Skip to main content
Log in

Anticorrosive properties of a superhydrophobic coating based on an ORMOSIL enhanced with MCM-41-HDTMS nanoparticles for metals protection

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The anticorrosive properties of hexadecyltrimethoxysilane (HDTMS) functionalized MCM-41 silica particles (MCM-41-HDTMS) incorporated into a methyltriethoxysilane (MTES) sol-gel matrix coatings were studied. The MCM-41 particles were synthesized and functionalized with HDTMS, and added to a sol composed of MTES:methanol:NH4OH 7M to create a coating. The materials synthesized with and without MCM-41-HDTMS were deposited, by dip coating, on Cu and Fe sheets, and were physically characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy using the Owens, Wendt, Rabel, and Kaelble (OWRK) method, and by electrochemical impedance spectroscopy (EIS). The addition of the MCM-41-HDTMS to the MTES matrix induced an increase of the contact angle by about 10 degrees with an augment in its dispersive component, caused by a lofty deposition of long carbon chains from HDTMS over the high surface area of the MCM-41 particles, changing from hydrophobic to superhydrophobic materials with a contact angle of 155° for the Cu-MTES-HDTMS sample. EIS results show that the addition of MCM-41-HDTMS increases the charge transfer resistance providing better protection to metals. The results show that with the addition of MCM-41-HDTMS to an MTES matrix it is possible to synthesize superhydrophobic coatings capable of limiting the corrosion degradation process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Falcón, JM, Batista, FF, Aoki, IV, “Encapsulation of Dodecylamine Corrosion Inhibitor on Silica Nanoparticles.” Electrochimica Acta, 124 109–118. https://doi.org/10.1016/j.electacta.2013.06.114 (2014)

    Article  CAS  Google Scholar 

  2. Zarras, P, Stenger-Smith, JD, “Corrosion Processes and Strategies for Prevention: An Introduction.” In: Handbook of Smart Coatings for Materials Protection; Abdel Salam Hamdy Makhlouf, Ed.; Elsevier: Cambridge, 2014; pp 3–28. https://doi.org/10.1533/9780857096883.1.3.

  3. Faraldi, F, Cortese, B, Caschera, D, Di Carlo, G, Riccucci, C, de Caro, T, Ingo, GM, “Smart Conservation Methodology for the Preservation of Copper-Based Objects Against the Hazardous Corrosion.” Thin Solid Films, 622 130–135. https://doi.org/10.1016/j.tsf.2016.12.024 (2017)

    Article  CAS  Google Scholar 

  4. Jiang, D, Zhou, H, Wan, S, Cai, GY, Dong, ZH, “Fabrication of Superhydrophobic Coating on Magnesium Alloy with Improved Corrosion Resistance by Combining Micro-Arc Oxidation and Cyclic Assembly.” Surface and Coatings Technology339 155–166. https://doi.org/10.1016/j.surfcoat.2018.02.001 (2018)

    Article  CAS  Google Scholar 

  5. Liang, J, Wu, XW, Ling, Y, Yu, S, Zhang, Z, “Trilaminar Structure Hydrophobic Graphene Oxide Decorated Organosilane Composite Coatings for Corrosion Protection.” Surface and Coatings Technology, 339 65–77. https://doi.org/10.1016/j.surfcoat.2018.02.002 (2018)

    Article  CAS  Google Scholar 

  6. Kiele, E, Lukseniene, J, Griguceviciene, A, Selskis, A, Senvaitiene, J, Ramanauskas, R, Raudonis, R, Kareiva, A, “Methyl-Modified Hybrid Organic-Inorganic Coatings for the Conservation of Copper.” Journal of Cultural Heritage, 15 (3) 242–249. https://doi.org/10.1016/j.culher.2013.06.002 (2014)

