A (1968) An experimental investigation into aspects of erosion in rocket motor tail nozzles. Wear 11:123–143

    Google Scholar 

  21. Hibbert WA (1965) Helicopter trials over sand and sea. J Roy Aeronaut Soc 69:769–776

    Google Scholar 

  22. Miyazaki N, Hamaom T (1994) Solid particle erosion of thermoplastic resins reinforced by short fibres. J Comp Mater 28:871–883

    CAS  Google Scholar 

  23. Barkoula NM, Karger-Kocsis J (2002) Effect of fibre content and relative fibre orientation on the solid particle erosion of gf/pp composites. Wear 252:80–87

    CAS  Google Scholar 

  24. Tilly GP (1969) Erosion caused by airborne particles. Wear 14(1):63–79

    Google Scholar 

  25. Zahavi J, Nadiv S, Schmitt GF Jr (1981) Indirect damage in composite materials due to raindrop impact. Wear 72(3):305–313

    CAS  Google Scholar 

  26. Tilly GP, Sage W (1970) The interaction of particle and material behaviour in erosion processes. Wear 16(6):447–465

    Google Scholar 

  27. Tsiang TH (1989) Sand erosion of fiber composites: testing and evaluation. In: Chamis CC (ed) Test methods for design allowable for fibrous composites, vol 2. American Society for Testing and Materials, (ASTM) STP I003, Philadelphia, pp 55–74

  28. Mathias PJ, Wu W, Goretta KC, Routbort LJ, Groppi DP, Karasek KR (1989) Solid particle erosion of a graphite-fiber reinforced bismaleimide polymer composite. Wear I35:161–169

    Google Scholar 

  29. Latif A, Ahmed A (1987) Geostatistical estimation of reserves in the abu-tartur phosphate deposits western desert, Egypt. Masters thesis, King Fahd University of Petroleum and Minerals

  30. Karasek KR, Goretta KC, Helberg DA, Routbort JL (1992) Erosion in bismaleimide polymers and bismaleimide polymer composites. J Mater Sci Lett 11:1143–1144

    CAS  Google Scholar 

  31. Tilly GP (1969) Sand erosion of metals and plastics: a brief review. Wear 14(4):241–248

    CAS  Google Scholar 

  32. Brandstädter A, Goretta KC, Routbort JL, Groppi DP, Karasek KR (1991) Solid particle erosion of bismaleimide polymers. Wear 147:155–164

    Google Scholar 

  33. Roy M, Vishwanathan B, Sundararajan G (1994) The solid particle erosion of polymer matrix composites. Wear 17:149–161

    Google Scholar 

  34. Miyazaki N, Hamao T (1996) Effect of interfacial strength on erosion behaviour of frps. J Comp Mater 30:35–50

    CAS  Google Scholar 

  35. Barkoula NM, Karger-Kocsis J (2000) Solid particle erosion of unidirectional gf reinforced ep composites with different fbre/matrix adhesion. J Reinforced Plast Comp 19:1–12

    Google Scholar 

  36. Tewari US, Harsha AP, Häger AM, Friedrich K (2002) Solid particle erosion of unidirectional carbon fibre reinforced polyetheretherketone composites. Wear 252:992–1000

    CAS  Google Scholar 

  37. Harsha AP, Tewari US, Venkatraman B (2003) Solid particle erosion behaviour of various polyaryletherketone composites. Wear 254:693–712

    CAS  Google Scholar 

  38. Tewari US, Harsha AP, Hager AM, Friedrich K (2003) Solid particle erosion of carbon fiber and glass fiber-epoxy composites. Compos Sci Technol 63(3):549–557

    CAS  Google Scholar 

  39. Zhou R, Lu DH, Jiang YH, Li QN (2005) Mechanical properties and erosion wear resistance of polyurethane matrix composites. Wear 259:676–683

    CAS  Google Scholar 

  40. Tsuda K, Kubouchi M, Sakai T, Saputra HA, Mitomo N (2006) General method for predicting the sand erosion rate of GFRP. Wear 260:1045–1052

    CAS  Google Scholar 

  41. Miyazaki N (2006) Solid particle erosion behavior of FRPs with prior impact damage. J Compos Mater 41:703–712

    Google Scholar 

  42. Srivastava VK, Pawar AG (2006) Solid particle erosion of glass fibre reinforced fly ash filled epoxy resin composites. Compos Sci Technol 66:3021–3028

