Skip to main content
Log in

Influence of nano-silica doping on the growth behavior and corrosion resistance of γ-APS silane films fabricated by electrochemical-assisted deposition

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The influence of nano-silica doping on the growth behavior and corrosion resistance of γ-APS silane films fabricated by electrochemical-assisted deposition was systematically investigated by reflection absorption infrared spectroscopy, electrochemical impedance spectroscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry, contact angle test and neutral salt spray test. Density functional theory calculation was also applied to elaborate the adsorption behavior of γ-APS on low carbon steel surfaces. And meanwhile, the changes of surface coverage and dissolved oxygen reduction in the cathode surface over time were intensively analyzed according to the It curve during electrodeposition process. The experimental results revealed that the impedance values of the composite films firstly increased and then decreased with increasing nano-silica concentration, and there was a critical doping concentration about 0.4 g·L−1, under which the obtained γ-APS silane composite films presented high compactness and protective properties. Other results were highly consistent with the electrochemical results. Moreover, the hydroxyl-rich nano-silica was also involved in the chemical reactions that occurred on the metal surfaces, and the influence mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dalmoro, V, Azambuja, DS, Alemán, C, Armelin, E, “Hybrid Organophosphonic-silane Coating for Corrosion Protection of Magnesium Alloy AZ91: The Influence of Acid and Alkali Pre-treatments.” Surf. Coat. Technol., 357 728–739. https://doi.org/10.1016/j.surfcoat.2018.10.013 (2019)

    Article  CAS  Google Scholar 

  2. Zhang, G, Tang, A, Wu, L, Zhang, Z, et al. “In-situ Grown Super- or Hydrophobic Mg-Al Layered Double Hydroxides Films on the Anodized Magnesium Alloy to Improve Corrosion Properties.” Surf. Coat. Technol., 366 238–247. https://doi.org/10.1016/j.surfcoat.2019.03.016 (2019)

    Article  CAS  Google Scholar 

  3. Vinothkumar, K, Rajkumar, G, Sethuraman, MG, “Enhancement of Protection of Copper Through Electropolymerised Poly-2-amino-1, 3, 4-Thiadiazole and Its Composite Films.” Mater. Chem. Phys., 259 123987–124000. https://doi.org/10.1016/j.matchemphys.2020.123987 (2021)

    Article  CAS  Google Scholar 

  4. Merisalu, M, Aarik, L, Kozlova, J, “Effective Corrosion Protection of Aluminum Alloy AA2024-T3 with Novel Thin Nanostructured Oxide Coating.” Surf. Coat. Technol., 411 126993–127005. https://doi.org/10.1016/j.surfcoat.2021.126993 (2021)

    Article  CAS  Google Scholar 

  5. Dun, YC, Zhao, XH, Tang, YM, Dino, S, et al. “Microstructure and Corrosion Resistance of a Fluorosilane Modified Silane-Graphene Film on 2024 Aluminum Alloy.” Appl. Surf. Sci., 437 152–160. https://doi.org/10.1016/j.apsusc.2017.12.109 (2018)

    Article  CAS  Google Scholar 

  6. BinSabt, MH, Galal, A, Alkharafi, FM, Abditon, M, “Improving Corrosion Protection of Al97Mg3 Alloy in Neutral Sodium Chloride Solution by 1, 2-Bis(triethoxysilyl)ethane Coating.” Appl. Surf. Sci., 465 143–153. https://doi.org/10.1016/j.apsusc.2018.09.111 (2019)

    Article  CAS  Google Scholar 

  7. Cao, ZF, Wang, J, Qiu, P, Yang, F, et al. “Hydrophobic Coatings for Improving Corrosion Resistance of Manganese Substrate.” Surf. Coat. Technol., 347 235–244. https://doi.org/10.1016/j.surfcoat.2018.04.075 (2018)

    Article  CAS  Google Scholar 

  8. Mercier-Bion, F, Li, JY, Lotz, H, Tortech, L, et al. “Electrical Properties of Iron Corrosion Layers in Anoxic Environments at the Nanometer Scale.” Corros. Sci., 137 98–110. https://doi.org/10.1016/j.corsci.2018.03.028 (2018)

