Skip to main content
Log in

Styrene and BPO poly (urea-melamine-formaldehyde) microcapsules prepared via in situ polymerization to promote the self-healing properties of epoxy composites

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Styrene has the characteristics of low viscosity, low shrinkage, and excellent adhesion to a variety of polymer materials and is a good candidate for healing agents. In this work, styrene and benzoyl peroxide (BPO) are coated, respectively, by in situ polymerization using poly(urea-melamine-formaldehyde) as shell materials to prepare two microcapsules for self-healing materials. IR, SEM, TGA, and DTA characterize the morphology, structure, composition, and thermal properties of the microcapsules. The optimized reaction parameters of the BPO microcapsule are as follows: the combination ratio of emulsifier DBS and GA is 2:1 (0.2% + 0.1%). The pH value of in situ polymerization is 3, the stirring speed is 700 r/min, and the core-shell ratio is 1:1. The content of the two microcapsule cores can reach more than 80%. In addition, the fracture toughness and healing efficiency of the double-microcapsules epoxy self-healing composites containing 2.5, 5, 7.5, 10, and 12.5 wt% of styrene and BPO microcapsules are measured using a tapered double cantilever beam (TDCB) specimen. The weight ratio of the two microcapsules in all self-healing epoxy composites was 1:1. The results show that the healing efficiency reached 37.3% when the content of the two microcapsules was 12.5 wt% at room temperature after 24 h healing. DTA results also indicate that this system has good potential for spontaneous self-healing performance at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. White, SR, et al. “Autonomic Healing of Polymer Composites.” Nature, 409 (2) 794–797 (2001)

    Article  CAS  Google Scholar 

  2. Blaiszik, BJ, et al. “Self-Healing Polymers and Composites.” Ann. Rev. Mater. Res., 40 (2) 179–211 (2010)

    Article  CAS  Google Scholar 

  3. Yuan, YC, Yin, T, Rong, MZ, Zhang, MQ, “Self Healing in Polymers and Polymer Composites Concepts, Realization and Outlook: A Review.” Exp. Polym. Lett., 2 (4) 238–250 (2008)

    Article  CAS  Google Scholar 

  4. Wei, H, et al. “Advanced Micro/Nanocapsules for Self-Healing Smart Anticorrosion Coatings.” J. Mater. Chem. A, 3 (2) 469–480 (2015)

    Article  CAS  Google Scholar 

  5. Poornima, VP, Mariam, AS, Al-Maadeed, A, “TiO2 Nanotubes and Mesoporous Silica as Containers in Self-Healing Epoxy Coatings.” Sci. Rep., 6 (1) 38812 (2016)

    Article  Google Scholar 

  6. Gamstedt, EK, Talrega, R, “Fatigue Damage Mechanisms in Unidirectional Carbon-Fibre-Reinforced Plastics.” J. Mater. Sci., 34 (11) 2535–2546 (1999)

    Article  CAS  Google Scholar 

  7. Dong, YW, Sam, M, David, S, “Self-Healing Polymeric Materials: A Review of Recent Developments Progress.” Prog. Polym. Sci., 33 479–522 (2008)

    Article  Google Scholar 

  8. Dry, CM, “Self-Repairing of Composites.” Proc. SPIE - The Int. Soc. Opt. Eng., 5055 376–379 (2003)

    CAS  Google Scholar 

  9. Brown, EN, White, SR, Sottos, NR, “Retardation and Repair of Fatigue Cracks in a Microcapsule Toughened Epoxy Composite – Part I: Manual Infiltration.” Compos. Sci. Technol., 65 (7) 2466–2473 (2005)

    Article  CAS  Google Scholar 

  10. Jud, K, Kausch, HH, Williams, JG, “Fracture Mechanics Studies of Crack Healing and Welding of Polymers.” J. Mater. Sci., 16 (1) 204–210 (1981)

    Article  CAS  Google Scholar 

  11. Park, JH, Braun, PV, “Coaxial Electrospinning of Self-Healing Coatings.” Adv. Mater., 22 (4) 496–499 (2010)

    Article  CAS  Google Scholar 

  12. Whelehan, M, Marison, IW, “Microencapsulation Using Vibrating Technology.” J. Microencapsul., 28 (8) 669–688 (2011)

    Article  CAS  Google Scholar 

  13. Rabanel, JM, Banquy, X, Zouaoui, H, Mokhtar, M, Hildgen, P, “Progress Technology in Microencapsulation Methods for Cell Therapy.” Biotechnol. Progr., 25 (4) 946–963 (2009)

