Skip to main content

Advertisement

Log in

Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The digitization of a society has tremendously influenced the social, economic, and organizational activities of human beings. Internet of things (IoT) will be the next norm to ensure well-being, protection, and comfort of the human beings. Owing to the crisis in energy and consumption of fuel, the research in energy harvesters and autonomous sensors has been focused to develop self-powered wearable devices. The stand-alone energy devices are not suitable to fulfill the requirement of supplying power to the various wearable devices because of higher weight, large volume, frequent recharging, and replacement. The integration of wearable devices into textile materials has recently fostered the emergence of textile-based piezoelectric energy harvesters and sensors. A critical review has been presented on the current status of the textile-based piezosensors and energy harvesters, covering fundamental aspects like probable piezocoatings, fabrication strategies, material choices, working principles, theory behind piezoelectric energy harvesting devices and possible potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stoppa, M, Chiolerio, A, “Wearable Electronics and Smart Textiles: A Critical Review.” Sensors (Basel), 14 (7) 11957–11992 (2014)

    Article  CAS  Google Scholar 

  2. Weng, W, Chen, P, He, S, Sun, X, Peng, H, “Smart Electronic Textiles.” Angew. Chem. Int. Edit., 55 (21) 6140–6169 (2016)

    Article  CAS  Google Scholar 

  3. DeVos, M, Torah, R, Glanc-Gostkiewicz, M, Tudor, J, “A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric.” J. Display Technol., 12 (12) 1757–1763 (2016)

    Article  Google Scholar 

  4. Castano, LM, Flatau, AB, “Smart Fabric Sensors and e-Textile Technol.ogies: A Review.” Smart Mater. Struct., 23 (5) 053001 (2014)

    Article  CAS  Google Scholar 

  5. Zięba, J, Frydrysiak, M, “Textronics-Electrical and Electronic Textiles Sensors for Breathing Frequency Measurement.” Fibres Text. East. Eur., 14 (5) 59 (2006)

    Google Scholar 

  6. Zeng, W, Tao, X-M, Chen, S, Shang, S, Chan, HLW, Choy, SH, “Highly Durable All-Fiber Nanogenerator for Mechanical Energy Harvesting.” Energy Environ. Sci., 6 (9) 2631–2638 (2013)

    Article  CAS  Google Scholar 

  7. Kaushik, V, Lee, J, Hong, J, Lee, S, Lee, S, Seo, J, Mahata, C, Lee, TJN, “Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.” Nanomaterials, 5 (3) 1493–1531 (2015)

    Article  CAS  Google Scholar 

  8. Brun, J, Vicard, D, Mourey, B, Lepine, B, Frassati, F, “Packaging and Wired Interconnections for Insertion of Miniaturized Chips in Smart Fabrics.” Proc. 2009 European Microelectronics and Packaging Conference, 2009

  9. Choi, S, Kwon, S, Kim, H, Kim, W, Kwon, JH, Lim, MS, Lee, HS, Choi, KC, “Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.” Sci. Rep., 7 (1) 1–8 (2017)

    Google Scholar 

  10. Dubal, DP, Chodankar, NR, Kim, D-H, Gomez-Romero, P, “Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics.” Chem. Soc. Rev., 47 (6) 2065–2129 (2018)

    Article  CAS  Google Scholar 

  11. Ortiz, RP, Facchetti, A, Marks, T, “High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors.” Chem. Rev., 110 (1) 205–239 (2010)

    Article  CAS  Google Scholar 

  12. Krucińska, I, Cybula, M, Rambausek, L, VanLangenhove, L, “Piezoelectric Textiles: State of the Art.” Mater. Technol., 25 (2) 93–100 (2010)

    Article  Google Scholar 

  13. Wang, ZL, Zhu, G, Yang, Y, Wang, S, Pan, C, “Progress in Nanogenerators for Portable Electronics.” Mater. Today, 15 (12) 532–543 (2012)

    Article  CAS  Google Scholar 

  14. Uchino, K, "The Development of Piezoelectric Materials and the New Perspective." In: Advanced Piezoelectric Materials, pp. 1–92. Elsevier (2017)

  15. Manbachi, A, Cobbold, RS, “Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection.” Ultrasound, 19 (4) 187–196 (2011)

    Article  Google Scholar 

  16. Qiu, J, Ji, H, “Research on Applications of Piezoelectric Materials in Smart Structures.” Front. Mech. Eng., 6 (1) 99–117 (2011)

    Google Scholar 

  17. Mason, WP, “Piezoelectricity, Its History and Applications.” J. Acoust. Soc. Am., 70 (6) 1561–1566 (1981)

    Article  CAS  Google Scholar 

  18. Matsouka, D, Vassiliadis, S, "Piezoelectric Melt-Spun Textile Fibers: Technol.ogical Overview." 65 (2018)

  19. Jiang, X, Kim, J, Kim, K, “Relaxor-PT Single Crystal Piezoelectric Sensors.” Crystals, 4 (3) 351–376 (2014)

    Article  Google Scholar 

  20. Katzir, S, "The Discovery of the Piezoelectric Effect." In: The Beginnings of Piezoelectricity, pp. 15–64. Springer (2006)

  21. Bell, AJ, Deubzer, O, “Lead-Free Piezoelectrics—The Environmental and Regulatory Issues.” MRS Bull., 43 (8) 581–587 (2018)

    Article  CAS  Google Scholar 

  22. Thomann, HJAM, “Piezoelectric Ceramics.” Adv. Mater., 2 (10) 458–463 (1990)

    Article  CAS  Google Scholar 

  23. Mishra, S, Unnikrishnan, L, Nayak, SK, Mohanty, S, “Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review.” Macro Molecular Mater. Eng., 304 (1) 1800463 (2019)

    Article  Google Scholar 

  24. VandenEnde, D, Bory, B, Groen, W, VanderZwaag, S, “Improving the d 33 and g 33 properties of 0–3 piezoelectric composites by dielectrophoresis.” J. Appl. Phys., 107 (2) 024107 (2010)

    Article  Google Scholar 

  25. Duan, Y, You, G, Sun, K, Zhu, Z, Liao, X, Lv, L, Tang, H, Xu, B, He, L, “Advances in Wearable Textile-Based Micro Energy Storage Devices: Structuring, Application and Perspective.” Nanoscale Adv., 3 (22) 6271–6293 (2021)

    Article  CAS  Google Scholar 

  26. Hu, J, Meng, H, Li, G, Ibekwe, S, “A Review Of Stimuli-Responsive Polymers for Smart Textile Applications.” Smart Mater. Struct., 21 (5) 053001 (2012)

    Article  Google Scholar 

  27. Lee, J, Kwon, H, Seo, J, Shin, S, Koo, JH, Pang, C, Son, S, Kim, JH, Jang, YH, Kim, DE, Lee, T, “Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics.” Adv. Mater., 27 2433–2439 (2015)

    Article  CAS  Google Scholar 

  28. Khan, RA., Ashraf, M, Javid, A, Iqbal, K, Rasheed, A, Nasir, N,” Development of Self-polarized PVDF Films on Carbon Fabrics for Sensing Applications.” pp. 1–7 (2021)

  29. Bu, T, Xiao, T, Yang, Z, Liu, G, Fu, X, Nie, J, Guo, T, Pang, Y, Zhao, J, Xi, F, “Stretchable Triboelectric–Photonic Smart Skin for Tactile and Gesture Sensing.” Adv. Mater., 30 (16) 1800066 (2018)

    Article  Google Scholar 

  30. Pu, X, Li, L, Liu, M, Jiang, C, Du, C, Zhao, Z, Hu, W, Wang, ZL, “Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.” Adv. Mater., 28 (1) 98–105 (2016)

    Article  CAS  Google Scholar 

  31. Liu, M, Pu, X, Jiang, C, Liu, T, Huang, X, Chen, L, Du, C, Sun, J, Hu, W, Wang, ZL, “Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.” Adv. Mater., 29 (41) 1703700 (2017)

    Article  Google Scholar 

  32. He, T, Shi, Q, Wang, H, Wen, F, Chen, T, Ouyang, J, Lee, CJ, “Beyond Energy Harvesting-Multi-functional Triboelectric Nanosensors on a Textile.” Nano Energy, 57 338–352 (2019)

    Article  CAS  Google Scholar 

  33. Zhou, Z, Chen, N, Zhong, H, Zhang, W, Zhang, Y, Yin, X, He, B, “Textile-Based Mechanical Sensors: A Review.” Materials (Basel)., 14 (20) 6073 (2021)

    Article  CAS  Google Scholar 

  34. Cheng, M, Zhu, G, Zhang, F, Tang, W, Jianping, S, Yang, J, Zhu, L, “A Review of Flexible Force Sensors for Human Health Monitoring.” J. Adv. Res., 26 53–68 (2020)