    CAS  Google Scholar 

  43. Srivastava VK (2006) Effects of wheat starch on erosive wear of e-glass fiber reinforced epoxy resin composite materials. Mater Sci Eng A 435–436:282–287

    Google Scholar 

  44. Sınmazcelik T, Taskıran I (2007) Erosive wear behaviour of polyphenylenesulphide (pps) composites. Mater Des 28:471–2477

    Google Scholar 

  45. Yang N, Nayeb-Hashemi H (2007) The effect of solid particle erosion on the mechanical properties and fatigue life of fiber-reinforced composites. J Compos Mater 41:559–574

    CAS  Google Scholar 

  46. Rattan R, Bijwe J (2007) Influence of impingement angle on solid particle erosion of carbon fabric reinforced polyetherimide composite. Wear 262:568–574

    CAS  Google Scholar 

  47. George K (2002) Experimental investigation of composite material, erosion characteristics under conditions encountered in turbofan engines. Doctor of Philosophy. M.S. University of Cincinnati, Cincinnati

  48. Sarı N, Sınmazcelik T (2007) Erosive wear behaviour of carbon fibre/polyetherimide composites under low particle speed. Mater Des 28:351–355

    Google Scholar 

  49. Harsha AP, Thakre AA (2007) Investigation on solid particle erosion behaviour of polyetherimide and its composites. Wear 262:807–818

    CAS  Google Scholar 

  50. Sinmazcelik T, Fidan S, Günay V (2008) Residual mechanical properties of carbon/polyphenylenesulphide composites after solid particle erosion. Mater Des 29:1419–1426

    CAS  Google Scholar 

  51. Arjula S, Harsha AP, Ghosh MK (2008) Erosive wear of unidirectional carbon fibre reinforced polyetherimide composite. Mater Lett 62:3246–3249

    CAS  Google Scholar 

  52. Yang NH, Nayeb-Hashemi H, Vaziri A (2008) Non-destructive evaluation of erosion damage on e-glass/epoxy composites. Compos Part A 39:56–66

    Google Scholar 

  53. Harsha AP, Jha SK (2008) Erosive wear studies of epoxy-based composites at normal incidence. Wear 265:1129–1135

    CAS  Google Scholar 

  54. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) A taguchi approach for investigation of erosion of glass fiber-polyester composites. J Reinf Plast Compos 27(8):871–888

    CAS  Google Scholar 

  55. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) Parametric optimization of erosion wear of polyester-gf-alumina hybrid composites using taguchi method. J Reinf Plast Compos 27(10):1039–1058

    CAS  Google Scholar 

  56. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) Implementation of taguchi design for erosion of fiber reinforced polyester composite systems with SiC filler. J Reinf Plast Compos 27(10):1093–1111

    CAS  Google Scholar 

  57. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) A modeling approach for prediction of erosion behaviour of glass fiber- polyester composites. J Polym Res 15(2):147–160

    CAS  Google Scholar 

  58. Kim A, Kim L (2009) Solid particle erosion of cfrp composite with different laminate orientations. Wear 262:1922–1926

    Google Scholar 

  59. Suresh A, Harsha AP, Ghosh MK (2009) Solid particle erosion of unidirectional fiber reinforced thermoplastic composites. Wear 267:1516–1524

    CAS  Google Scholar 

  60. Suresh A, Harsha AP, Ghosh MK (2009) Solid particle erosion studies on polyphenylene sulfide composites and prediction on erosion data using artificial neural networks. Wear 266:184–193

    CAS  Google Scholar 

  61. Satapathy A, Patnaik A, Pradhan MK (2009) A study on processing, characterization and erosion behaviour of fish (labeo-rohita) scaled filled epoxy matrix composite. Mater Des 30:2359–2371

    CAS  Google Scholar 

  62. Biswas S, Ray S, Satapathy A, Patnaik A (2009) Erosion wear behaviour of tio2 filled glass fiber reinforced epoxy composite. Material Sci An Indian J: 5(3)1–9

    Google Scholar 

  63. Patnaik A, Satapathy A, Biswas S (2010) Effect of particulate fillers on erosion wear of glass polyester composites: a comparative study using taguchi approach. Malaysian Polym J 5(2):49–68

    Google Scholar 

  64. Biswas S, Satapathy A (2010) A comparative study on erosion characteristics of red mud filled bamboo-epoxy and glass-epoxy composites. Mater Des 31:1752–1767

    CAS  Google Scholar 

  65. Mohan N, Natarajan S, Kumaresh Babu SP, Lee JH (2010) Solid particle erosion of uhmwpe filled aramid fabric-epoxy hybrid composites. Adv Mater Res 123–125:1051–1054