    Article  CAS  Google Scholar 

  9. Yang, LX, Liu, MX, Lei, XL, Zhang, YX, “Study on the Adsorption Behavior of γ-GPS on Low Carbon Steel Surfaces Using RA-IR, EIS and AFM.” Appl. Surf. Sci., 257 9895–9903. https://doi.org/10.1016/j.apsusc.2011.06.102 (2011)

    Article  CAS  Google Scholar 

  10. Indira, K, Ezhil Vizhi, M, Kathirvel, B, et al. “Examining the Uniformity of the Superhydrophobic Coating On Steel Substrates Using Kelvin Probe Force Microscope.” Prog. Org. Coat., 150 105973–105978. https://doi.org/10.1016/j.porgcoat.2020.105973 (2021)

    Article  CAS  Google Scholar 

  11. Hu, JM, Liu, L, Zhang, JQ, Cao, CN, “Electrodeposition of Silane Films on Aluminum Alloys for Corrosion.” Prog. Org. Coat., 58 265–271. https://doi.org/10.1016/j.porgcoat.2006.11.008 (2007)

    Article  CAS  Google Scholar 

  12. Wang, C, Jiao, GS, Peng, L, Zhu, BL, et al. “Influences of Surface Modification of Nano-silica by Silane Coupling Agents on the Thermal and Frictional Properties of Cyanate Ester Resin.” Results Phys., 9 886–896. https://doi.org/10.1016/j.rinp.2018.03.056 (2018)

    Article  Google Scholar 

  13. Grard, A, Belec, L, Perrin, FX, “Effect of Surface Morphology on the Adhesion of Silicone Elastomers on AA6061 Aluminum Alloy.” Int. J. Adhes. Adhes., 102 102656–102572. https://doi.org/10.1016/j.ijadhadh.2020.102656 (2020)

    Article  CAS  Google Scholar 

  14. Van Ooij, WJ, Zhu, DQ, Stacy, M, Seth, A, et al. “Corrosion Protection Properties of Organofunctional Silanes: An Overview." Tsinghua Sci. Technol., 10 639–664. https://doi.org/10.1016/S1007-0214(05)70134-6 (2005)

    Article  Google Scholar 

  15. Yang, LX, Feng, J, Zhang, WG, Qu, JE, “Film Forming Kinetics and Reaction Mechanism of γ-Glycidoxypropyltrimethoxysilane on Low Carbon Steel Surfaces.” Appl. Surf. Sci., 256 6787–6794. https://doi.org/10.1016/j.apsusc.2010.04.090 (2010)

    Article  CAS  Google Scholar 

  16. Yang, LX, Feng, J, Zhang, WG, Qu, JE, “Experimental and Computational Study on Hydrolysis and Condensation Kinetics of γ-Glycidoxypropyltrimethoxysilane (γ-GPS).” Appl. Surf. Sci., 257 990–996. https://doi.org/10.1016/j.apsusc.2010.07.102 (2010)

    Article  CAS  Google Scholar 

  17. Najibzad, AS, Amini, R, Rostami, M, et al. “Active Corrosion Performance of Magnesium by Silane Coatings Reinforced with Polyaniline/praseodymium.” Prog. Org. Coat., 140 105504–105515. https://doi.org/10.1016/j.porgcoat.2019.105504 (2020)

    Article  CAS  Google Scholar 

  18. Keshmiri, N, Mohseni, M, Yahyaei, H, “Adhesion Study of Biocompatible Polyhedral Oligomeric Silsesquioxane-Poly(carbonate-urea) Urethane Coating on Stainless Steel 316L in the Presence of an Amino-silane Primer.” Thin Solid Films, 735 138895–138903. https://doi.org/10.1016/j.tsf.2021.138895 (2021)

    Article  CAS  Google Scholar 

  19. Zhu, DQ, van Ooij, WJ, “Corrosion Protection of AA 2024–T3 by Bis-[3-(triethoxysilyl)propyl]tetrasulfide in Sodium Chloride Solution. Part 2: Mechanism for Corrosion Protection.” Corros. Sci., 45 2177–2197. https://doi.org/10.1016/S0010-938X(03)00061-1 (2003)

    Article  CAS  Google Scholar 

  20. Child, TF, Van Ooij, WJ, “Application of Silane Technology to Prevent Corrosion of Metals and Improve Paint Adhesion.” Met. Fin., 77 64–70. https://doi.org/10.1080/00202967.1999.11871249 (1999)