    Article  CAS  Google Scholar 

  35. Lou, Z, Wang, L, Jiang, K, Wei, Z, Shen, G, Reports, ER, “Reviews of Wearable Healthcare Systems: Materials, Devices and System Integration.” Mater. Sci. Eng. R Rep., 140 100523 (2020)

    Article  Google Scholar 

  36. Chen, H, Bao, S, Lu, C, Wang, L, Ma, J, Wang, P, Lu, H, Shu, F, Oetomo, SB, Chen, W, “Design of an Integrated Wearable Multi-Sensor Platform Based on Flexible Materials for Neonatal Monitoring.” IEEE Access, 8 23732–23747 (2020)

    Article  Google Scholar 

  37. Lim, HR, Kim, HS, Qazi, R, Kwon, YT, Jeong, JW, Yeo, WH, “Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics In Healthcare, Energy, and Environment.” Adv. Mater., 32 (15) 1901924 (2020)

    Article  CAS  Google Scholar 

  38. Heo, JS, Hossain, MF, Kim, I, “Challenges in Design and Fabrication of Flexible/Stretchable Carbon-and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review.” Sensors, 20 (14) 3927 (2020)

    Article  CAS  Google Scholar 

  39. Islam, G, Ali, A, Collie, S, “Textile Sensors for Wearable Applications: A Comprehensive Review.” Cellulose, 27 (11) 6103–6131 (2020)

    Article  Google Scholar 

  40. Cera, L, Gonzalez, GM, Liu, Q, Choi, S, Chantre, CO, Lee, J, Gabardi, R, Choi, MC, Shin, K, Parker, KK, “A Bioinspired and Hierarchically Structured Shape-Memory Material.” Nat. Mater., 20 (2) 242–249 (2021)

    Article  CAS  Google Scholar 

  41. Lin, Z, Zeng, Z, Gui, X, Tang, Z, Zou, M, Cao, A, “Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications.” Adv. Energy Mater., 6 (17) 1600554 (2016)

    Article  Google Scholar 

  42. Hua, M, Wu, S, Ma, Y, Zhao, Y, Chen, Z, Frenkel, I, Strzalka, J, Zhou, H, Zhu, X, He, XJN, “Strong Tough Hydrogels via the Synergy of Freeze-Casting and Salting Out.” Nature, 590 (7847) 594–599 (2021)

    Article  CAS  Google Scholar 

  43. Shi, S, Li, Y, Ngo-Dinh, B-N, Markmann, J, Weissmüller, J, “Scaling Behavior of Stiffness and Strength Of Hierarchical Network Nanomaterials.” Science, 371 (6533) 1026–1033 (2021)

    Article  CAS  Google Scholar 

  44. Jin, S, Wang, Y, Motlag, M, Gao, S, Xu, J, Nian, Q, Wu, W, Cheng, GJ, “Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.” Adv. Mater., 30 (11) 1705840 (2018)

    Article  Google Scholar 

  45. Yang, Y, Hu, H, “Spacer Fabric-Based Exuding Wound Dressing–Part I: Structural Design, Fabrication and Property Evaluation of Spacer Fabrics.” Textile Res. J., 87 (12) 1469–1480 (2017)

    Article  CAS  Google Scholar 

  46. Crina, B, Blaga, M, Luminita, V, Mishra, R, “Comfort Properties of Functional Weft Knitted Spacer Fabrics.” Tekstil ve Konfeksiyon, 23 (3) 220–227 (2013)

    Google Scholar 

  47. Soin, N, Shah, TH, Anand, SC, Geng, J, Pornwannachai, W, Mandal, P, Reid, D, Sharma, S, Hadimani, RL, Bayramol, DV, “Novel ‘3-D Spacer’ All Fibre Piezoelectric Textiles for Energy Harvesting Applications.” Energy Environ. Sci., 7 (5) 1670–1679 (2014)

    Article  CAS  Google Scholar 

  48. Vatansever Bayramol, D, Soin, N, Dubey, A, Upadhyay, RK, Priyadarshini, R, Roy, SS, Shah, TH, Anand, SC, “Evaluating the Fabric Performance and Antibacterial Properties of 3-D Piezoelectric Spacer Fabric.” J. Textile Inst., 109 (12) 1613–1619 (2018)

    Article  CAS  Google Scholar 

  49. Hong, Y, Wang, B, Long, Z, Zhang, Z, Pan, Q, Liu, S, Luo, X, Yang, Z, “Hierarchically Interconnected Piezoceramic Textile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability.” Adv. Funct. Mater., 31 (42) 2104737 (2021)

    Article  CAS  Google Scholar 

  50. Wicaksono, I, Tucker, CI, Sun, T, Guerrero, CA, Liu, C, Woo, WM, Pence, EJ, Dagdeviren, C, “A Tailored, Electronic Textile Conformable Suit for Large-Scale Spatiotemporal Physiological Sensing In Vivo.” NPJ. Flex. Electron., 4 (1) 1–13 (2020)

    Article  Google Scholar 

  51. Tan, Y, Yang, K, Wang, B, Li, H, Wang, L, Wang, C, “High-Performance Textile Piezoelectric Pressure Sensor with Novel Structural Hierarchy Based on ZnO Nanorods Array for Wearable Application.” Nano Res., 14 (11) 3969–3976 (2021)

    Article  CAS  Google Scholar 

  52. Sodiq, A, Baloch, AA, Khan, SA, Sezer, N, Mahmoud, S, Jama, M, Abdelaal, A, “Towards Modern Sustainable Cities: Review of Sustainability Principles and Trends.” J. Clean Prod., 227 972–1001 (2019)

    Article  Google Scholar 

  53. Shi, Q, Zhang, Z, Yang, Y, Shan, X, Salam, B, Lee, C, “Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications.” ACS Nano, 15 (11) 18312–18326 (2021)

    Article  CAS  Google Scholar 

  54. Sezer, N, Koç, M, “A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting.” Nano Energy, 80 105567 (2021)

    Article  CAS  Google Scholar 

  55. Deng, W, Sun, Y, Yao, X, Subramanian, K, Ling, C, Wang, H, Chopra, SS, Xu, BB, Wang, JX, Chen, JF, “Masks for COVID-19.” Adv. Sci., 9 (3) 2102189 (2022)

    Article  CAS  Google Scholar 

  56. Wang, Y, Zhao, X, Liu, Y, Zhou, W, “The Effect of Metal Surface Nanomorphology on the Output Performance of a TENG.” Beilstein J. Nanotechnol., 13 (1) 298–312 (2022)

    Article  CAS  Google Scholar 

  57. Dong, K, Hu, Y, Yang, J, Kim, S-W, Hu, W, Wang, ZL, “Smart Textile Triboelectric Nanogenerators: Current Status and Perspectives.” MRS Bull., 46 (6) 512–521 (2021)

    Article  CAS  Google Scholar 

  58. Zhang, X, Ai, J, Yue, Y, Shi, Y, Zou, R, Su, B, “Anti-Stress Ball Energy Harvester.” Nano Energy, 90 106493 (2021)

    Article  CAS  Google Scholar 

  59. Shen, F, Li, Z, Guo, H, Yang, Z, Wu, H, Wang, M, Luo, J, Xie, S, Peng, Y, Pu, H, “Recent Advances Towards Ocean Energy Harvesting and Self-powered Applications Based on Triboelectric Nanogenerators.” Adv Electron. Mater., 7 (9) 2100277 (2021)

    Article  CAS  Google Scholar 

  60. Zhang, Q, Mu, J, Mu, J, Yang, X, Zhang, S, Han, X, Zhao, Y, You, Y, Yu, J, Chou, X, “A Design of Flexible Triboelectric Generator Integrated with High-Efficiency Energy Storage Unit.” Energy Technol., 9 (2) 2000962 (2021)

    Article  CAS  Google Scholar 

  61. Cong, Z, Guo, W, Guo, Z, Chen, Y, Liu, M, Hou, T, Pu, X, Hu, W, Wang, ZL, “Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors.” ACS Nano, 14 (5) 5590–5599 (2020)

    Article  CAS  Google Scholar 

  62. Guo, H, Jiang, Z, Ren, D, Li, S, Wang, J, Cai, X, Zhang, D, Guo, Q, Xiao, J, Yang, J, “High-Performance Flexible Micro-Supercapacitors Printed on Textiles for Powering Wearable Electronics.” ChemElectroChem, 8 (9) 1574–1579 (2021)

    Article  CAS  Google Scholar 

  63. Covaci, C, Gontean, A, “Piezoelectric Energy Harvesting Solutions: A Review.” Sensors, 20 (12) 3512 (2020)

    Article  CAS  Google Scholar 

  64. Karafi, MR, Khorasani, F, “Evaluation of Mechanical and Electric Power Losses in a Typical Piezoelectric Ultrasonic Transducer.” Sens. Actuators A Phys., 288 156–164 (2019)

