Skip to main content

Flexible Piezoelectric and Triboelectric Sensors for Energy Harvesting Applications

  • Chapter
  • First Online:
Flexible Sensors for Energy-Harvesting Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 42))

  • 590 Accesses

Abstract

During the last decades, advancement in the development of different small-sized, portable, low-power, and remote systems has attracted the attention of researchers to employ nonconventional power sources. Piezoelectric and triboelectric nanogenerators are two newly developed technologies for efficient harvesting of environmental, mechanical energy for self-powered systems. This book chapter reviews recent progress in energy harvesting devices based on piezoelectric and triboelectric mechanisms. Different materials and fabrication methods in developing piezoelectric, as well as triboelectric energy harvesting devices, are discussed in this review and fabrication of flexible and hybrid devices for different energy harvesting applications are thoroughly reviewed. In addition, recent research directions being studied, the developing parameters to improve harvester's performance and advance growth in attaining high functionality and durable energy transformation are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Sullivan and L. Gaines, A review of battery life-cycle analysis: state of knowledge and critical needs, in Argonne National Lab.(ANL) (Argonne, IL, United States, 2010)

    Google Scholar 

  2. M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. 5(6), 4409–4417 (2018)

    Google Scholar 

  3. S.C. Mukhopadhyay, New Developments in Sensing Technology for Structural Health Monitoring (Springer, Berlin, 2011)

    Google Scholar 

  4. S.C. Mukhopadhyay, Novel planar electromagnetic sensors: Modeling and performance evaluation. Sensors 5(12), 546–579 (2005)

    Google Scholar 

  5. A. Mohd Syaifudin, S. Mukhopadhyay, P. Yu, Modelling and fabrication of optimum structure of novel interdigital sensors for food inspection. Int. J. Numer. Model. Electron. Netw. Devices Fields 25(1), 64–81 (2012)

    Google Scholar 

  6. F.K. Shaikh, S. Zeadally, Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016)

    Google Scholar 

  7. O. Kanoun, Energy Harvesting for Wireless Sensor Networks, in Technology, Components and System Design (De Gruyter Oldenbourg, 2018)

    Google Scholar 

  8. A. Nag, S.C. Mukhopadhyay, J. Kosel, Sensing system for salinity testing using laser-induced graphene sensors. Sens. Actuators, A 264, 107–116 (2017)

    Google Scholar 

  9. A. Nag, S. Feng, S. Mukhopadhyay, J. Kosel, D. Inglis, 3D printed mould-based graphite/PDMS sensor for low-force applications. Sens. Actuators, A 280, 525–534 (2018)

    Google Scholar 

  10. A. Nag, N. Afasrimanesh, S. Feng, S.C. Mukhopadhyay, Strain induced graphite/PDMS sensors for biomedical applications. Sens. Actuators, A 271, 257–269 (2018)

    Google Scholar 

  11. A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators, A 251, 148–155 (2016)

    Google Scholar 

  12. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators, A 269, 79–90 (2018)

    Google Scholar 

  13. L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, L. Thiele, Measurement and validation of energy harvesting IoT devices, in Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, 2017), pp. 1159–1164

    Google Scholar 

  14. J. Paulo, P.D. Gaspar, Review and future trend of energy harvesting methods for portable medical devices, in Proceedings of the World Congress on Engineering, vol. 2 (WCE, 2017), pp. 168–196

    Google Scholar 

  15. M.A. Hannan, S. Mutashar, S.A. Samad, A. Hussain, Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed. Eng. Online 13(1), 79 (2014)

    Google Scholar 

  16. M.F. Mahmood, S. Lateef Mohammed, S.K. Gharghan, Free battery-based energy harvesting techniques for medical devices. S&E 745(1), 012094 (2020)

    Google Scholar 

  17. K.Z. Panatik et al., Energy harvesting in wireless sensor networks: a survey, in 2016 IEEE 3rd International Symposium on Telecommunication Technologies (ISTT) (IEEE, 2016), pp. 53–58