    Article  Google Scholar 

  7. Chiavari, C, Balbo, A, Bernardi, E, Martini, C, Zanotto, F, Vassura, I, Bignozzi, MC, Monticelli, C, “Organosilane Coatings Applied on Bronze: Influence of UV Radiation and Thermal Cycles on the Protectiveness.” Progress in Organic Coatings, 82 91–100. https://doi.org/10.1016/j.porgcoat.2015.01.017 (2015)

    Article  CAS  Google Scholar 

  8. Wankhede, RG, Thanawala, K, Khanna, A, Birbillis, N, “Development of Hydrophobic Non-Fluorine Sol-Gel Coatings on Aluminium Using Long Chain Alkyl Silane Precursor.” Journal of Materials Science and Engineering A, 3 (4) 224–231 (2013)

    CAS  Google Scholar 

  9. Illescas, JF, Mosquera, MJ, “Producing Surfactant-Synthesized Nanomaterials In Situ on a Building Substrate, Without Volatile Organic Compounds.” ACS Applied Materials and Interfaces, 4 (8) 4259–4269. https://doi.org/10.1021/am300964q (2012)

    Article  CAS  Google Scholar 

  10. Wolfe, J, Grayburn, R, “A Review of the Development and Testing of Incralac Lacquer.” Journal of the American Institute for Conservation, 56 (3–4) 225–244. https://doi.org/10.1080/01971360.2017.1362863 (2017)

    Article  Google Scholar 

  11. Liu, X, Gu, C, Wen, Z, Hou, B, “Improvement of Active Corrosion Protection of Carbon Steel by Water-Based Epoxy Coating with Smart CeO2 Nanocontainers.” Progress in Organic Coatings, 2018 (115) 195–204. https://doi.org/10.1016/j.porgcoat.2017.10.015 (2017)

    Article  CAS  Google Scholar 

  12. Barrera, PR, Gómez, FJR, Ochoa, EG, “Assessing of New Coatings for Iron Artifacts Conservation by Recurrence Plots Analysis.” Coatingshttps://doi.org/10.3390/coatings9010012 (2019)

    Article  Google Scholar 

  13. Figueira, RB, Silva, CJR, Pereira, EV, “Organic – Inorganic Hybrid Sol – Gel Coatings for Metal Corrosion Protection: A Review of Recent Progress.” Journal of Coatings Technology and Research, 12 1–35. https://doi.org/10.1007/s11998-014-9595-6 (2015)

  14. Venkateswara Rao, A, Latthe, SS, Nadargi, DY, Hirashima, H, Ganesan, V, “Preparation of MTMS Based Transparent Superhydrophobic Silica Films by Sol-Gel Method.” Journal of Colloid and Interface Science, 332 (2) 484–490. https://doi.org/10.1016/j.jcis.2009.01.012 (2009)

    Article  CAS  Google Scholar 

  15. Balbo, A, Chiavari, C, Martini, C, Monticelli, C, “Effectiveness of Corrosion Inhibitor Films for the Conservation of Bronzes and Gilded Bronzes.” Corrosion Science, 59 204–212. https://doi.org/10.1016/j.corsci.2012.03.003 (2012)

    Article  CAS  Google Scholar 

  16. Mahmood, MH, Sopyan, I, “Hydrophobic Organosilica Coating on Steel and Aluminium.” Journal of Engineering and Applied Sciences, 10 (22) 17252–17255 (2015)

  17. De Ferri, L, Lottici, PP, Lorenzi, A, Montenero, A, Salvioli-Mariani, E, “Study of Silica Nanoparticles - Polysiloxane Hydrophobic Treatments for Stone-Based Monument Protection.” Journal of Cultural Heritage, 12 (4) 356–363. https://doi.org/10.1016/j.culher.2011.02.006 (2011)

    Article  Google Scholar 

  18. Kiele, E, Senvaitiene, J, Grigucevičiene, A, Ramanauskas, R, Raudonis, R, Kareiva, A, “Sol-Gel Derived Coatings for the Conservation of Steel.” Processing and Application of Ceramics, 9 (2) 81–89. https://doi.org/10.2298/PAC1502081K (2015)