    Article  CAS  Google Scholar 

  65. Chen, X, Shao, J, Tian, H, Li, X, Wang, C, Luo, Y, Li, S, “Luo, Y and Li, Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity-Enhanced Micropillars for Dynamic Tactile Sensing.” Adv. Mater. Technol., 5 (7) 2000046 (2020)

    Article  CAS  Google Scholar 

  66. Fuh, Y-K, Ho, H-C, Wang, B-S, Li, S-C, “All-Fiber Transparent Piezoelectric Harvester with a Cooperatively Enhanced Structure.” Nanotechnology, 27 (43) 435403 (2016)

    Article  Google Scholar 

  67. Xu, M, Kang, H, Guan, L, Li, H, Zhang, M, “Facile Fabrication of a Flexible Linbo3 Piezoelectric Sensor Through Hot Pressing for Biomechanical Monitoring.” ACS Appl. Mater. Interfaces, 9 (40) 34687–34695 (2017)

    Article  CAS  Google Scholar 

  68. Jung, JH, Lee, M, Hong, J-I, Ding, Y, Chen, C-Y, Chou, L-J, Wang, ZL, “Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator.” ACS Nano, 5 (12) 10041–10046 (2011)

    Article  CAS  Google Scholar 

  69. Hwang, GT, Annapureddy, V, Han, JH, Joe, DJ, Baek, C, Park, DY, Kim, DH, Park, JH, Jeong, CK, Park, KI, “Self-Powered Wireless Sensor Node Enabled by An Aerosol-Deposited PZT Flexible Energy Harvester.” Adv. Energy Mater., 6 (13) 1600237 (2016)

    Article  Google Scholar 

  70. Hu, D, Yao, M, Fan, Y, Ma, C, Fan, M, Liu, M, “Strategies to Achieve High Performance Piezoelectric Nanogenerators.” Nano Energy, 55 288–304 (2019)

    Article  CAS  Google Scholar 

  71. Pandey, R, Khandelwal, G, Palani, IA, Singh, V, Kim, S-J, “A La-doped ZnO Ultra-Flexible Flutter-Piezoelectric Nanogenerator for Energy Harvesting and Sensing Applications: A Novel Renewable Source Of Energy.” Nanoscale, 11 (29) 14032–14041 (2019)

    Article  CAS  Google Scholar 

  72. Jin, C, Hao, N, Xu, Z, Trase, I, Nie, Y, Dong, L, Closson, A, Chen, Z, Zhang, X, “Flexible Piezoelectric Nanogenerators Using Metal-doped ZnO-PVDF Films.” Sens. Actuators A Phys., 305 111912 (2020)

    Article  CAS  Google Scholar 

  73. Göktaş, A, Tumbul, A, Aba, Z, Durgun, M, "Mg Doping Levels and Annealing Temperature Induced Structural, Optical and Electrical Properties of Highly c-axis Oriented ZnO:Mg Thin Films and Al/ZnO:Mg/p-Si/Al Heterojunction Diode." Thin Solid Films, 680 (2019)

  74. Habib, M, Lee, MH, Kim, DJ, Choi, HI, Kim, M-H, Kim, W-J, Song, TK, “Phase Evolution and Origin of the High Piezoelectric Properties in Lead-Free BiFeO3–BaTiO3 Ceramics.” Ceram. Int., 46 (14) 22239–22252 (2020)

    Article  CAS  Google Scholar 

  75. Duan, S, Wu, J, Xia, J, Lei, W, “Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors.” Sensors, 20 (10) 2820 (2020)

    Article  CAS  Google Scholar 

  76. Maity, K, Garain, S, Henkel, K, Schmeißer, D, Mandal, D, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor.” ACS Appl. Polym. Mater., 2 (2) 862–878 (2020)

    Article  Google Scholar 

  77. Khalifa, M, Anandhan, S, “PVDF Nanofibers with Embedded Polyaniline-Graphitic Carbon Nitride Nanosheet Composites for Piezoelectric Energy Conversion.” ACS Appl. Nano Mater., 2 (11) 7328–7339 (2019)

    Article  CAS  Google Scholar 

  78. Han, W, Wu, Z, Li, Y, Wang, Y, “Graphene Family Nanomaterials (GFNs)—Promising Materials for Antimicrobial Coating and film: A Review.” Chem. Eng. J., 358 1022–1037 (2019)

    Article  CAS  Google Scholar 

  79. Li, H, Tian, C, Deng, ZD, “Energy Harvesting from Low Frequency Applications Using Piezoelectric Materials.” Appl. Phys. Rev., 1 (4) 041301 (2014)

    Article  Google Scholar 

  80. Sun, Z, Yang, L, Liu, S, Zhao, J, Hu, Z, Song, W, “A Green Triboelectric Nano-Generator Composite of Degradable Cellulose, Piezoelectric Polymers of PVDF/PA(6,) and Nanoparticles of BaTiO(3).” Sensors (Basel, Switzerland), 20 (2) 506 (2020)

    Article  CAS  Google Scholar 

  81. Kawai, H, “The Piezoelectricity of Poly (vinylidene Fluoride).” Jpn. J. Appl. Phys., 8 (7) 975–976 (1969)

    Article  CAS  Google Scholar 

  82. Guo, HF, Li, ZS, Dong, SW, Chen, WJ, Deng, L, Wang, YF, Ying, DJ, “Piezoelectric PU/PVDF Electrospun Scaffolds for Wound Healing Applications.” Colloids Surf B Biointerfaces, 96 29–36 (2012)

    Article  CAS  Google Scholar 

  83. Nilsson, E, Lund, A, Jonasson, C, Johansson, C, Hagström, B, “Poling and Characterization of Piezoelectric Polymer Fibers for Use in Textile Sensors.” Sens. Actuators Phys., 201 477–486 (2013)

    Article  CAS  Google Scholar 

  84. Harrison, JS, Ounaies, Z, "Piezoelectric Polymers." Encycl. Polym. Sci. Technol.

  85. Åkerfeldt, M, Nilsson, E, Gillgard, P, Walkenström, P, “Textile Piezoelectric Sensors—Melt Spun Bi-component Poly(vinylidene fluoride) Fibres with Conductive Cores and Poly(3,4-ethylene dioxythiophene)-Poly(styrene sulfonate) Coating as the Outer Electrode.” Fash. Text, 1 (1) 13 (2014)

    Article  Google Scholar 

  86. Hadimani, R, Bayramol, DV, Sion, N, Shah, T, Qian, L, Shi, S, Siores, E, “Continuous Production of Piezoelectric PVDF Fibre for e-Textile Applications.” Smart Mater. Struct., 22 075017 (2013)

    Article  CAS  Google Scholar 

  87. Waqar, S, Wang, L, John, S, "Piezoelectric Energy Harvesting from Intelligent Textiles." Electroni.Text., pp. 173–197. Elsevier (2015)

  88. Williams, C, Yates, RB, “Analysis of a Micro-electric Generator for Microsystems.” Sens. Actuators A Phys., 52 (1–3) 8–11 (1996)

    Article  CAS  Google Scholar 

  89. Lu, Q, Liu, L, Scarpa, F, Leng, J, Liu, Y, “A Novel Composite Multi-layer Piezoelectric Energy Harvester.” Compos. Struct., 201 121–130 (2018)

    Article  Google Scholar 

  90. Liu, H, Zhong, J, Lee, C, Lee, S-W, Lin, L, “A Comprehensive Review on Piezoelectric Energy Harvesting Technol.ogy: Materials, Mechanisms, and Applications.” Appl. Phys. Rev., 5 (4) 041306 (2018)

    Article  Google Scholar 

  91. Erturk, A, Inman, DJ, Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)

    Book  Google Scholar 

  92. Izadgoshasb, I, “Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities.” Sensors, 21 (24) 8332 (2021)

    Article  Google Scholar 

  93. Hofmann, P, Walch, A, Dinkelmann, A, Selvarayan, SK, Gresser, GT, “Woven Piezoelectric Sensors as Part of the Textile Reinforcement of Fiber Reinforced Plastics.” Compos. Part A Appl. Sci. Manuf., 116 79–86 (2019)

    Article  Google Scholar 

  94. Proto, A, Penhaker, M, Conforto, S, Schmid, M, “Nanogenerators for Human Body Energy Harvesting.” Trends Biotechnol., 35 (7) 610–624 (2017)

    Article  CAS  Google Scholar 

  95. DeRossi, D, DeReggi, AS, Broadhurst, MG, Roth, SC, Davis, GT, “Method of Evaluating the Thermal Stability of the Pyroelectric Properties of Polyvinylidene Fluoride: Effects of Poling Temperature and Field.” J. Appl. Phys., 53 (10) 6520–6525 (1982)