    Google Scholar 

  18. C. Wang, J. Li, Y. Yang, F. Ye, Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Trans. Mob. Comput. 17(3), 560–576 (2017)

    Google Scholar 

  19. Z. Masood, S.P. Jung, Y. Choi, Energy-efficiency performance analysis and maximization using wireless energy harvesting in wireless sensor networks. Energies 11(11), 2917 (2018)

    Google Scholar 

  20. C.T. Chien et al., Graphene-based integrated photovoltaic energy harvesting/storage device. Small 11(24), 2929–2937 (2015)

    Google Scholar 

  21. X. Yue et al., Development of an indoor photovoltaic energy harvesting module for autonomous sensors in building air quality applications. IEEE Internet Things J. 4(6), 2092–2103 (2017)

    Google Scholar 

  22. L. Vračar, A. Prijić, D. Nešić, S. Dević, Z. Prijić, Photovoltaic energy harvesting wireless sensor node for telemetry applications optimized for low illumination levels. Electronics 5(2), 26 (2016)

    Google Scholar 

  23. J. Zhao et al., Self-powered implantable medical devices: photovoltaic energy harvesting review. Adv. Healthcare Mater. 9(17), 2000779 (2020)

    Google Scholar 

  24. S.-Y. Chang, P. Cheng, G. Li, Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2(6), 1039–1054 (2018)

    Google Scholar 

  25. A. Nozariasbmarz et al., Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 258, 114069 (2020)

    Google Scholar 

  26. X. Chang et al., ZnO nanorods/carbon black-based flexible strain sensor for detecting human motions. J. Alloy. Compd. 738, 111–117 (2018)

    Google Scholar 

  27. Y. Wu, H. Zhang, L. Zuo, Thermoelectric energy harvesting for the gas turbine sensing and monitoring system. Energy Convers. Manage. 157, 215–223 (2018)

    Google Scholar 

  28. D. Enescu, Thermoelectric energy harvesting: basic principles and applications, in Green Energy Advances (IntechOpen, 2019)

    Google Scholar 

  29. D.B. Kim, K.H. Park, Y.S. Cho, Origin of high piezoelectricity of inorganic halide perovskite thin films and their electromechanical energy-harvesting and physiological current-sensing characteristics. Energy Environ. Sci. (2020)

    Google Scholar 

  30. N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 105567 (2020)

    Google Scholar 

  31. A. Jasim, H. Wang, G. Yesner, A. Safari, A. Maher, Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway. Energy 141, 1133–1145 (2017)

    Google Scholar 

  32. A. Toprak, O. Tigli, Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1(3), 031104 (2014)

    Google Scholar 

  33. C. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Correction: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 8(7), 2129–2129 (2015)

    Google Scholar 

  34. I. Sari, T. Balkan, H. Kulah, A wideband electromagnetic micro power generator for wireless microsystems, in TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2007), pp. 275–278

    Google Scholar 

  35. P. Glynne-Jones, S.P. Beeby, N.M. White, Towards a piezoelectric vibration-powered microgenerator. IEE Proc. Sci. Meas. Technol. 148(2), 68–72 (2001)

    Google Scholar 

  36. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Google Scholar 

  37. B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.-J. Kim, Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 3(37), 16646–16656 (2013)

    Google Scholar 

  38. X. Li, Y. Chen, A. Kumar, A. Mahmoud, J.A. Nychka, H.-J. Chung, Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator. ACS Appl. Mater. Interfaces 7(37), 20753–20760 (2015)

    Google Scholar 

  39. M.S. Al-Ruqeishi, T. Mohiuddin, B. Al-Habsi, F. Al-Ruqeishi, A. Al-Fahdi, A. Al-Khusaibi, Piezoelectric nanogenerator based on ZnO nanorods. Arab. J. Chem. 12(8), 5173–5179 (2019)

    Google Scholar 

  40. Y. Xi et al., Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 19(48), 9260–9264 (2009)

    Google Scholar 

  41. S.Y. Chung et al., All-solution-processed flexible thin film piezoelectric nanogenerator. Adv. Mater. 24(45), 6022–6027 (2012)