    Article  CAS  Google Scholar 

  21. Montemor, MF, Cabral, AM, Zheludkevich, ML, Ferreira, MGS, “The Corrosion Resistance of Hot Dip Galvanized Steel Pretreated with Bis-functional Silanes Modified with Microsilica.” Surf. Coat. Technol., 9 2875–2885. https://doi.org/10.1016/j.surfcoat.2004.11.012 (2006)

    Article  CAS  Google Scholar 

  22. Montemor, MF, Simões, AM, Ferreira, MGS, Williams, B, et al. “The Corrosion Performance of Organosilane Based Pre-treatments for Coatings on Galvanised Steel.” Prog. Org. Coat., 38 17–26. https://doi.org/10.1016/S0300-9440(99)00080-6 (2000)

    Article  CAS  Google Scholar 

  23. Van Ooij, WJ, Zhu, DQ, Prasad, G, Jayaseelan, S, Teredesai, N, et al. “Silane Based Chromate Replacements for Corrosion Control, Paint Adhesion, and Rubber Bonding.” Surf. Eng., 16 386–396. https://doi.org/10.1179/026708400101517369 (2000)

    Article  Google Scholar 

  24. Xiong, S, Zhao, Y, Wang, Y, et al. “Enhanced Interfacial Properties of Carbon Fiber/Epoxy Composites by Coating Carbon Nanotubes onto Carbon Fiber Surface by One-Step Dipping Method.” Appl. Surf. Sci., 546 149135–149145. https://doi.org/10.1016/j.apsusc.2021.149135 (2021)

    Article  CAS  Google Scholar 

  25. Woo, H, Reucroft, PJ, Jacob, RJ, “Electrodeposition of Organofunctional Silanes and Its Influence on Structural Adhesive Bonding.” J. Adhes. Sci. Technol., 7 681–697. https://doi.org/10.1163/156856193X00367 (1993)

    Article  CAS  Google Scholar 

  26. Peng, LJ, Chen, SH, Feng, YN, Li, TY, “Study on the BTSPS Silane Film Prepared on the Surface of the 2A12 Aluminum Alloy.” Adv. Mater. Res., 936 1071–1076. https://doi.org/10.4028/www.scientific.net/AMR.936.1071 (2014)

    Article  Google Scholar 

  27. Okumoto, S, Fujita, N, Yamabe, S, “Theoretical Study of Hydrolysis and Condensation of Silicon Alkoxides.” J. Chem. Phys. A., 102 3991–3998. https://doi.org/10.1021/jp980705b (1998)

    Article  CAS  Google Scholar 

  28. Yang, LX, Zhang, WG, Gu, T, Feng, J, “Influence of Acetic Acid on Dynamic Behavior of Hydrolazation and Film Forming of Organosilane.” J. Wuhan Univ. Technol., 24 546–551. https://doi.org/10.1007/s11595-009-4546-2 (2009)

    Article  CAS  Google Scholar 

  29. Herlem, G, Segut, O, Antoniou, A, “Electrodeposition and Characterization of Silane Thin Films from 3-(Aminopropyl)triethoxysilane.” Surf. Coat. Technol., 202 1437–1442. https://doi.org/10.1016/j.surfcoat.2007.06.038 (2008)

    Article  CAS  Google Scholar 

  30. Liu, L, Hu, JM, Zhang, JQ, Cao, CN, “Improving the Formation and Protective Properties of Silane Films by the Combined Use of Electrodeposition and Nanoparticles Incorporation.” Electrochim. Acta., 52 538–545. https://doi.org/10.1016/j.electacta.2006.05.034 (2006)

    Article  CAS  Google Scholar 

  31. Wu, LK, Liu, L, Li, J, Hu, JM, et al. “Electrodeposition of Cerium(III)-modified Bis-[triethoxysilypropyl]tetra-sulphide Films on AA2024-T3 (Aluminum Alloy) for Corrosion Protection.” Surf. Coat. Technol., 204 3920–3926. https://doi.org/10.1016/j.surfcoat.2010.05.027 (2010)