    Article  CAS  Google Scholar 

  96. Marchiori, B, Regal, S, Arango, Y, Delattre, R, Blayac, S, Ramuz, M, “PVDF-TrFE-Based Stretchable Contact and Non-Contact Temperature Sensor for E-Skin Application.” Sensors (Basel), 20 (3) 623 (2020)

    Article  CAS  Google Scholar 

  97. Wegener, M, Gerhard-Multhaupt, R, “Electric poling and Electromechanical Characterization of 0.1-mm-Thick Sensor Films and 0.2-mm-Thick Cable Layers from Poly(Vinylidene Fluoride-Trifluroethylene).” IEEE Trans. Ultrason Ferroelectric Freq. Control, 50 (7) 921–931 (2003)

    Article  Google Scholar 

  98. Fedosov, S, Sergeeva, A, Revenyuk, TA, Butenko, A, "Application of Corona Discharge for Poling Ferroelectric and Nonlinear Optical Polymers." Mater. Sci. (2007)

  99. Rathinasamy, S, Sarathi, T, Venkataraman, KK, Bhattacharyya, A, “Enhanced Piezoelectric Properties of Polyvinylidene Fluoride Nanofibers Using Carbon Nanofiber and Electrical Poling.” Mater. Lett., 255 126515 (2019)

    Article  Google Scholar 

  100. Wang, TT, Seggern, H, “High Electric Field Poling of Electroded Poly(vinylidene Fluoride) at Room Temperature.” J. Appl. Phys., 54 (8) 4602–4604 (1983)

    Article  CAS  Google Scholar 

  101. Collins, GE, Buckley, LJ, “Conductive Polymer-Coated Fabrics for Chemical Sensing.” Synth. Metals, 78 (2) 93–101 (1996)

    Article  CAS  Google Scholar 

  102. Xue, P, Tao, X, Kwok, K, Leung, M, Yu, T, “Electromechanical Behavior of Fibers Coated with an Electrically Conductive Polymer.” Text. Res. J., 74 929–936 (2004)

    Article  CAS  Google Scholar 

  103. Li, Y, Leung, M, Tao, X, Cheng, XY, Tsang, J, Yuen, M, “Polypyrrole-Coated Conductive Fabrics as a Candidate for Strain Sensors.” J. Mater. Sci., 40 4093–4095 (2005)

    Article  CAS  Google Scholar 

  104. Chen, Y, Geever, LM, Killion, JA, Lyons, JG, Higginbotham, CL, Devine, DM, “Review of Multifarious Applications of Poly (Lactic Acid).” Polym.-Plast. Technol. Eng., 55 (10) 1057–1075 (2016)

    Article  CAS  Google Scholar 

  105. Zhao, C, Zhang, J, Wang, ZL, Ren, K, “A Poly(l-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications.” Adv. Sustain Syst., 1 (9) 1700068 (2017)

    Article  Google Scholar 

  106. Varga, M, Morvan, J, Diorio, N, Buyuktanir, E, Harden, J, West, JL, Jákli, A, “Direct Piezoelectric Responses of Soft Composite Fiber Mats.” Appl. Phys. Lett., 102 (15) 153903 (2013)

    Article  Google Scholar 

  107. Patel, I, Siores, E, Shah, T, “Utilisation of Smart Polymers and Ceramic Based Piezoelectric Materials for Scavenging Wasted Energy.” Sens. Actuators A Phys., 159 (2) 213–218 (2010)

    Article  CAS  Google Scholar 

  108. Lee, H, Kim, H, Kim, DY, Seo, Y, “Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers.” ACS Omega, 4 (2) 2610–2617 (2019)

    Article  CAS  Google Scholar 

  109. Sobocinski, M, Leinonen, M, Juuti, J, Mantyniemi, N, Jantunen, H, “A Co-fired LTCC-PZT Monomorph Bridge Type Acceleration Sensor.” Sens. Actuators A Phys., 216 370–375 (2014)

    Article  CAS  Google Scholar 

  110. Mellinger, A, Wegener, M, Wirges, W, Mallepally, RR, Gerhard-Multhaupt, R, “Thermal and Temporal Stability of Ferroelectret Films Made from Cellular Polypropylene/Air Composites.” Ferroelectrics, 331 (1) 189–199 (2006)

    Article  CAS  Google Scholar 

  111. Yong, S, Shi, J, Beeby, S, “Wearable Textile Power Module Based on Flexible Ferroelectret and Supercapacitor.” Energy Technol., 7 (5) 1800938 (2019)

    Article  Google Scholar 

  112. Beeby, S, Torah, R, Tudor, J, Grabham, N, Yong, S, Arumugam, S, Li, Y, Shi, J, Energy Harvesting Power Supplies for Electronic Textiles (2019)

  113. Katabira, K, Yoshida, Y, Masuda, A, Watanabe, A, Narita, F, “Fabrication of Fe-Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation.” Materials (Basel, Switzerland), 11 (3) 406 (2018)

    Article  Google Scholar 

  114. Babu, I, de With, G, “Highly Flexible Piezoelectric 0–3 PZT–PDMS Composites with High Filler Content.” Compos. Sci. Technol., 91 91–97 (2014)

    Article  CAS  Google Scholar 

  115. Gayathiri, S, Panneerselvam, G, Annamalai, V, "Piezoelectric Ceramic-Polymer Composites as Smart Materials: An Overview of Preparation Methods." J. Environ. Nanotechnol., 06 (2017)

  116. Song, Y, Shen, Y, Liu, H, Lin, Y, Nan, CW, “Enhanced Dielectric and Ferroelectric Properties Induced by Dopamine-Modified BaTiO3 Nanofibers in Flexible Poly(Vinylidene Fluoride-Trifluoroethylene) Nanocomposites.” J. Mater. Chem., 22 8063–8068 (2012)

    Article  CAS  Google Scholar 

  117. Yaqoob, U, “Synthesis and Characterization of the PVDF-BTO Nanocomposites with the Employment of RGO Sheets for Flexible Energy harvesters.” Procedia Eng., 168 1074–1077 (2016)

    Article  CAS  Google Scholar 

  118. Rahman, M, Chung, G-S, “Synthesis of PVDF-Graphene Nanocomposites and Their Properties.” J. Alloys Compd., 581 724–730 (2013)

    Article  Google Scholar 

  119. Jadidian, B, Allahverdi, M, Mohammadi, F, Safari, A, “Processing of Piezoelectric Fiber/Polymer Composites with 3–3 Connectivity.” J. Electroceram., 8 (3) 209–214 (2002)

    Article  CAS  Google Scholar 

  120. Kakimoto, K, Fukata, K, Ogawa, H, “Fabrication of Fibrous BaTiO3-Reinforced PVDF Composite Sheet for Transducer Application.” Sens. Actuators A Phys., 200 21–25 (2013)

    Article  CAS  Google Scholar 

  121. Tiwari, V, Srivastava, G, “Structural, Dielectric and Piezoelectric Properties of 0–3 PZT/PVDF Composites.” Ceram. Int., 41 (6) 8008–8013 (2015)

    Article  CAS  Google Scholar 

  122. Mohammadi, F, Khan, A, Cass, RB, "Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites." MRS Proc., 736 D5.5 (2002)

  123. Li, J, Takagi, K, Terakubo, N, Watanabe, R, "Electrical and Mechanical Properties of Piezoelectric Ceramic/metal Composites in the Pb(Zr, Ti)O3/Pt System." Appl. Phys Lett, 79 (2001)

  124. Dodds, J, Meyers, F, Loh, K, “Piezoelectric Characterization of PVDF-TrFE Thin Films Enhanced With ZnO Nanoparticles.” Sens. J. IEEE, 12 1889–1890 (2012)

    Article  CAS  Google Scholar 

  125. Ouyang, Z-W, Chen, E-C, Wu, T-M, “Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites.” Materials (Basel, Switzerland), 8 (7) 4553–4564 (2015)

    Article  CAS  Google Scholar 

  126. Almusallam, A, Luo, Z, Komolafe, A, Yang, K, Robinson, A, Torah, R, Beeby, S, “Flexible Piezoelectric Nano-composite Films for Kinetic Energy Harvesting from Textiles.” Nano Energy, 33 146–156 (2017)

    Article  CAS  Google Scholar 

  127. Levinṭa, N, Vuluga, Z, Teodorescu, M, Corobea, MC, “Halogen-free Flame Retardants for Application in Thermoplastics Based on Condensation Polymers.” SN Appl. Sci., 1 (5) 422 (2019)

    Article  Google Scholar 

  128. Huang, L, Lu, C, Wang, F, Wang, L, “Preparation of PVDF/Graphene Ferroelectric Composite Films by In Situ Reduction with Hydrobromic Acids and their Properties.” RSC Adv., 4 (85) 45220–45229 (2014)