    Google Scholar 

  66. Fouad A, EI-Meniawi M, Afifi A (2011) Erosion behaviour of epoxy based unidirectional (GFRP) composite materials. Alexandria Eng J 50:29–34

    CAS  Google Scholar 

  67. Bagci M, Imrek H (2011) glass fiber reinforced boric acid filled epoxy resin composites. Tribol Int 44(12):1704–1710

    Google Scholar 

  68. Bagci M, Imrek H, Khalfan OM (2011) Effects of silicon oxide filler material and fiber orientation on erosive wear of GF/EP composites. World Acad Sci Eng Technol 54:78

    Google Scholar 

  69. Patel BC, Acharya SK, Mishra D (2011) Effect of stacking sequence on the erosive wear behavior of jute and jute-glass fabric reinforced epoxy composite. Int J Eng Sci Technol 3(1):213–219

    Google Scholar 

  70. Kumar S, Satapathy BK, Patnaik A (2011) Thermo-mechanical correlations to erosion performance of short carbon fiber reinforced vinyl ester resin composites. Mater Des 32:2260–2268

    Google Scholar 

  71. Powell KL, Yeomans JA, Smith PA (1997) A study of the erosive wear behaviour of continuous fibre reinforced ceramic matrix composites. Acta Mater 45(1):321–330

    CAS  Google Scholar 

  72. Barkoula NM, Gremmels J, Karger-Kocsis J (2001) Dependence of solid particle erosion on the cross-link density in an epoxy resin modified by hygro thermally decomposed polyurethane. Wear 247:100–108

    CAS  Google Scholar 

  73. Miyazaki N, Funakura S (1998) Solid particle erosion behaviour of frp degraded by hot water. J Comp Mater 32(13):1295–1305

    Google Scholar 

  74. Stachowiak GW, Batchelor AW (1993) Engineering tribology, tribology series 24. Elsevier, Amsterdam, p 586

    Google Scholar 

  75. Friedrich K (1986) Erosive wear of polymer surfaces by steel ball blasting. J Mater Sci 21:3317–3332

    CAS  Google Scholar 

  76. Hutching IM (1992) Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials. J Phys Appl Phys 25:212

    Google Scholar 

  77. Stack MM, Pungwiwat N (1999) Slurry erosion of metallics, polymers and ceramics: particle size effects. Mater Sci Technol 15:337–334

    CAS  Google Scholar 

  78. Latifi AM (1987). Solid particles erosion in composite materials. Masters Thesis, Wichita State University

  79. Gross KJ (1988). Dissertation, Universit¨ at Stuttgart

  80. Arnold JC, Hutchings IM (1989) Flux rate effects in the erosive wear of elastomers. J Mater Sci 24:833–839

    CAS  Google Scholar 

  81. Shipway PH, Hutchings IM (1994) A method for optimizing the particle flux in erosion testing with a gas-blast apparatus. Wear 174:169–175

    Google Scholar 

  82. Anand K, Hovis SK, Conrad H, Scattergood RO (1987) Flux effect in solid particle erosion testing. Wear 118:243

    Google Scholar 

  83. Biswas S (2010). Processing, characterization and wear response of particulate filled epoxy based hybrid composites. Ph.D thesis, NIT Rourkela

  84. Barkoula NM, Karger-Kocsis J (2002) Processes and influencing parameters of the solid particle erosion of polymers and their composites: a review. J Mater Sci 37(18):3807–3820

    CAS  Google Scholar 

  85. Brandt W, Goldsworthy & Associates (2004) Encyclopedia of polymer science and technology, 3rd edn—Handbook/Reference Book, vol 2. Wiley, pp56–67. ISBN-10: 0-471-27507-7

  86. Rabinowicz E (1979) The wear equation for erosion of metals by abrasive particles. In: Proceedings of the 5th international conference on erosion by liquid and solid impact. Cambridge, pp 38–5

  87. Finnie I (1958) The mechanism of erosion of ductile metals. In: Proceedings of 3rd US national congress of applied mechanics, pp 527–532

  88. Nesic S (1991) Computation of localized erosion-corrosion in disturbed two-phase flow. PhD thesis. University of Saskatchewan, Saskatoon

  89. Bitter JGA (1963) A study of erosion phenomena part I. Wear 6:5–21

    Google Scholar 

  90. Bitter JGA (1963) A study of erosion phenomena part II. Wear 6:169–190

    Google Scholar 

  91. Laitone JA (1979) Erosion prediction near a stagnation point resulting from aerodynamically entrained solid particles. J Aircraft 16(12):809–814