    Google Scholar 

  42. C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019)

    Google Scholar 

  43. Y. Zi et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7(1), 1–8 (2016)

    Google Scholar 

  44. T. Cheng, Q. Gao, Z.L. Wang, The current development and future outlook of triboelectric nanogenerators: a survey of literature. Adv. Mater. Technol. 4(3), 1800588 (2019)

    Google Scholar 

  45. S. Chandrasekaran et al., Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 792, 1–33 (2019)

    Google Scholar 

  46. S. Lee et al., Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Func. Mater. 23(19), 2445–2449 (2013)

    Google Scholar 

  47. F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016)

    Google Scholar 

  48. R.S. Ganesh et al., Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method. Mater. Chem. Phys. 192, 274–281 (2017)

    Google Scholar 

  49. X. Chen et al., A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl. Mater. Interfaces 9(48), 42200–42209 (2017)

    Google Scholar 

  50. C. Lu, J. Chen, T. Jiang, G. Gu, W. Tang, Z.L. Wang, A Stretchable, Flexible Triboelectric Nanogenerator for Self-Powered Real-Time Motion Monitoring. Adv. Mater. Technol. 3(6), 1800021 (2018)

    Google Scholar 

  51. M. Lee et al., A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24(13), 1759–1764 (2012)

    Google Scholar 

  52. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)

    Google Scholar 

  53. N. Wu et al., Output enhanced compact multilayer flexible nanogenerator for self-powered wireless remote system. J. Mater. Chem. A 5(25), 12787–12792 (2017)

    Google Scholar 

  54. C. Hou, T. Huang, H. Wang, H. Yu, Q. Zhang, Y. Li, A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Sci. Rep. 3, 3138 (2013)

    Google Scholar 

  55. X. Chen, T. Jiang, Y. Yao, L. Xu, Z. Zhao, Z.L. Wang, Stimulating Acrylic Elastomers by a Triboelectric Nanogenerator-Toward Self-Powered Electronic Skin and Artificial Muscle. Adv. Func. Mater. 26(27), 4906–4913 (2016)

    Google Scholar 

  56. A. Khan et al., Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl. Phys. Lett. 101(19), 193506 (2012)

    Google Scholar 

  57. E. Nour, O. Nur, M. Willander, Zinc oxide piezoelectric nano-generators for low frequency applications. Semiconduct. Sci. Technol. 32(6), 064005 (2017)

    Google Scholar 

  58. J. Kaur, H. Singh, Synthesis and fabrication of zinc oxide nanostrands based piezoelectric nanogenerator. J. Mater. Sci.: Mater. Electron. 30(5), 4437–4445 (2019)

    Google Scholar 

  59. X. Niu et al., High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 7(1), 979–985 (2018)

    Google Scholar 

  60. J.K. Han, D.H. Jeon, S.Y. Cho, S.W. Kang, J. Lim, S.D. Bu, Flexible piezoelectric generators by using the bending motion method of direct-grown-PZT nanoparticles on carbon nanotubes. Nanomaterials 7(10), 308 (2017)

    Google Scholar 

  61. K.I. Park et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)

    Google Scholar 

  62. A. Gaur, S. Tiwari, C. Kumar, P. Maiti, A bio-based piezoelectric nanogenerator for mechanical energy harvesting using nanohybrid of poly (vinylidene fluoride) (2019)

    Google Scholar 

  63. S. Cherumannil Karumuthil, S. Prabha Rajeev, U. Valiyaneerilakkal, S. Athiyanathil, S. Varghese, Electrospun Poly (vinylidene fluoride-trifluoroethylene)-Based Polymer Nanocomposite Fibers for Piezoelectric Nanogenerators. ACS Appl. Mater. Interfaces 11(43), 40180–40188 (2019)

    Google Scholar 

  64. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)