    Article  CAS  Google Scholar 

  129. Li, R, Xiong, C, Kuang, D, Dong, L, Lei, Y, Yao, J, Jiang, M, Li, L, “Polyamide 11/Poly(vinylidene fluoride) Blends as Novel Flexible Materials for Capacitors.” Macromolecular Rapid Commun., 29 (17) 1449–1454 (2008)

    Article  CAS  Google Scholar 

  130. Wan, C, Bowen, C, “Multiscale-Structuring of Polyvinylidene Fluoride for Energy Harvesting: the Impact of Molecular-, Micro- and Macro-Structure.” J. Mater. Chem. A, 5 3091–3128 (2017)

    Article  CAS  Google Scholar 

  131. Abbas, RR, Rammo, N, Al-Ajaj, EA, “Structure and Piezoelectricity in Blends of PVDF Films PVDF.” J. Kerbala Univ., 6 201–208 (2008)

    Google Scholar 

  132. Karan, SK, Mandal, D, Khatua, BB, “Self-Powered Flexible Fe-Doped RGO/PVDF Nanocomposite: An Excellent Material for a Piezoelectric Energy Harvester.” Nanoscale, 7 (24) 10655–10666 (2015)

    Article  CAS  Google Scholar 

  133. Al-Saygh, A, Ponnamma, D, AlMaadeed, MA, Vijayan, P, Karim, A, Hassan, MK, “Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers.” Polymers, 9 (2) 33 (2017)

    Article  Google Scholar 

  134. Chen, Y, Lloyd, DW, Harlock, SC, “Mechanical Characteristics of Coated Fabrics.” J. Text. Inst., 86 (4) 690–700 (1995)

    Article  Google Scholar 

  135. Zhang, R, Deng, H, Valenca, R, Jin, J, Fu, Q, Bilotti, E, Peijs, T, “Carbon Nanotube Polymer Coatings for Textile Yarns with Good Strain Sensing Capability.” Sens .Actuators A Phys., 179 83–91 (2012)

    Article  CAS  Google Scholar 

  136. Depla, D, Segers, S, Leroy, W, Van Hove, T, Van Parys, M, “Smart Textiles: An Explorative Study of the Use of Magnetron Sputter Deposition.” Text. Res. J., 81 (17) 1808–1817 (2011)

    Article  CAS  Google Scholar 

  137. Gregory, RV, Kimbrell, WC, Kuhn, HH, “Conductive Textiles.” Synth. Metals, 28 (1) 823–835 (1989)

    Article  Google Scholar 

  138. Knittel, D, Schollmeyer, E, “Electrically High-Conductive Textiles.” Synth. Metals, 159 (14) 1433–1437 (2009)

    Article  CAS  Google Scholar 

  139. Zhao, T, Jiang, H, Ma, J, “Surfactant-Assisted Electrochemical Deposition of α-Cobalt Hydroxide for Supercapacitors.” J. Power Sources, 196 860–864 (2011)

    Article  CAS  Google Scholar 

  140. Ren, F, Yin, L, Wang, S, Volinsky, AA, Tian, B, “Cyanide-free Silver Electroplating Process in Thiosulfate Bath and Microstructure Analysis of Ag Coatings.” Trans. Nonferrous Metals Soc. China, 23 (12) 3822–3828 (2013)

    Article  CAS  Google Scholar 

  141. Inagaki, M, Yang, Y, Kang, F, “Carbon Nanofibers Prepared via Electrospinning.” Adv. Mater., 24 (19) 2547–2566 (2012)

    Article  CAS  Google Scholar 

  142. Huang, C-T, Shen, C-L, Tang, C-F, Chang, S-H, “A Wearable Yarn-based Piezo-Resistive Sensor.” Sens. Actuators A Phys., 141 396–403 (2008)

    Article  CAS  Google Scholar 

  143. Hida, H, Hamamura, T, Nishi, T, Tan, G, Umegaki, T, Kanno, I, “Piezoelectric Characterization of Pb(Zr,Ti)O3 thin Films Deposited on Metal Foil Substrates by Dip Coating.” Jpn. J. Appl. Phys., 56 (10) 10 (2017)

    Google Scholar 

  144. Xing, R, Wang, Z, Han, Y, “Embossing of Polymers Using a Thermosetting Polymer Mold Made by Soft Lithography.” J. Vac. Sci. Technol., 21 (4) 1318–1322 (2003)

    Article  CAS  Google Scholar 

  145. Acar, G, Ozturk, O, Golparvar, AJ, Elboshra, TA, Böhringer, K, Yapici, MK, “Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review.” Electronics, 8 (5) 479 (2019)

    Article  CAS  Google Scholar 

  146. Qin, H, Li, J, He, B, Sun, J, Li, L, Qian, L, “Novel Wearable Electrodes Based on Conductive Chitosan Fabrics and Their Application in Smart Garments.” Materials (Basel, Switzerland), 11 (3) 370 (2018)

    Article  Google Scholar 

  147. Apiwattanadej, T, Zhang, L, Li, H, “Electrospun Polyurethane Microfiber Membrane on Conductive Textile for Water-Supported Textile Electrode in Continuous ECG Monitoring Application.” Proc. 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 22–25 May 2018

  148. Qiu, J, Tani, J, Yamada, N, Takahashi, H, Fabrication of Piezoelectric Fibers with Metal Core. SPIE, Bellingham (2003)

    Book  Google Scholar 

  149. Kim, JH, Kim, B, Kim, SW, Kang, HW, Park, MC, Park, DH, Ju, BK, Choi, WK, “High-Performance Coaxial Piezoelectric Energy Generator (C-PEG) Yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag.” Nanotechnology, 32 (14) 145401 (2021)

    Article  CAS  Google Scholar 

  150. Poggio, C, Trovati, F, Ceci, M, Chiesa, M, Colombo, M, Pietrocola, G, “Biological and Antibacterial Properties of A New Silver Fiber Post: In Vitro Evaluation.” J. Clin. Exp. Dent., 9 (3) e387–e393 (2017)

    Google Scholar 

  151. Puurtinen, MM, Komulainen, SM, Kauppinen, PK, Malmivuo, JA, Hyttinen, JA, “Measurement of Noise and Impedance of Dry and Wet Textile Electrodes, and Textile Electrodes with Hydrogel.” Conf. Proc. IEEE Eng. Med .Biol. Soc., 2006 6012–6015 (2006)

    Article  Google Scholar 

  152. Ishijima, M, “Cardiopulmonary Monitoring by Textile Electrodes Without Subject-Awareness of Being Monitored.” Med. Biol. Eng. Comput., 35 (6) 685–690 (1997)

    Article  CAS  Google Scholar 

  153. Márquez, JC, Seoane, F, Välimäki, E, Lindecrantz, K, “Comparison of Dry-Textile Electrodes For Electrical Bioimpedance Spectroscopy Measurements.” Med. Biol. Eng. Comput., 224 012140 (2010)

    Article  Google Scholar 

  154. Catrysse, M, Puers, R, Hertleer, C, Van Langenhove, L, Egmond, H, Matthys, D, “Towards the Integration of Textile Sensors in a Wireless Monitoring Suit.” Sens. Actuators A Phys., 114 302–311 (2004)

    Article  CAS  Google Scholar 

  155. Mestrovic, M, Helmer, R, Kyratzis, I, Kumar, D, “Preliminary Study of Dry Knitted Fabric Electrodes for Physiological Monitoring” (2008)

  156. Ali, A, Nguyen, NHA, Baheti, V, Ashraf, M, Militky, J, Mansoor, T, Noman, MT, Ahmad, S, “Electrical Conductivity And Physiological Comfort of Silver Coated Cotton Fabrics.” J. Text. Inst., 109 (5) 620–628 (2018)

    Article  CAS  Google Scholar 

  157. Shukla, VJNA, “Review of Electromagnetic Interference Shielding Materials Fabricated by Iron Ingredients.” Nanoscale Adv., 1 (5) 1640–1671 (2019)

    Article  Google Scholar 

  158. Sun, C, Li, X, Cai, Z, Ge, FJEA, “Carbonized Cotton Fabric In-Situ Electrodeposition Polypyrrole as High-Performance Flexible Electrode for Wearable Supercapacitor.” Electrochimica Acta, 296 617–626 (2019)

    Article  CAS  Google Scholar 

  159. Emamian, S, Narakathu, BB, Chlaihawi, AA, Bazuin, BJ, Atashbar, MZ, Physical, AA, “Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications.” Sens. Actuators A Phys., 263 639–647 (2017)

    Article  CAS  Google Scholar 

  160. Burgués-Ceballos, I, Stella, M, Lacharmoise, P, Martinez-Ferrero, E, “Towards Industrialization of Polymer Solar Cells: Material Processing for Upscaling.” J. Mater. Chem. A, 2 (42) 17711–17722 (2014)