    Google Scholar 

  92. Salama MM, Venkatesh ES (1983) Evaluation of erosion velocity limitations of offshore gas wells. In: 15th Annual OTC, May 25, OTC No. 4485. Houston

  93. Bourgoyne AT (1989) Experimental study of erosion in diverter systems due to sand production, presented at the SPE/IADC drilling conference. SPE/IADC 18716, New Orleans, pp 807–816

  94. Chase DP, Rybicki EF, Shadley JR (1992) A model for the effect of velocity on erosion of N80 steel tubing due to the normal impingement of solid particles. Trans ASME J Energy Resour Technol 114:54–64

    Google Scholar 

  95. McLaury BS (1993) A model to predict solid particle erosion in oil field geometries. MS Thesis, The University of Tulsa

  96. Svedeman SJ, Arnold KE (1993) Criteria for sizing multiphase flow lines for erosive/corrosive services. Paper Presented at the 1993 SPE Conference Houston SPE, 265, 69

  97. Jordan K (1998) Erosion in multiphase production of oil and gas, corrosion 98. Paper No. 58. NACE International Annual Conference, San Antonio

  98. Shirazi SA, McLaury BS (2000) Erosion modeling of elbows in multiphase flow. In: Proceedings of 2000 ASME fluids engineering summer meeting, June 11–15. Paper No. FEDSM, Boston, pp 200011251

  99. Gomes FC, Ciampini D, Papini M (2004) The effect of inter-particle collisions in international erosive streams on the distribution of energy flux incident to a flat surface. Tribology 37:791–807

    Google Scholar 

  100. Papini M, Ciampini D, Krajac T, Spelt JK (2003) Computer modelling of interference effects in erosion testing: effect of plume shape. Wear 255(1–6):85–97

    CAS  Google Scholar 

  101. Gorham DA, Kharaz AH (2000) The measurement of particle rebound characteristics. Powder Technol 112:193–202

    CAS  Google Scholar 

  102. Wu C, Li L, Thornton C (2003) Rebound behaviour of spheres for plastic impacts. Int J Impact Eng 28:929–946

    Google Scholar 

  103. Karaz AH, Gorham DA (2000) A study of the restitution coefficient in elastic–plastic impact. Philos Mag Lett 80:549–559

    Google Scholar 

  104. Molinari JF, Ortiz M (2002) A study of solid-particle erosion of metallic targets. Int J Impact Eng 27:347–358

    Google Scholar 

  105. Kleis I, Hussainova I (1998) Investigation of particle-wall impact process. Wear 233–235:168–173

    Google Scholar 

  106. Hutchings IM, Winter RE, Field JE (1976) Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc Roy Soc Lond A 348:379–392

    Google Scholar 

  107. Hutchings IM (1979) Mechanisms of the erosion of metals by solid particles. In: Adler WF (ed) Erosion: prevention and useful applications, ASTM STP664. American Society for Testing and Materials, Philadelphia, pp 59–76

    Google Scholar 

  108. Hutchings IM (1977) Deformation of metal surfaces by the oblique impact of square plates. Int J Mech Sci 19:45–52

    Google Scholar 

  109. Rickerby DG, MacMillan NH (1980) On the oblique impact of a rigid sphere against a rigid plastic solid. Int J Mech Sci 22:491–494

    Google Scholar 

  110. Hutchings IM, Macmillan NH, Rickerby DG (1981) Further studies of the oblique impact of a hard sphere against a ductile solid. Int J Mech Sci 23(11):639–646

    Google Scholar 

  111. Sundararajan G, Shewmon PG (1987) The oblique impact of a hard ball against ductile, semi-infinite, target materials—experiment and analysis. Int J Impact Eng 6(1):3–22

    Google Scholar 

  112. Tirupataiah Y, Venkataraman B, Sundararajan G (1990) The nature of the elastic rebound of a hard ball impacting on ductile, metallic target materials. Mater Sci Eng A 24:133–140

    Google Scholar 

  113. Sundararajan G (1991) The depth of the plastic deformation beneath eroded surfaces: the influence of impact angle and velocity, particle shape and material properties. Wear 149:129–153

    CAS  Google Scholar 

  114. Papini M, Spelt JK (1998) The plowing erosion of organic coatings by spherical particles. Wear 222:38–48

    CAS  Google Scholar 

  115. Papini M (1999) Organic coating removal by single particle impact. PhD thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ont., Canada