    Article  CAS  Google Scholar 

  32. Li, M, Yang, YQ, Liu, L, Hu, JM, et al. “Electro-assisted Preparation of Dodecyltrimethoxysilane/TiO2 Composite Films for Corrosion Protection of AA2024-T3 (Aluminum Alloy).” Electrochim. Acta., 55 3008–3014. https://doi.org/10.1016/j.electacta.2009.12.081 (2010)

    Article  CAS  Google Scholar 

  33. Sheffer, M, Groysman, A, Mandler, D, “Electrodeposition of Sol-Gel Films on Al for Corrosion Protection.” Corros. Sci., 45 2893–2904. https://doi.org/10.1016/S0010-938X(03)00106-9 (2003)

    Article  CAS  Google Scholar 

  34. Gandhi, JS, Van Ooij, WJ, “Improved Corrosion Protection of Aluminum Alloys by Electrodeposited Silanes.” J. Mater. Eng. Perform., 13 475–480. https://doi.org/10.1361/10599490420016 (2004)

    Article  CAS  Google Scholar 

  35. Liu, YH, Xu, JB, Zhang, JT, Hu, JM, “Electrodeposited Silica Film Interlayer for Active Corrosion Protection.” Corros. Sci., 120 61–74. https://doi.org/10.1016/j.corsci.2017.01.017 (2017)

    Article  CAS  Google Scholar 

  36. Shacham, R, Avnir, D, Mandler, D, “Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces.” Adv. Mater., 11 384–388. https://doi.org/10.1002/(SICI)1521-4095(199903)11:53.0.CO;2-M (1999)

    Article  CAS  Google Scholar 

  37. Hu, JM, Liu, L, Zhang, JQ, Cao, CN, “Effects of Electrodeposition Potential on the Corrosion Properties of bis-1,2-[triethoxysilyl] Ethane Films on Aluminum Alloy.” Electrochim. Acta., 51 3944–3949. https://doi.org/10.1016/j.electacta.2005.11.008 (2006)

    Article  CAS  Google Scholar 

  38. Liu, YH, Jin, XH, Hu, JM, “Electrodeposited Silica Films Post-treated with Organosilane Coupling Agent as the Pretreatment Layers of Organic Coating System.” Corros. Sci., 106 127–136. https://doi.org/10.1016/j.corsci.2016.01.032 (2016)

    Article  CAS  Google Scholar 

  39. Mrad, M, Dhouibi, L, Montemor, MF, “Elaboration of γ-Glycidoxypropyltrimethoxysilane Coating on AA2024-T3 Aluminum Alloy: Influence of Synthesis Route on Physicochemical and Anticorrosion Properties.” Prog. Org. Coat., 121 1–12. https://doi.org/10.1016/j.porgcoat.2018.04.005 (2018)

    Article  Google Scholar 

  40. Córdoba, LC, Montemor, MF, Coradin, T, “Silane/TiO2 Coating to Control the Corrosion Rate of Magnesium Alloys in Simulated Body Fluid.” Corros. Sci., 104 152–161. https://doi.org/10.1016/j.corsci.2015.12.006 (2016)

    Article  CAS  Google Scholar 

  41. Tang, YJ, Tang, C, Hu, D, Gui, YG, “Effect of Aminosilane Coupling Agents with Different Chain Lengths on Thermo-Mechanical Properties of Cross-Linked Epoxy Resin.” Nanomaterials, 8 951–963. https://doi.org/10.3390/nano8110951 (2018)

    Article  CAS  Google Scholar 

  42. Pinc, W, Maddela, S, O’Keefe, M, Fahrenholtz, W, “Formation of Subsurface Crevices in Aluminum Alloy 2024-T3 During Deposition of Cerium-Based Conversion Coatings.” Surf. Coat. Technol., 204 4095–4100. https://doi.org/10.1016/j.surfcoat.2010.05.039 (2010)

    Article  CAS  Google Scholar 

  43. Zheng, J, Zhang, X, Cao, J, et al. “Behavior of Epoxy Resin Filled with Nano-SiO2 Treated with a Eugenol Epoxy Silane.” J. Appl. Polym. Sci., 138 50138–50148. https://doi.org/10.1002/app.50138 (2021)

    Article  CAS  Google Scholar 

  44. de Frutos, A, Arenas, MA, Liu, Y, Skeldon, P, et al. “Influence of Pre-treatments in Cerium Conversion Treatment of AA2024-T3 and 7075–T6 Alloys.” Surf. Coat. Technol., 202 3797–3807. https://doi.org/10.1016/j.surfcoat.2008.01.027 (2008)