    Article  Google Scholar 

  161. Shang, SM, Zeng, W, “4 - Conductive Nanofibres and Nanocoatings for Smart Textiles.” In: Kirstein, T (ed.) Multidisciplinary Know-How for Smart-Textiles Developers, pp. 92–128. Woodhead Publishing, Sawston (2013)

    Chapter  Google Scholar 

  162. Sen, AK, Coated Textiles: Principles and Applications. 2nd Edition (2007)

  163. Wu, Y, Sun, J, Li, L, Ding, Y, Xu, H, “Performance Evaluation of a Novel Cloth Electrode.” Proc. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 18–20 June 2010, 2010

  164. Lam, CL, Rajdi, NNZM and Wicaksono, DHB, “MWCNT/Cotton-Based Flexible Electrode for Electrocardiography.” Proc. SENSORS, 2013 IEEE, 3–6 Nov. 2013, 2013

  165. Novoselov, KS, Fal’ko, VI, Colombo, L, Gellert, PR, Schwab, MG, Kim, K, “A Roadmap for Graphene.” Nature, 490 (7419) 192–200 (2012)

    Article  CAS  Google Scholar 

  166. Molina, J, “Graphene-Based Fabrics and Their Applications: A Review.” RSC Adv., 6 (72) 68261–68291 (2016)

    Article  CAS  Google Scholar 

  167. Acar, G, Ozturk, O, Yapici, MK, Wearable Graphene Nanotextile Embedded Smart Armband for Cardiac Monitoring. Proc. 2018 IEEE Sensors, 2018

  168. Jang, S, Cho, J, Jeong, K, Cho, G, “Exploring Possibilities of ECG Electrodes for Bio-monitoring Smartwear with Cu Sputtered Fabrics.” Proc. Human-Computer Interaction. Interaction Platforms and Techniques, Berlin, 2007

  169. Huang, T, Yang, S, He, P, Sun, J, Zhang, S, Li, D, Meng, Y, Zhou, J, Tang, H, Liang, J, Ding, G, Xie, X, “Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors.” ACS Appl. Mater. Interfaces, 10 (36) 30732–30740 (2018)

    Article  CAS  Google Scholar 

  170. Ntim, CK, Ocran, SP, Acquaye, R, “Digital Textile Printing: A New Alternative to Short-Run Textile Printing in Ghana.” Int. J. Technol. Manag. Res., 2 (1) 60–65 (2020)

    Article  Google Scholar 

  171. Tawiah, B, Kofi Howard, E, Asinyo, B, "The Chemistry of Inkjet Inks for Digital Textile Printing -Review." 4 2016 (2019)

  172. Hart, JP, Wring, SA, “Screen-Printed Voltammetric and Amperometric Electrochemical Sensors for Decentralized Testing.” Anal. Chem., 6 (8) 617–624 (1994)

    CAS  Google Scholar 

  173. Guo, Y, Otley, MT, Li, M, Zhang, X, Sinha, SK, Treich, GM, Sotzing, GA, “PEDOT:PSS ‘Wires’ Printed on Textile for Wearable Electronics.” ACS Appl. Mater. Interfaces, 8 (40) 26998–27005 (2016)

    Article  CAS  Google Scholar 

  174. Hu, B, Li, D, Ala, O, Manandhar, P, Fan, Q, Kasilingam, D, Calvert, PD, “Textile-Based Flexible Electroluminescent Devices.” Adv. Funct. Mater., 21 (2) 305–311 (2011)

    Article  CAS  Google Scholar 

  175. Skrzetuska, E, Puchalski, M, Krucińska, I, “Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes.” Sensors (Basel), 14 (9) 16816–16828 (2014)

    Article  Google Scholar 

  176. Karim, N, Afroj, S, Malandraki, A, Butterworth, S, Beach, C, Rigout, M, Novoselov, KS, Casson, AJ, Yeates, SG, “All Inkjet-Printed Graphene-Based Conductive Patterns for Wearable E-Textile Applications.” J. Mater. Chem. C, 5 (44) 11640–11648 (2017)

    Article  CAS  Google Scholar 

  177. Karim, N, Afroj, S, Tan, S, Novoselov, KS, Yeates, SG, “All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.” Sci. Rep., 9 (1) 8035 (2019)

    Article  Google Scholar 

  178. Emamian, S, Narakathu, BB, Chlaihawi, AA, Bazuin, BJ, Atashbar, MZ, “Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications.” Sens. Actuators A Phys., 263 639–647 (2017)

    Article  CAS  Google Scholar 

  179. Kazani, I, Hertleer, C, Mey, G, Schwarz-Pfeiffer, A, Guxho, G, Van Langenhove, L, "Electrical Conductive Textiles Obtained by Screen Printing." Fibres Text. East. Eur., 20 (2012)

  180. Jost, K, Stenger, D, Perez, CR, McDonough, JK, Lian, K, Gogotsi, Y, Dion, G, “Knitted and Screen Printed Carbon-Fiber Supercapacitors for Applications in Wearable Electronics.” Energy Environ. Sci., 6 (9) 2698–2705 (2013)

    Article  CAS  Google Scholar 

  181. Eshkeiti, A, Avuthu, SGR, Emamian, S, Narakathu, B, Joyce, M, Joyce, M, Fleming, PD, Bazuin, BJ, Atashbar, M, “Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates.” Compon. Pack. Manuf. Technol. IEEE Trans., 5 415–421 (2015)

    Article  CAS  Google Scholar 

  182. Khan, S, Lorenzelli, L, Dahiya, RS, “Screen Printed Flexible Pressure Sensors Skin.” Proc. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 19–21 May 2014, 2014

  183. Wang, YR, Zheng, JM, Ren, GY, Zhang, PH, Xu, C, “A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics.” Smart Mater. Struct., 20 (4) 045009 (2011)

    Article  Google Scholar 

  184. Cheng, J, Amft, O, Lukowicz, P, “Active Capacitive Sensing: Exploring a New Wearable Sensing Modality for Activity Recognition.” Proc. Berlin, 2010

  185. Allison, L, Hoxie, S, Andrew, TL, “Towards Seamlessly-Integrated Textile Electronics: Methods to Coat Fabrics and Fibers With Conducting Polymers for Electronic Applications.” Chem. Commun., 53 (53) 7182–7193 (2017)

    Article  CAS  Google Scholar 

  186. Zhang, T, Liao, Z, Sandonas, LM, Dianat, A, Liu, X, Xiao, P, Amin, I, Gutierrez, R, Chen, T, Zschech, E, Cuniberti, G, Jordan, R, “Polymerization Driven Monomer Passage Through Monolayer Chemical Vapour Deposition Graphene.” Nat. Commun., 9 (1) 4051 (2018)

    Article  Google Scholar 

  187. Trindade, IG, Martins, F, Baptista, P, “High Electrical Conductance poly(3,4-Ethylenedioxythiophene) Coatings on Textile for Electrocardiogram Monitoring.” Synth. Metals, 210 179–185 (2015)

    Article  CAS  Google Scholar 

  188. Kim, MS, Kim, HK, Byun, SW, Jeong, SH, Hong, YK, Joo, JS, Song, KT, Kim, JK, Lee, CJ, Lee, JY, “PET Fabric/Polypyrrole Composite with High Electrical Conductivity for EMI Shielding.” Synth. Metals, 126 (2) 233–239 (2002)

    Article  CAS  Google Scholar 

  189. Zhou, Y, Ding, X, Zhang, J, Duan, Y, Hu, J, Yang, X, “Fabrication of Conductive Fabric as Textile Electrode for ECG Monitoring.” Fibers Polym., 15 (11) 2260–2264 (2014)

    Article  CAS  Google Scholar 

  190. Mattox, DM, Handbook of Physical Vapor Deposition (PVD) Processing. Norwich, (2010)

  191. Pawlak, R, Korzeniewska, E, Koneczny, C, Hałgas, B, “Properties of Thin Metal Layers Deposited on Textile Composites by Using the PVD Method For Textronic Applications.” Autex Res. J., 17 (3) 229–237 (2017)

    Article  CAS  Google Scholar 

  192. Silva, NL, Gonçalves, L, Carvalho, H, “Deposition of Conductive Materials on Textile and Polymeric Flexible Substrates.” J. Mater. Sci. Mater. Electron., 24 (2) 635–643 (2013)

    Article  Google Scholar 

  193. Keller, M, Ritter, A, Reimann, P, Thommen, V, Fischer, A, Hegemann, D, “Comparative Study of Plasma-Induced and Wet-Chemical Cleaning of Synthetic Fibers.” Surf. Coat. Technol., 200 (1–4) 1045–1050 (2005)