    Google Scholar 

  65. L. Lin et al., An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. 6(4), 1164–1169 (2013)

    Google Scholar 

  66. X. Jiang, W. Huang, S.J.N.E. Zhang, Flexoelectric nano-generator: Materials, structures and devices. 2(6), 1079–1092 (2013)

    Google Scholar 

  67. B. Liu et al., Effect of TC (002) On the output current of a ZnO thin-film nanogenerator and a new piezoelectricity mechanism at the atomic level. 11(13), 12656–12665 (2019)

    Google Scholar 

  68. D. Kim, K.Y. Lee, M.K. Gupta, S. Majumder, S.W.J.A.F.M. Kim, Self‐compensated insulating ZnO‐based piezoelectric nanogenerators. 24(44), 6949–6955 (2014)

    Google Scholar 

  69. G. Liu et al., Nanogenerators based on vertically aligned InN nanowires. 8(4), 2097–2106 (2016)

    Google Scholar 

  70. N.-J. Ku et al., Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays. 9(37), 4039–14046 (2017)

    Google Scholar 

  71. N.J. Ku, C.H. Wang, J.H. Huang, H.C. Fang, P.C. Huang, C.P.J.A.M. Liu, Energy harvesting from the obliquely aligned InN nanowire array with a surface electron–accumulation layer. 25(6), 861–866 (2013)

    Google Scholar 

  72. X. Chen, S. Xu, N. Yao, Y.J.N.l. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. 10(6), 2133–2137 (2010)

    Google Scholar 

  73. X. Chen, N. Yao, Y. Shi, Energy harvesting based on PZT nanofibers, in Energy Efficiency and Renewable Energy Through Nanotechnology (Springer, Berlin, 2011), pp. 425–438

    Google Scholar 

  74. L. Gu, D. Zhou, J.C.J.S. Cao, Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. 16(6), 833 (2016)

    Google Scholar 

  75. A. Koka, Z. Zhou, H. Tang, H.A.J.N. Sodano, Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. 25(37), 375603 (2014)

    Google Scholar 

  76. J.M. Wu, K.-H. Chen, Y. Zhang, Z.L.J.R.A. Wang, A self-powered piezotronic strain sensor based on single ZnSnO 3 microbelts. 3(47), 25184–25189 (2013)

    Google Scholar 

  77. M.W. Dlamini, M.S. Hamed, X.G. Mbuyise, G.T.J.J.o.M.S.M.i.E. Mola, Improved energy harvesting using well-aligned ZnS nanoparticles in bulk-heterojunction organic solar cell. 31, 9415–9422 (2020)

    Google Scholar 

  78. S.U. Rehman et al., Orientation dependent electronic and optical properties of ZnS nanowires and ZnS—Si core shell nanowires. 486, 539–545 (2019)

    Google Scholar 

  79. Y.-F. Lin, J. Song, Y. Ding, S.-Y. Lu, Z.L.J.A.P.L. Wang, Piezoelectric nanogenerator using CdS nanowires. 92(2), 022105 (2008)

    Google Scholar 

  80. B. Yang et al., Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. 8(42), 14845–14854 (2020)

    Google Scholar 

  81. S. Sarkar, A. Makhal, K. Lakshman, T. Bora, J. Dutta, S.J.T.J.o.P.C.C. Kumar Pal, Dual-sensitization via electron and energy harvesting in CdTe quantum dots decorated ZnO nanorod-based dye-sensitized solar cells. 116(27), 14248–14256 (2012)

    Google Scholar 

  82. C.S. Han, T.H. Lee, G.M. Kim, D.Y. Lee, Y.S.J.J.o.t.K.C.S. Cho, Piezoelectric energy harvesting characteristics of GaN nanowires prepared by a magnetic field-assisted CVD process. 53(2), 167–170 (2016)