  116. Papini M, Spelt JK (2000) Impact of rigid angular particles with fully plastic targets—part, I., analysis. Int J Mech Sci 42(5):991–1006

    Google Scholar 

  117. Papini M, Spelt JK (2000) Impact of rigid angular particles with fully plastic targets—Part II: parametric study of erosion phenomena. Int J Mech Sci 42(5):1007–1025

    Google Scholar 

  118. Barkoula NM (2002). In: Solid particle erosion behaviour of polymers and polymeric composites. IVW-Schriftreihe 29, Kaiserslautern

  119. Hutchings IM (1981) A model for the erosion of metals by spherical particles at normal incidence. Wear 70:269–281

    CAS  Google Scholar 

  120. Brown R, Jun E, Edington J (1982) Mechanisms of solid particle erosive wear for 908 impact on copper and iron. Wear 74:143–156

    Google Scholar 

  121. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2009) Tribo-performance of polyester hybrid composites: damage assessment and parameter optimization using taguchi design. Mater Des 30:57–67

    CAS  Google Scholar 

  122. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) Modeling and prediction of erosion response of glass reinforced polyester-flyash composites. J Reinf Plast Compos 28:513–536

    Google Scholar 

  123. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) A comparative study on different ceramic fillers affecting mechanical properties of glass-polyester composites. J Reinforc Plast Compos 28:1305–1318

    Google Scholar 

  124. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2008) Erosive wear assesment of glass reinforced polyester-flyash composites using taguchi method. Int Polym Process 13:192–199

    Google Scholar 

  125. Mahapatra SS, Patnaik A, Satapathy A, Dash RR (2008) Taguchi method applied to parametric appraisal of erosion behaviour of gf-reinforced polyester composites. Wear 265:214–222

    CAS  Google Scholar 

  126. Biswas S, Satapathy A (2009) Tribo-performance analysis of red mud filled glass-epoxy composites using taguchi experimental design. Mater Des 30:2841–2853

    CAS  Google Scholar 

  127. Phadke MS, Dehnad K (1988) Optimization of product and process design for quality and cost. Qual Reliab Eng Int 4(2):105–112

    Google Scholar 

  128. Hovis SK, Talia JE, Scattergood RO (1986) Erosion in multiphase systems. Wear 108:139–155

    CAS  Google Scholar 

  129. Ballout YA, Hovis SK, Talia JE (1990) Erosion in glass–fiber reinforced epoxy composite. Scr Metall Mater 24:195–200

    CAS  Google Scholar 

  130. Zahavi J, Schmitt GF (1981) Solid particle erosion of reinforced composite materials. Wear 71:179–190

    Google Scholar 

  131. Miyazaki N, Takeda N (1993) Solid particle erosion of fiber reinforced plastics. J Compos Mater 27:21–31

    CAS  Google Scholar 

  132. Hager A, Friedrich K, Dzenis YA, Paipetis SA (1995) Study on erosion wear of advanced polymer composites. In: Street K (ed) Proceedings of ICCM-10, Whistler, B.C., Canada. Woodhead Publishing Ltd., Cambridge, pp 155–162

    Google Scholar 

  133. Marei AI, Izvozchikov PV (1967) Determination of the wear of rubbers in a stream of abrasive. Abrasion of rubber. MacLaren, pp 274–280

  134. Besztercey G, Karger-Kocsis J, Szaplonczay P (1999) Solid particle erosion of electrically insulating silicone and epdm rubber compounds. Polym Bull 42:717–724

    CAS  Google Scholar 

  135. Fernández JE, Fernandez MDR, Diaz RV, Navarro RT (2003) Abrasive wear analysis using factorial experiment design. Wear 255(1–6):38–43

    Google Scholar 

  136. Spuzic S, Zec M, Abhary K, Ghomashchi R, Reid I (1997) Fractional design of experiments applied to a wear simulation. Wear 212(1):131–139

    CAS  Google Scholar 

  137. Prasad BK (2002) Abrasive wear characteristics of a zinc-based alloy and zinc-alloy/sic composite. Wear 252(3–4):250–263

    CAS  Google Scholar 

  138. Deuis RL, Subramanian C, Ellup JM (1998) Three-body abrasive wear of composite coatings in dry and wet environments. Wear 214(1):112–130

    CAS  Google Scholar 

  139. Banerji A, Prasad SV, Surappa MK, Rohatgi PK (1982) Abrasive wear of cast aluminium alloy-zircon particle composites. Wear 82(2):141–151