    Article  CAS  Google Scholar 

  45. Xiao, W, Man, RL, Miao, C, Peng, TL, “Study on Corrosion Resistance of the BTESPT Silane Cooperating with Rare Earth Cerium on the Surface of Aluminum-Tube.” J. Rare Earths, 28 117–122. https://doi.org/10.1016/S1002-0721(09)60063-6 (2010)

    Article  CAS  Google Scholar 

  46. Li, CC, Lai, TY, Fang, TH, “Corrosion Resistant Coatings Based on Zinc Nanoparticles, Epoxy and Silicone Resins.” J. Nanosci. Nanotechnol., 20 6389–6395. https://doi.org/10.1166/jnn.2020.18709 (2020)

    Article  CAS  Google Scholar 

  47. Sowntharya, L, Gundakaram, RC, Soma Raju, KRC, Subasri, R, “Effect of Addition of Surface Modified Nanosilica into Silica-Zirconia Hybrid Sol–Gel Matrix.” Ceram. Int., 39 4245–4252. https://doi.org/10.1016/j.ceramint.2012.10.276 (2013)

    Article  CAS  Google Scholar 

  48. Wang, J, Wu, LK, Zhou, JH, Hu, JM, et al. “Construction of a Novel Painting System Using Electrodeposited SiO2 Film as the Pretreatment Layer.” Corros. Sci., 68 57–65. https://doi.org/10.1016/j.corsci.2012.10.033 (2013)

    Article  CAS  Google Scholar 

  49. Zand, RZ, Verbeken, K, Flexer, V, Adriaens, A, “Effects of Ceria Nanoparticle Concentrations on the Morphology and Corrosion Resistance of Ceriumesilane Hybrid Coatings on Electrogalvanized Steel Substrates.” Mater. Chem. Phys., 145 450–460. https://doi.org/10.1016/j.matchemphys.2014.02.035 (2014)

    Article  CAS  Google Scholar 

  50. Chen, CD, Dong, SG, Hou, RQ, Hu, J, et al. “Insight into the Anti-Corrosion Performance of Electrodeposited Silane/Nano-CeO2 Film on Carbon Steel.” Surf. Coat. Technol., 326 183–191. https://doi.org/10.1016/j.surfcoat.2017.06.031 (2017)

    Article  CAS  Google Scholar 

  51. Cui, LY, Qin, PH, Huang, XL, Yin, ZZ, et al. “Electrodeposition of TiO2 Layer-by-Layer Assembled Composite Coating and Silane Treatment on Mg Alloy for Corrosion Resistance.” Surf. Coat. Technol., 324 560–568. https://doi.org/10.1016/j.surfcoat.2017.06.015 (2017)

    Article  CAS  Google Scholar 

  52. Naguib, HM, Ahmed, MA, Abo-Shanab, ZL, “Studying the Loading Impact of Silane Grafted Fe2O3 Nanoparticles on Mechanical Characteristics of Epoxy Matrix.” Egypt. J. Pet., 28 27–34. https://doi.org/10.1016/j.ejpe.2018.10.001 (2019)

    Article  Google Scholar 

  53. Brusciotti, F, Batan, A, De Graeve, I, Wenkin, M, et al. “Characterization of Thin Water-Based Silane Pre-treatments on Aluminium with the Incorporation of Nano-dispersed CeO2 Particles.” Surf. Coat. Technol., 205 603–613. https://doi.org/10.1016/j.surfcoat.2010.07.052 (2010)

    Article  CAS  Google Scholar 

  54. Alibakhshi, E, Akbarian, M, Ramezanzadeh, M, Ramezanzadeh, B, et al. “Evaluation of the Corrosion Protection Performance of Mild Steel Coated with Hybrid Sol-Gel Silane Coating in 3.5 wt% NaCl Solution.” Prog. Org. Coat., 123 190–200. https://doi.org/10.1016/j.porgcoat.2018.07.008 (2018)