    Article  Google Scholar 

  19. Du, C, He, X, Tian, F, Bai, X, Yuan, C, “Preparation of Superhydrophobic Steel Surfaces with Chemical Stability and Corrosion.” Coatings, 9 (6) 1–10. https://doi.org/10.3390/COATINGS9060398 (2019)

    Article  Google Scholar 

  20. Chang, H, Tu, K, Wang, X, Liu, J, “Fabrication of Mechanically Durable Superhydrophobic Wood Surfaces Using Polydimethylsiloxane and Silica Nanoparticles.” RSC Advances, 5 (39) 30647–30653. https://doi.org/10.1039/c5ra03070f (2015)

    Article  CAS  Google Scholar 

  21. Talavera-Pech, WA, Esparza-Ruiz, A, Quintana-Owen, P, Vilchis-Nestor, AR, Carrera-Figueiras, C, Ávila-Ortega, A, “Effects of Different Amounts of APTES on Physicochemical and Structural Properties of Amino-Functionalized MCM-41-MSNs.” Journal of Sol-Gel Science and Technology. https://doi.org/10.1007/s10971-016-4163-4 (2016)

  22. Owens, DK, Wendt, RC, “Estimation of the Surface Free Energy of Polymers.” Journal of Applied Polymer Science, 13 (8) 1741–1747. https://doi.org/10.1002/app.1969.070130815 (1969)

    Article  CAS  Google Scholar 

  23. Vázquez, G, Galiñanes, C, Freire, MS, Antorrena, G, González-Alvarez, J, “Estudio Del Mojado y Caracterización Superficial Por Microscopía de Barrido Laser Confocal de Chapas de Madera Obtenidas Por Desenrollo.” Maderas: Ciencia y Tecnologia, 13 (2), 183–192. https://doi.org/10.4067/S0718-221X2011000200006 (2011)

  24. Rao, AV, Latthe, SS, Mahadik, SA, Kappenstein, C, “Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-Gel Coatings on Copper Substrate.” Applied Surface Science, 257 (13) 5772–5776. https://doi.org/10.1016/j.apsusc.2011.01.099 (2011)

    Article  CAS  Google Scholar 

  25. Talavera-Pech, WA, Esparza-Ruiz, A, Quintana-Owen, P, Vilchis-Nestor, AR, Barrón-Zambrano, JA, Ávila-Ortega, A, “Synthesis of PH-Sensitive Poly(β-Amino Ester)-Coated Mesoporous Silica Nanoparticles for the Controlled Release of Drugs.” Applied Nanoscience (Switzerland), 8 (4) 853–866. https://doi.org/10.1007/s13204-018-0716-x (2018)

    Article  CAS  Google Scholar 

  26. Talavera-Pech, WA, Esparza-Ruiz, A, Quintana-Owen, P, Vilchis-Nestor, AR, Carrera-Figueiras, C, Ávila-Ortega, A, “Effects of Different Amounts of APTES on Physicochemical and Structural Properties of Amino-Functionalized MCM-41-MSNs.” Journal of Sol-Gel Science and Technology, 80 (3) 697–708. https://doi.org/10.1007/s10971-016-4163-4 (2016)

    Article  CAS  Google Scholar 

  27. Yang, H, Pi, P, Cai, ZQ, Wen, X, Wang, X, Cheng, J, Yang, Z-r, “Facile Preparation of Super-Hydrophobic and Super-Oleophilic Silica Film on Stainless Steel Mesh via Sol-Gel Process.” Applied Surface Science, 256 (13) 4095–4102. https://doi.org/10.1016/j.apsusc.2010.01.090 (2010)

    Article  CAS  Google Scholar 

  28. Yu, Y, Zhao, ZH, Zheng, QS, “Mechanical and Superhydrophobic Stabilities of Two-Scale Surfacial Structure of Lotus Leaves.” Langmuir, 23 (15) 8212–8216. https://doi.org/10.1021/la7003485 (2007)