    Article  CAS  Google Scholar 

  194. Cho, G, Jeong, K, Paik, MJ, Kwun, Y, Sung, M, “Performance Evaluation of Textile-Based Electrodes and Motion Sensors for Smart Clothing.” IEEE Sens. J., 11 (12) 3183–3193 (2011)

    Article  Google Scholar 

  195. Aleksandrova, M, Tsanev, T, Pandiev, I, Dobrikov, G, “Study of Piezoelectric Behaviour of Sputtered KNbO3 Nanocoatings for Flexible Energy Harvesting.” Energy, 205 118068 (2020)

    Article  CAS  Google Scholar 

  196. Martinez, JG, Richter, K, Persson, N-K, Jager, EW, “Investigation of Electrically Conducting Yarns for Use in Textile Actuators.” Smart Mater. Struct., 27 (7) 074004 (2018)

    Article  Google Scholar 

  197. Deng, Z, Dapino, MJ, “Review of Magnetostrictive Vibration Energy Harvesters.” Smart Mater. Struct., 26 (10) 103001 (2017)

    Article  Google Scholar 

  198. Yang, K, Torah, R, Wei, Y, Beeby, S, Tudor, J, “Waterproof and Durable Screen Printed Silver Conductive Tracks on Textiles.” Text. Res. J., 83 (19) 2023–2031 (2013)

    Article  Google Scholar 

  199. Park, S, Mackenzie, K, Jayaraman, S, “The Wearable Motherboard: A Framework for Personalized Mobile Information Processing (PMIP).” Proc. Proceedings of the 39th Annual Design Automation Conference, 2002

  200. Meoli, D, May-Plumlee, TJ, “Interactive Electronic Textile Development: A Review of Technol.ogies.” J. Text. Apparel, Technol. Manag., 2 (2) 1–12 (2002)

    Google Scholar 

  201. Custodio, V, Herrera, FJ, López, G, Moreno, JI, “A Review on Architectures and Communications Technol.ogies for Wearable Health-Monitoring Systems.” Sensors (Basel)., 12 (10) 13907–13946 (2012)

    Article  Google Scholar 

  202. Yang, Y-L, Chuang, M-C, Lou, S-L, Wang, J, “Thick-Film Textile-Based Amperometric Sensors and Biosensors.” Analyst, 135 (6) 1230–1234 (2010)

    Article  CAS  Google Scholar 

  203. Cheng, Y, Wang, R, Sun, J, Gao, L, “A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion.” Adv. Mater., 27 (45) 7365–7371 (2015)

    Article  CAS  Google Scholar 

  204. Jeong, K, Kim, DH, Chung, YS, Hwang, SK, Hwang, HY, Kim, SS, “Effect of Processing Parameters of the Continuous Wet Spinning System on the Crystal Phase of PVDF Fibers.” J. Appl. Polym. Sci., 135 (3) 45712 (2018)

    Article  Google Scholar 

  205. Egusa, S, Wang, Z, Chocat, N, Ruff, Z, Stolyarov, A, Shemuly, D, Sorin, F, Rakich, P, Joannopoulos, J, Fink, Y, “Multimaterial Piezoelectric Fibres.” Nat. Mater., 9 (8) 643–648 (2010)

    Article  CAS  Google Scholar 

  206. Kirstein, T, The Future of Smart-Textiles Development: New Enabling Technol.ogies, Commercialization and Market Trends. Multidisciplinary Know-How for Smart-Textiles Developers, pp. 1–25. Elsevier (2013)

  207. Walter, S, Steinmann, W, Schütte, J, Seide, G, Gries, T, Roth, G, Wierach, P, Sinapius, M, “Characterisation of Piezoelectric PVDF Monofilaments.” Mater. Technol., 26 (3) 140–145 (2011)

    Article  CAS  Google Scholar 

  208. Sato, H, “Application of Metal Core Piezoelectric Complex Fiber.” Proc. Proc. 10th Int. Conf. New Actuators, Bremen, Germany, 2006

  209. Zhang, Y, Piezoelectric Paint Sensors for Ultrasonics‐based Damage Detection. Encycl. Struct. Health Monit. (2009)

  210. Xin, Y, Sun, H, Tian, H, Guo, C, Li, X, Wang, S, Wang, C, “The Use of Polyvinylidene Fluoride (PVDF) Films as Sensors for Vibration Measurement: A Brief Review.” Ferroelectrics, 502 (1) 28–42 (2016)

    Article  CAS  Google Scholar 

  211. Chiu, Y-Y, Lin, W-Y, Wang, H-Y, Huang, S-B, Wu, M-H, “Development of a Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Sensor Patch for Simultaneous Heartbeat and Respiration Monitoring.” Sens. Actuators A Phys., 189 328–334 (2013)

    Article  CAS  Google Scholar 

  212. Chen, Y, Wang, L, Ko, WH, “A Piezopolymer Finger Pulse and Breathing Wave Sensor.” Sens. Actuators A Phys., 23 (1–3) 879–882 (1990)

    Article  CAS  Google Scholar 

  213. Choi, S, Jiang, Z, “A Novel Wearable Sensor Device with Conductive Fabric and PVDF Film for Monitoring Cardiorespiratory Signals.” Sens. Actuators A Phys., 128 (2) 317–326 (2006)

    Article  CAS  Google Scholar 

  214. Sharma, T, Je, S-S, Gill, B, Zhang, J, “Patterning Piezoelectric Thin Film PVDF–TrFE Based Pressure Sensor for Catheter Application.” Sens. Actuators A Phys., 177 87–92 (2012)

    Article  CAS  Google Scholar 

  215. Song, F, Wang, H, Sun, J, Gao, H, Wu, S, Yang, M, Ma, X, Hao, Y, “ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein.” IEEE Electron. Dev. Lett., 39 (1) 31–34 (2017)

    Article  Google Scholar 

  216. Dagdeviren, C, Hwang, SW, Su, Y, Kim, S, Cheng, H, Gur, O, Haney, R, Omenetto, FG, Huang, Y, Rogers, JA, “Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO.” Small, 9 (20) 3398–3404 (2013)

    Article  CAS  Google Scholar 

  217. Yan, C, Cheng, XB, Tian, Y, Chen, X, Zhang, XQ, Li, WJ, Huang, JQ, Zhang, Q, “Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition.” Adv. Mater., 30 (25) 1707629 (2018)

    Article  Google Scholar 

  218. Atalay, A, Atalay, O, Husain, MD, Fernando, A, Potluri, P, “Piezofilm Yarn Sensor-Integrated Knitted Fabric for Healthcare Applications.” J Indust Text., 47 (4) 505–521 (2017)

    Article  CAS  Google Scholar 

  219. Erdem, HE, Gungor, VC, “On the Lifetime Analysis of Energy Harvesting Sensor Nodes in Smart Grid Environments.” Ad Hoc Netw., 75 98–105 (2018)

    Article  Google Scholar 

  220. Abbasi, A, “Application of Piezoelectric Materials in Smart Roads and MEMS, PMPG Power Generation with Transverse Mode Thin Film PZT.” Int. J. Electric. Comput. Eng., 3 (6) 857–862 (2013)

    Google Scholar 

  221. Wang, ZL, “Towards Self-powered Nanosystems: From Nanogenerators to Nanopiezotronics.” Adv. Funct. Mater., 18 (22) 3553–3567 (2008)

    Article  CAS  Google Scholar 

  222. Fu, H, Yeatman, EM, “A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion.” Energy, 125 152–161 (2017)

    Article  Google Scholar 

  223. Kymissis, J, Kendall, C, Paradiso, J, Gershenfeld, N, “Parasitic Power Harvesting in Shoes.” Proc. Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), 1998

  224. Shenck, N, Paradiso, J, “Energy Scavenging with Shoe-Mounted Piezoelectrics.” IEEE Micro, 21 30–42 (2001)

    Article  Google Scholar 

  225. Maluf, N, Williams, K, An Introduction to Microelectromechanical Systems Engineering. Artech House, Norwood (2004)

    Google Scholar 

  226. Lee, E, Park, J, Yim, M, Kim, Y, Yoon, G, “Characteristics of Piezoelectric ZnO/AlN− Stacked Flexible Nanogenerators for Energy Harvesting Applications.” Appl. Phys. Lett., 106 (2) 023901 (2015)

    Article  Google Scholar 

  227. He, S, Dong, W, Guo, Y, Guan, L, Xiao, H, Liu, H, “Piezoelectric Thin Film on Glass Fiber Fabric with Structural Hierarchy: An Approach to High-Performance, Superflexible, Cost-Effective, and Large-Scale Nanogenerators.” Nano Energy, 59 745–753 (2019)

    Article  CAS  Google Scholar 

  228. Qin, Y, Wang, X, Wang, ZL, “Microfibre–Nanowire Hybrid Structure for Energy Scavenging.” Nature, 451 (7180) 809–813 (2008)