    CAS  Google Scholar 

  140. Mondal DP, Das S, Jha AK, Yegneswaran AH (1998) Abrasive wear of al alloy–al\(_{2}\textit {o}_{3}\) particle composite: a study on the combined effect of load and size of abrasive. Wear 223(1–2):131–138

    CAS  Google Scholar 

  141. Taguchi G, Konishi S (1987) Orthogonal arrays and linear graphs: tools for quality engineering. American Supplier Institute Inc., Dearborn, p 72

    Google Scholar 

  142. Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization, Tokyo

  143. Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  144. Wu Y, Moore WH (1986) Quality engineering: product & process design optimization. American Supplier Institute Inc., Dearborn

    Google Scholar 

  145. Shoemaker AC, Kacker RN (1988) A methodology for planning experiments in robust product and process design. Qual Reliab Eng Int 4(2):95–103

    Google Scholar 

  146. Mahapatra SS, Patnaik A, Khan MS (2006) Development and analysis of wear resistance model for composites of aluminium reinforced with red mud. J Solid Waste Tech Manag 32(1):28–35

    CAS  Google Scholar 

  147. Mahapatra SS, Patnaik A (2006) Optimization of parameter combinations in wire electrical discharge machining using taguchi method. Indian J Eng Mater Sci 13:493–502

    Google Scholar 

  148. Mahapatra SS, Patnaik A (2006) Optimization of wire electrical discharge machining (WEDM) process parameters using taguchi method. Int J Adv Manuf Technol 34(9–10):911–925

    Google Scholar 

  149. Mahapatra SS, Patnaik A (2007) Parametric optimization of wire electrical discharge machining (WEDM) process using taguchi method. J Braz Soc Mech Sci 28(4):423–430

    Google Scholar 

  150. Mahapatra SS, Patnaik A (2006) Determination of optimal parameters settings in wire electrical discharge machining (WEDM) process using taguchi method. J Inst Eng (India) 87:16–24

    Google Scholar 

  151. Mahapatra SS, Patnaik A (2006) Parametric analysis and optimization of drilling of metal matrix composites based on the taguchi method. Int J Manuf Sci Prod 8(1):5–12

    Google Scholar 

  152. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (wedm) process parameters using taguchi method. J Manuf Sci Tech 9(2):129–144

    Google Scholar 

  153. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2010) Modified erosion wear characteristics of glass-polyester composites by silicon carbide filling: a parametric study using taguchi technique. Int J Mater Prod Technol 38(2–3):131–152

    CAS  Google Scholar 

  154. Sarle WS (1997) Neural network FAQ: part 1 of 7—introduction, periodic posting to the use net news group Comp.ai.neural-nets. Available from: ftp://ftp.sas.com/pub/neural/FAQ.html

  155. Velten K, Reinicke R, Friedrich K (2000) Wear volume prediction with artificial neural networks. Tribol Int 33(10):731–736

    Google Scholar 

  156. Zhang Z, Friedrich K, Velten K (2002) Prediction on tribological properties of short fiber composites is using artificial neural networks. Wear 252(7–8):668–675

    CAS  Google Scholar 

  157. Kang JY, Song JH (1998) Neural network applications in determining the fatigue crack opening load. Int J Fatig 20:57–69

    CAS  Google Scholar 

  158. Malinova T, Malinov S, Pantev N (2001) Grinding mode identification and surface quality prediction using neural networks in grinding of silicon nitride. Surf Coat Technol 135:258–267

    CAS  Google Scholar 

  159. Zeng Q, Zu J, Zhang L, Dai G (2002) Designing expert system with artificial neural networks for in situ toughened Si3N4. Mater Des 23:287–290

    CAS  Google Scholar 

  160. Yescas MA, Bhadieshia HKDH, MacKay DJ (2001) Estimation of the amount of retained austenite in austempered ductile irons using neural networks. Mater Sci Eng Part A 311:162–173

    Google Scholar 

  161. Jain RK, Jain VK, Kalra PK (1999) Modelling of abrasive flow machining process: a neural network approach. Wear 231:242–248

    CAS  Google Scholar 

  162. Zhang Z, Friedrich K (2003) Artificial neural network applied to polymer composites: a review. Compos Sci Technol 63(14):2029–2044

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kaundal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaundal, R. Role of Process Variables on the Solid Particle Erosion of Polymer Composites: A Critical Review. Silicon 6, 5–20 (2014). https://doi.org/10.1007/s12633-013-9166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-013-9166-y

Keywords

Navigation