    Google Scholar 

  83. N. Gogneau et al., Impact of the GaN nanowire polarity on energy harvesting. 104(21), 213105 (2014)

    Google Scholar 

  84. S. Cha et al., Porous PVDF as effective sonic wave driven nanogenerators. 11(12), 5142–5147 (2011)

    Google Scholar 

  85. K. Rawy, R. Sharma, H.-J. Yoon, U. Khan, S.-W. Kim, and T. T.-H. Kim, A triboelectric nanogenerator energy harvesting system based on load-aware control for input power from 2.4 μW to 15.6 μW. Nano Energy 74, 104839 (2020)

    Google Scholar 

  86. N. Zhang et al., Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 1–5 (2020)

    Google Scholar 

  87. W. Seung et al., Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7(2), 1600988 (2017)

    Google Scholar 

  88. B. Zhang et al., Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 64, 103953 (2019)

    Google Scholar 

  89. M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, Z.L. Wang, Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 4(9), 3359–3363 (2011)

    Google Scholar 

  90. Z. Li, Z.L. Wang, Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 23(1), 84–89 (2011)

    Google Scholar 

  91. Q. Liao, Z. Zhang, X. Zhang, M. Mohr, Y. Zhang, H.-J. Fecht, Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7(6), 917–928 (2014)

    Google Scholar 

  92. P. Thakur et al., Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44, 456–467 (2018)

    Google Scholar 

  93. K.-I. Park, S.B. Bae, S.H. Yang, H.I. Lee, K. Lee, S.J. Lee, Lead-free BaTiO 3 nanowires-based flexible nanocomposite generator. Nanoscale 6(15), 8962–8968 (2014)

    Google Scholar 

  94. K.I. Park et al., Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24(22), 2999–3004 (2012)

    Google Scholar 

  95. M.-H. Seo et al., Versatile transfer of an ultralong and seamless nanowire array crystallized at high temperature for use in high-performance flexible devices. ACS Nano 11(2), 1520–1529 (2017)

    Google Scholar 

  96. N. Cui et al., Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12(7), 3701–3705 (2012)

    Google Scholar 

  97. U.-H. Shin, D.-W. Jeong, S.-M. Park, S.-H. Kim, H.W. Lee, J.-M. Kim, Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests. Carbon 80, 396–404 (2014)

    Google Scholar 

  98. J.M. Wu, K.-H. Chen, Y. Zhang, Z.L. Wang, A self-powered piezotronic strain sensor based on single ZnSnO 3 microbelts. RSC Adv. 3(47), 25184–25189 (2013)

    Google Scholar 

  99. J. He et al., high-resolution flexible sensor array based on PZT nanofibers. Nanotechnology 31(15), 155503 (2020)

    Google Scholar 

  100. D. Kang et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)

    Google Scholar 

  101. P.G. Kang et al., Piezoelectric power generation of vertically aligned lead-free (K, Na) NbO 3 nanorod arrays. RSC Adv. 4(56), 29799–29805 (2014)

    Google Scholar 

  102. C.K. Jeong, K.I. Park, J. Ryu, G.T. Hwang, K.J. Lee, Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Func. Mater. 24(18), 2620–2629 (2014)

    Google Scholar 

  103. X. Ren, H. Fan, Y. Zhao, Z. Liu, Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interfaces. 8(39), 26190–26197 (2016)

    Google Scholar 

  104. Q.-L. Zhao et al., Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single-crystal nanowires. ACS Appl. Mater. Interfaces. 9(29), 24696–24703 (2017)

    Google Scholar 

  105. Z. Hanani et al., “Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting,” Nano Energy, vol. 81, p. 105661, 2021.