    Article  Google Scholar 

  29. Zheng, S, Bellido-Aguilar, DA, Huang, Y, Zeng, X, Zhang, Q, Chen, Z, “Mechanically Robust Hydrophobic Bio-Based Epoxy Coatings for Anti-Corrosion Application.” Surface and Coatings Technology, 363 (February) 43–50. https://doi.org/10.1016/j.surfcoat.2019.02.020 (2019)

    Article  CAS  Google Scholar 

  30. McHale, G, Shirtcliffe, NJ, Newton, MI, “Contact-Angle Hysteresis on Super-Hydrophobic Surfaces.” Langmuir, 20 (23) 10146–10149. https://doi.org/10.1021/la0486584 (2004)

    Article  CAS  Google Scholar 

  31. Deng, TS, Zhang, QF, Zhang, JY, Shen, X, Zhu, KT, Wu, JL, “One-Step Synthesis of Highly Monodisperse Hybrid Silica Spheres in Aqueous Solution.” Journal of Colloid and Interface Science, 329 (2) 292–299. https://doi.org/10.1016/j.jcis.2008.09.063 (2009)

    Article  CAS  Google Scholar 

  32. Xu, L, Wang, L, Shen, Y, Ding, Y, Cai, Z, “Preparation of Hexadecyltrimethoxysilane-Modified Silica Nanocomposite Hydrosol and Superhydrophobic Cotton Coating.” Fibers and Polymers, 16 (5) 1082–1091. https://doi.org/10.1007/s12221-015-1082-x (2015)

    Article  CAS  Google Scholar 

  33. Rahimipour, S, Rafiei, B, Salahinejad, E, “Organosilane-Functionalized Hydrothermal-Derived Coatings on Titanium Alloys for Hydrophobization and Corrosion Protection.” Progress in Organic Coatingshttps://doi.org/10.1016/j.porgcoat.2020.105594 (2020)

    Article  Google Scholar 

  34. Can-Herrera, LA, Ávila-Ortega, A, de la Rosa-García, S, Oliva, AI, Cauich-Rodríguez, JV, Cervantes-Uc, JM, “Surface Modification of Electrospun Polycaprolactone Microfibers by Air Plasma Treatment: Effect of Plasma Power and Treatment Time.” European Polymer Journal, 84 502–513. https://doi.org/10.1016/j.eurpolymj.2016.09.060 (2016)

    Article  CAS  Google Scholar 

  35. Liu, C, Bi, Q, Leyland, A, Matthews, A, “An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part I. Establishment of Equivalent Circuits for EIS Data Modelling.” Corrosion Science, 45 (6) 1243–1256 (2003)

  36. Hu, J, Li, X, Gao, J, Zhao, Q, “UV Aging Characterization of Epoxy Varnish Coated Steel upon Exposure to Artificial Weathering Environment.” Materials and Design, 30 (5) 1542–1547. https://doi.org/10.1016/j.matdes.2008.07.051 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Laboratorio Nacional de Ciencias Para la Investigación y Conservación del Patrimonio Cultural-Centro de Investigación en Corrosión (LANCIC-CICORR), project LN315853 for all the facilities given for the experimental work of the present research. The authors also thank Dr. Alejandro May Pat for the technical support in the AFM analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, UFE, GSJ, and TPW. Data curation, CUJM, RTJ. Investigation, UFE. Methodology, ÁOA, PPY. Resourses RTJ, TPW. Writing - original draft, TPW. Writing - review and editing, GSJ.

Corresponding author

Correspondence to William A. Talavera-Pech.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uc-Fernández, E., González-Sánchez, J., Ávila-Ortega, A. et al. Anticorrosive properties of a superhydrophobic coating based on an ORMOSIL enhanced with MCM-41-HDTMS nanoparticles for metals protection. J Coat Technol Res 20, 347–357 (2023). https://doi.org/10.1007/s11998-022-00675-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00675-1

Keywords

Navigation