    Article  CAS  Google Scholar 

  229. Ren, J, Xu, Q, Li, Y-G, “Flexible Fiber-Shaped Energy Storage Devices: Principles, Progress, Applications and Challenges.” Flexible Printed Electron, 3 (1) 013001 (2018)

    Article  Google Scholar 

  230. Prashanthi, K, Miriyala, N, Gaikwad, R, Moussa, W, Rao, VR, Thundat, T, “Vibtrational Energy Harvesting Using Photo-Patternable Piezoelectric Nanocomposite Cantilevers.” Nano Energy, 2 (5) 923–932 (2013)

    Article  CAS  Google Scholar 

  231. Bhimasankaram, T, Suryanarayana, S, Prasad, G, “Piezoelectric Polymer Composite Materials.” Curr. Sci., 74 967–976 (1998)

    CAS  Google Scholar 

  232. Sancaktar, E, Bai, L, “Electrically Conductive Epoxy Adhesives.” Polymers, 3 (1) 427–466 (2011)

    Article  CAS  Google Scholar 

  233. Fu, S, Tao, J, Wu, W, Sun, J, Li, F, Li, J, Huo, Z, Xia, Z, Bao, R, Pan, C, “Fabrication of Large-Area Bimodal Sensors by All-Inkjet-Printing.” Adv. Mater. Technol., 4 (4) 1800703 (2019)

    Article  Google Scholar 

  234. Laforgue, A, “All-Textile Flexible Supercapacitors Using Electrospun Poly (3, 4-Ethylenedioxythiophene) Nanofibers.” J. Power Sources, 196 (1) 559–564 (2011)

    Article  CAS  Google Scholar 

  235. Sundriyal, P, Bhattacharya, S, “Textile-Based Supercapacitors for Flexible and Wearable Electronic Applications.” Sci. Rep., 10 (1) 1–15 (2020)

    Article  Google Scholar 

  236. Yong, S, Owen, J, Beeby, S, “Solid-State Supercapacitor Fabricated in a Single Woven Textile Layer for E-Textiles Applications.” Adv. Eng. Mater., 20 (5) 1700860 (2018)

    Article  Google Scholar 

  237. Wang, S, Shen, J, Wang, Q, Fan, Y, Li, L, Zhang, K, Yang, L, Zhang, W, Wang, X, “High-Performance Layer-by-Layer Self-Assembly PANI/GQD-rGO/CFC Electrodes for a Flexible Solid-State Supercapacitor by a Facile Spraying Technique.” ACS Appl. Energy Mater., 2 (2) 1077–1085 (2019)

    Article  CAS  Google Scholar 

  238. Song, P, He, X, Xie, M, Tao, J, Shen, X, Ji, Z, Yan, Z, Zhai, L, Yuan, A, “Polyaniline Wrapped Graphene Functionalized Textile with Ultrahigh Areal Capacitance and Energy Density for High-Performance All-Solid-State Supercapacitors for Wearable Electronics.” Compos. Sci. Technol., 198 108305 (2020)

    Article  CAS  Google Scholar 

  239. Zhou, D, Wang, N, Yang, T, Wang, L, Cao, X, Wang, ZL, “A Piezoelectric Nanogenerator Promotes Highly Stretchable and Self-chargeable Supercapacitors.” Mater. Horiz., 7 (8) 2158–2167 (2020)

    Article  CAS  Google Scholar 

  240. Rafique, S, Kasi, AK, Kasi, JK, Aminullah, R, Bokhari, M, Shakoor, Z, “Fabrication of Silver-Doped Zinc Oxide Nanorods Piezoelectric Nanogenerator on Cotton Fabric to Utilize and Optimize the Charging System.” Nanomater. Nanotechnol., 10 184798041989574 (2020)

    Article  Google Scholar 

  241. Kim, M, Wu, YS, Kan, EC, Fan, J, “Breathable and Flexible Piezoelectric ZnO@ PVDF Fibrous Nanogenerator for Wearable Applications.” Polymers (Basel), 10 (7) 745 (2018)

    Article  Google Scholar 

  242. Krajewski, AS, Magniez, K, Helmer, RJ, Schrank, V, “Piezoelectric Force Response of Novel 2D Textile Based PVDF Sensors.” IEEE Sens. J., 13 (12) 4743–4748 (2013)

    Article  Google Scholar 

  243. Fang, J, Wang, X, Lin, T, “Electrical Power Generator from Randomly Oriented Electrospun Poly (Vinylidene Fluoride) Nanofibre Membranes.” J. Mater. Chem., 21 (30) 11088–11091 (2011)

    Article  CAS  Google Scholar 

  244. Åkerfeldt, M, Lund, A, Walkenström, P, “Textile Sensing Glove with Piezoelectric PVDF Fibers and Printed Electrodes of PEDOT PSS.” Text. Res. J., 85 (17) 1789–1799 (2015)

    Article  Google Scholar 

  245. Kim, K, Yun, K-S, “Stretchable Power-Generating Sensor Array in Textile Structure Using Piezoelectric Functional Threads with Hemispherical Dome Structures.” Int. J. Precis Eng. Manuf.-Green Technol., 6 (4) 699–710 (2019)

    Article  Google Scholar 

  246. Chakhchaoui, N, Jaouani, H, Ennamiri, H, Eddiai, A, Hajjaji, A, Meddad, M, Van Langenhove, L, Boughaleb, Y, “Modeling and Analysis of the Effect of Substrate on the Flexible Piezoelectric Films for Kinetic Energy Harvesting from Textiles.” J. Compos. Mater., 53 (24) 3349–3361 (2019)

    Article  CAS  Google Scholar 

  247. Ponnamma, D, Parangusan, H, Tanvir, A, AlMa’adeed, MAA, “Smart and Robust Electrospun Fabrics of Piezoelectric Polymer Nanocomposite for Self-powering Electronic Textiles.” Mater. Des., 184 108176 (2019)

    Article  CAS  Google Scholar 

  248. Wu, W, Bai, S, Yuan, M, Qin, Y, Wang, ZL, Jing, T, “Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-powered Devices.” ACS Nano, 6 (7) 6231–6235 (2012)

    Article  CAS  Google Scholar 

  249. Lee, M, Chen, CY, Wang, S, Cha, SN, Park, YJ, Kim, JM, Chou, LJ, Wang, Z, “A Hybrid Piezoelectric Structure for Wearable Nanogenerators.” Adv. Mater., 24 (13) 1759–1764 (2012)

    Article  CAS  Google Scholar 

  250. Khan, A, Ali Abbasi, M, Hussain, M, Hussain Ibupoto, Z, Wissting, J, Nur, O, Willander, M, “Piezoelectric Nanogenerator Based on Zinc Oxide Nanorods Grown on Textile Cotton Fabric.” Appl. Phys. Lett., 101 (19) 193506 (2012)

    Article  Google Scholar 

  251. Fang, J, Niu, H, Wang, H, Wang, X, Lin, T, “Enhanced Mechanical Energy Harvesting Using Needleless Electrospun Poly (Vinylidene Fluoride) Nanofibre Webs.” Energy Environ. Sci., 6 (7) 2196–2202 (2013)

    Article  CAS  Google Scholar 

  252. Guan, X, Xu, B, Gong, J, “Hierarchically Architected Polydopamine Modified BaTiO3@ P (VDF-TrFE) Nanocomposite Fiber Mats for Flexible Piezoelectric Nanogenerators and Self-Powered Sensors.” Nano Energy, 70 104516 (2020)

    Article  CAS  Google Scholar 

  253. He, W, Van Ngoc, H, Qian, YT, Hwang, JS, Yan, YP, Choi, H, Kang, DJ, “Synthesis of Ultra-Thin Tellurium Nanoflakes on Textiles For High-Performance Flexible and Wearable Nanogenerators.” Appl. Surf. Sci., 392 1055–1061 (2017)

    Article  CAS  Google Scholar 

  254. Mokhtari, F, Spinks, GM, Fay, C, Cheng, Z, Raad, R, Xi, J, Foroughi, J, “Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers.” Adv. Mater. Technol., 5 (4) 1900900 (2020)

    Article  CAS  Google Scholar 

  255. Liao, Q, Zhang, Z, Zhang, X, Mohr, M, Zhang, Y, Fecht, H-J, “Flexible Piezoelectric Nanogenerators Based on a Fiber/ZnO Nanowires/Paper Hybrid Structure for Energy Harvesting.” Nano Res., 7 (6) 917–928 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grant for this research work was provided by the Higher Education Commission of Pakistan [NRPU Grant No. 9196].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjed Javid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, A., Zubair, U., Ashraf, M. et al. Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review. J Coat Technol Res 20, 141–172 (2023). https://doi.org/10.1007/s11998-022-00690-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00690-2

Keywords

Navigation