    Article  CAS  Google Scholar 

  55. Koh, SE, Delley, B, Medvedeva, JE, et al. “Quantum Chemical Analysis of Electronic Structure and n- and p-type Charge Transport in Perfluoroarene-Modified Oligothiophene Semiconductors.” J. Phys. Chem. B., 110 24361–24370. https://doi.org/10.1021/jp064840x (2006)

    Article  CAS  Google Scholar 

  56. Delley, B, “Time Dependent Density Functional Theory with DMol3.” J. Phys. Condens. Mat., 22 384208–384213. https://doi.org/10.1088/0953-8984/22/38/384208 (2010)

    Article  CAS  Google Scholar 

  57. Yang, LX, Cao, XL, Wu, YT, et al. “Improvement of Corrosion Resistance and Mechanism Analysis for Self-assembled Vinyltriethoxysilane (VS) Films on Low Carbon Steel Using a Novel Chemical Etching Method.” Corros. Sci., 177 109002–109015. https://doi.org/10.1016/j.corsci.2020.109002 (2020)

    Article  CAS  Google Scholar 

  58. Alibakhshi, E, Ghasemi, E, Mahdavian, M, “The Influence of Surface Modification of Lithium Zinc Phosphate Pigment on Corrosion Inhibition of Mild Steel and Adhesion Strength of Epoxy Coating.” J. Sol-Gel Sci. Technol., 72 359–368. https://doi.org/10.1007/s10971-014-3441-2 (2014)

    Article  CAS  Google Scholar 

  59. Rostami, M, Mohseni, M, “Investigating the Effect of pH on the Surface Chemistry of an Amino Silane Treated Nano Silica.” Pigm. Resin Technol., 40 363–373. https://doi.org/10.1108/03699421111180509 (2011)

    Article  CAS  Google Scholar 

  60. Palanivel, V, Zhu, DQ, Van Ooij, WJ, “Nanoparticle-Filled Silane Films as Chromate Replacements for Aluminum Alloys.” Prog. Org. Coat., 47 384–392. https://doi.org/10.1016/j.porgcoat.2003.08.015 (2003)

    Article  CAS  Google Scholar 

  61. Zhu, DQ, Van Ooij, WJ, “Structural Characterization of Bis-[triethoxysilylpropyl]tetrasulfide and Bis-[trimethoxysilylpropyl]amine Silanes by Fourier-transform Infrared Spectroscopy and Electrochemical Impedance Spectroscopy.” J. Adhes. Sci. Technol., 16 1235–1260. https://doi.org/10.1163/156856102320256873 (2002)

    Article  CAS  Google Scholar 

  62. Ghanbari, A, Attar, MM, “A Study on the Anticorrosion Performance of Epoxy Nanocomposite Coatings Containing Epoxy-Silane Treated Nano-Silica on Mild Steel Substrate.” J. Ind. Eng. Chem., 23 145–153. https://doi.org/10.1016/j.jiec.2014.08.008 (2015)

    Article  CAS  Google Scholar 

  63. Bryuzgin, EV, Klimov, VV, Repin, SA, Navrotskiy, AV, et al. “Aluminum Surface Modification with Fluoroalkyl Methacrylate-Based Copolymers to Attain Superhydrophobic Properties.” Appl. Surf. Sci., 419 454–459. https://doi.org/10.1016/j.apsusc.2017.04.222 (2017)

    Article  CAS  Google Scholar 

  64. Yang, LX, Zhang, YX, Lei, XL, Liu, MX, “Effect of Solution Concentration on the Structures and Corrosion Inhibition Behavior of γ-APS Films Fabricated on Surface of Low Carbon Steel.” J. Wuhan Univ. Technol., 28 224–230. https://doi.org/10.1007/s11595-013-0669-6 (2013)

    Article  CAS  Google Scholar 

  65. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 988–994. https://doi.org/10.1021/ie50320a024 (1936)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of China (Grant No. 41931295), Engineering Research Center of Nano-Geo Materials of Ministry of Education and China University of Geosciences (Grant No. NGM2018KF015 and NGM2020KF011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixia Yang or Jun-e Qu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xiao, Y., Chen, S. et al. Influence of nano-silica doping on the growth behavior and corrosion resistance of γ-APS silane films fabricated by electrochemical-assisted deposition. J Coat Technol Res 20, 333–346 (2023). https://doi.org/10.1007/s11998-022-00674-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00674-2

Keywords

Navigation