    Article  CAS  Google Scholar 

  14. Dubey, R, Shami, TC, Rao, K, “Microencapsulation Technology and Applications.” Def. Sci. J., 59 (1) 82–95 (2009)

    CAS  Google Scholar 

  15. Brown, EN, Kessl, MR, White, SR, “In Situ Poly(urea-formaldehyde) Microencapsulation of Dicyclopentadiene.” J. Microencapsul., 20 (6) 719–730 (2003)

    Article  CAS  Google Scholar 

  16. Lang, S, Zhou, Q, “Synthesis and Characterization of Poly(urea-formaldehyde) Microcapsules Containing Linseed Oil for Self-Healing Coating Development.” Prog. Org. Coat., 105 99–110 (2017)

    Article  CAS  Google Scholar 

  17. Wang, HR, Zhou, QX, “Evaluation and Failure Analysis of Linseed Oil Encapsulated Self-Healing Anticorrosive Coating.” Prog. Org. Coat., 118 108–115 (2018)

    Article  CAS  Google Scholar 

  18. Ebrahiminiya, A, Khorram, M, Hassanajili, S, Javidi, M, “Modeling and Optimization of the Parameters Affecting the In-Situ Microencapsulation Process for Producing Epoxy-Based Self-Healing Anti-Corrosion Coatings.” Particuology, 36 59–69 (2018)

    Article  CAS  Google Scholar 

  19. Tong, XM, Zhang, T, Yang, MZ, Zhang, Q, “Preparation and Characterization of Novel Melamine Modified Poly(urea–formaldehyde) Self-Repairing Microcapsules.” Coll. Surf. A Physicochem. Eng. Aspects, 371 (1–3) 91–97 (2010)

    Article  CAS  Google Scholar 

  20. Li, Y, Liang, GZ, Xie, JQ, Guo, J, Li, L, “Thermal Stability of Microencapsulated Epoxy Resins with Poly(urea–formaldehyde).” Polym. Degr. Stab., 91 (10) 2300–2306 (2006)

    Article  Google Scholar 

  21. Hu, J, Xia, Z, Situ, Y, Chen, H, “Mechanical Properties of Microcapsules Encapsulating DCPD with MF.” Ciesc J., 61 2738 (2010)

    CAS  Google Scholar 

  22. Yuan, L, Liang, GZ, Xie, JQ, Lan, L, Guo, J, “The Permeability and Stability of Microencapsulated Epoxy Resins.” J. Mater. Sci., 42 4390–4397 (2007)

    Article  CAS  Google Scholar 

  23. Asadi, AK, Ebrahimi, M, Mohseni, M, “Preparation and Characterisation of Melamine-Urea-Formaldehyde Microcapsules Containing Linseed Oil in the Presence of Polyvinylpyrrolidone as Emulsifier.” Pigm. Resin Technol., 46 (4) 318–326 (2017)

    Article  Google Scholar 

  24. Guo, WJ, Zheng, BZ, Yuan, QM, “Preparation of Poly(urea Melamine and Formaldehyde Composite Resin) Walled Microcapsules Containing Styrene.” J. Funct. Mater., 43 (7) 892–895 (2012)

    CAS  Google Scholar 

  25. Brown, EN, White, N, “Fracture Testing of a Self-Healing Polymer Composite.” Exp. Mech., 42 372–379 (2002)

    Article  CAS  Google Scholar 

  26. Guadagno, L, et al. “Self-Healing Epoxy Nanocomposites via Reversible Hydrogen Bonding.” Compos. Part B: Eng., 157 1–13 (2019)

    Article  CAS  Google Scholar 

  27. Ahangaran, F, Hayaty, M, Navarchian, AH, Pei, Y, Picchioni, F, “Development of Self-Healing Epoxy Composites via Incorporation of Microencapsulated Epoxy and Mercaptan in Poly(methyl methacrylate) Shell.” Polym. Test., 73 395–403 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors disclosed receipt of the following financial support for the research, authorship, and publication of this article: This work was supported by the National Natural Science Foundation of China (No.21502166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingmei Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, H., Xu, Q. et al. Styrene and BPO poly (urea-melamine-formaldehyde) microcapsules prepared via in situ polymerization to promote the self-healing properties of epoxy composites. J Coat Technol Res 19, 1837–1850 (2022). https://doi.org/10.1007/s11998-022-00655-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00655-5

Keywords

Navigation