    Google Scholar 

  106. K.S. Chary, H.S. Panda, C.D. Prasad, Fabrication of large aspect ratio Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3 superfine fibers-based flexible nanogenerator device: Synergistic effect on curie temperature, harvested voltage, and power. Ind. Eng. Chem. Res. 56(37), 10335–10342 (2017)

    Google Scholar 

  107. Y.B. Lee et al., Toward arbitrary-direction energy harvesting through flexible piezoelectric nanogenerators using perovskite PbTiO3 nanotube arrays. Adv. Mater. 29(6), 1604500 (2017)

    Google Scholar 

  108. G.-H. Nam, S.-H. Baek, C.-H. Cho, I.-K. Park, A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. Nanoscale 6(20), 11653–11658 (2014)

    Google Scholar 

  109. Z. Chen, N. Zhang, Y.-J. Xu, Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm 15(15), 3022–3030 (2013)

    Google Scholar 

  110. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)

    Google Scholar 

  111. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012)

    Google Scholar 

  112. P. Pandey, N. Singh, F.Z. Haque, Development and optical study of hexagonal multi-linked ZnO micro-rods grown using hexamine as capping agent. Optik 124(12), 1188–1191 (2013)

    Google Scholar 

  113. Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2015)

    Google Scholar 

  114. L. Lin et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13(6), 2916–2923 (2013)

    Google Scholar 

  115. H. Yong, J. Chung, D. Choi, D. Jung, M. Cho, S. Lee, Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Sci. Rep. 6(1), 1–11 (2016)

    Google Scholar 

  116. S.A. Khan et al., Flexible triboelectric nanogenerator based on carbon nanotubes for self-powered Weighing. Adv. Eng. Mater. 19(3), 1600710 (2017)

    Google Scholar 

  117. Y. Zhu et al., A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  118. T. Zhou, Z.W. Yang, Y. Pang, L. Xu, C. Zhang, Z.L. Wang, Tribotronic tuning diode for active analog signal modulation. ACS Nano 11(1), 882–888 (2017)

    Google Scholar 

  119. B.N. Chandrashekar et al., Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27(35), 5210–5216 (2015)

    Google Scholar 

  120. Y.C. Lai, J. Deng, S.L. Zhang, S. Niu, H. Guo, Z.L. Wang, Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Func. Mater. 27(1), 1604462 (2017)

    Google Scholar 

  121. S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi, Z.L. Wang, Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv. Func. Mater. 27(25), 1606695 (2017)

    Google Scholar 

  122. W. Seung et al., Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4), 3501–3509 (2015)

    Google Scholar 

  123. S.W. Chen et al., An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 7(1), 1601255 (2017)

    Google Scholar 

  124. H. Guo et al., Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11(1), 856–864 (2017)

    Google Scholar 

  125. K. Zhang, S. Wang, Y. Yang, A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7(6), 1601852 (2017)

    Google Scholar 

  126. C. Xu, C. Pan, Y. Liu, Z.L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems. Nano Energy 1(2), 259–272 (2012)

    Google Scholar 

  127. X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang, Q. He, A flexible triboelectric-piezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  128. C. Chen et al., A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polym. Lett. 13(6), 533–542 (2019)

    Google Scholar 

  129. X. Wang, Z.L. Wang, Y. Yang, Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy 26, 164–171 (2016)

    Google Scholar 

  130. G. Suo et al., Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl. Mater. Interfaces 8(50), 34335–34341 (2016)

    Google Scholar 

  131. X. Wang et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016)

    Google Scholar 

  132. A.R. Chowdhury et al., Lithium doped zinc oxide based flexible piezoelectric-triboelectric hybrid nanogenerator. Nano Energy 61, 327–336 (2019)

    Google Scholar 

  133. Z. Li, Z. Saadatnia, Z. Yang, H. Naguib, A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting. Energy Convers. Manage. 174, 188–197 (2018)

    Google Scholar 

  134. W. Zhang, Q. Liu, P. Chen, Flexible strain sensor based on carbon black/silver nanoparticles composite for human motion detection. Materials 11(10), 1836 (2018)

    Google Scholar 

Download references

Funding

This study was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany's Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Afsarimanesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afsarimanesh, N., Nag, A., Sabet, G.S. (2022). Flexible Piezoelectric and Triboelectric Sensors for Energy Harvesting Applications. In: Nag, A., Mukhopadhyay, S.C. (eds) Flexible Sensors for Energy-Harvesting Applications. Smart Sensors, Measurement and Instrumentation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-99600-0_6

Download citation

Publish with us

Policies and ethics