Skip to main content

Advertisement

Log in

Inflammatory Processes Affecting Bone Health and Repair

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing.

Recent Findings

Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells.

Summary

Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khosla S, Cauley JA, Compston J, Kiel DP, Rosen C, Saag KG, et al. Addressing the crisis in the treatment of osteoporosis: a path forward. J Bone Miner Res. 2017;32(3):424–30.

    Article  PubMed  Google Scholar 

  3. Roux C, Briot K. The crisis of inadequate treatment in osteoporosis. Lancet Rheumatol. 2020;2(2):e110–9.

    Article  Google Scholar 

  4. Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11(3):234–50.

    Article  CAS  PubMed  Google Scholar 

  5. Brylka LJ, Schinke T. Chemokines in physiological and pathological bone remodeling. Front Immunol. 2019;10:2182.

  6. Hardy R, Cooper MS. Bone loss in inflammatory disorders. Journal of Endocrinology. 2009;201(3):309–20.

    Article  CAS  PubMed  Google Scholar 

  7. Pavanelli ALR, de Menezes BS, Pereira EBB, de Souza Morais FA, Cirelli JA, de Molon RS. Pharmacological therapies for the management of inflammatory bone resorption in periodontal disease: a review of preclinical studies. Biomed Res Int. 2022;2022:5832009.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li G, Li Z, Li L, Liu S, Wu P, Zhou M, et al. Stem cell-niche engineering via multifunctional hydrogel potentiates stem cell therapies for inflammatory bone loss. Adv Funct Mater. 2023;33(2):2209466.

    Article  CAS  Google Scholar 

  9. Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS. The effect of inflammation on bone. Front Physiol. 2021;11:511799.

  10. Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020;11:386.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Batoon L, Millard SM, Raggatt LJ, Pettit AR. Osteomacs and bone regeneration. Curr Osteoporos Rep. 2017;15(4):385–95.

    Article  PubMed  Google Scholar 

  12. Walters G, Pountos I, Giannoudis PV. The cytokines and micro-environment of fracture haematoma: current evidence. J Tissue Eng Regen Med. 2018;12(3):e1662–77.

    Article  CAS  PubMed  Google Scholar 

  13. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 2007;41(6):928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerstenfeld L, Cho T-J, Kon T, Aizawa T, Tsay A, Fitch J, et al. Impaired fracture healing in the absence of TNF-α signaling: the role of TNF-α in endochondral cartilage resorption. J Bone Mineral Res. 2003;18(9):1584–92.

    Article  CAS  Google Scholar 

  15. Al Farii H, Farahdel L, Frazer A, Salimi A, Bernstein M. The effect of NSAIDs on postfracture bone healing: a meta-analysis of randomized controlled trials. OTA Int. 2021;4(2):e092.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wheatley BM, Nappo KE, Christensen DL, Holman AM, Brooks DI, Potter BK. Effect of NSAIDs on bone healing rates: a meta-analysis. JAAOS J Amer Acad Orthop Surg. 2019;27(7):e330–6.

  17. Lukač N, Katavić V, Novak S, Šućur A, Filipović M, Kalajzić I, et al. What do we know about bone morphogenetic proteins and osteochondroprogenitors in inflammatory conditions? Bone. 2020;137:115403.

    Article  PubMed  Google Scholar 

  18. Perrin S, Colnot C. Periosteal skeletal stem and progenitor cells in bone regeneration. Curr Osteoporos Rep. 2022;20(5):334–43.

    Article  PubMed  Google Scholar 

  19. Kushioka J, Chow SK, Toya M, Tsubosaka M, Shen H, Gao Q, et al. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen. 2023;43(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021;597(7875):256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferretti C, Lucarini G, Andreoni C, Salvolini E, Bianchi N, Vozzi G, et al. Human periosteal derived stem cell potential: the impact of age. Stem Cell Rev Rep. 2015;11(3):487–500.

    Article  CAS  PubMed  Google Scholar 

  22. Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol. 2022;123:4–13.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong J, O’Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012;27(3):499–505.

    Article  CAS  PubMed  Google Scholar 

  24. Kendler DL, Cosman F, Stad RK, Ferrari S. Denosumab in the treatment of osteoporosis: 10 years later: a narrative review. Adv Ther. 2022;39(1):58–74.

    Article  PubMed  Google Scholar 

  25. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020;40(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Investig. 2017;127(6):2030–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Walsh MC, Takegahara N, Kim H, Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol. 2018;14(3):146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    Article  CAS  PubMed  Google Scholar 

  29. Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res. 2023;11(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Madel M-B, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front Immunol. 2019;10:1408.

  31. Lapérine O, Blin-Wakkach C, Guicheux J, Beck-Cormier S, Lesclous P. Dendritic-cell-derived osteoclasts: a new game changer in bone-resorption-associated diseases. Drug Discov Today. 2016;21(9):1345–54.

    Article  PubMed  Google Scholar 

  32. Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S, et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol. 2019;20(12):1631–43.

    Article  CAS  PubMed  Google Scholar 

  33. Agemura T, Hasegawa T, Yari S, Kikuta J, Ishii M. Arthritis-associated osteoclastogenic macrophage, AtoM, as a key player in pathological bone erosion. Inflamm Regen. 2022;42(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen W-R, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front Immunol. 2019;10:2925.

  35. Luo G, Li F, Li X, Wang ZG, Zhang B. TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway. Mol Med Rep. 2018;17(5):6605–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ. TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology. 2002;143(3):1108–18.

    Article  CAS  PubMed  Google Scholar 

  38. Xia Y, Inoue K, Du Y, Baker SJ, Reddy EP, Greenblatt MB, et al. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat Commun. 2022;13(1):3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JH, Jin HM, Kim K, Song I, Youn BU, Matsuo K, et al. The mechanism of osteoclast differentiation induced by IL-11. J Immunol. 2009;183(3):1862–70.

    Article  CAS  PubMed  Google Scholar 

  40. Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16.

    Article  CAS  PubMed  Google Scholar 

  41. Shiratori T, Kyumoto-Nakamura Y, Kukita A, Uehara N, Zhang J, Koda K, et al. IL-1β Induces pathologically activated osteoclasts bearing extremely high levels of resorbing activity: a possible pathological subpopulation of osteoclasts, accompanied by suppressed expression of kindlin-3 and talin-1. J Immunol. 2018;200(1):218–28.

    Article  CAS  PubMed  Google Scholar 

  42. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Investig. 2005;115(2):282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP. Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum. 2006;54(1):158–68.

    Article  CAS  PubMed  Google Scholar 

  44. Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol. 2019;9:788.

  45. Kim J-H, Sim JH, Lee S, Seol MA, Ye S-K, Shin HM, et al. Interleukin-7 induces osteoclast formation via STAT5, independent of receptor activator of NF-kappaB ligand. Front Immunol. 2017;8:1376.

  46. Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R. Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood. 2000;96(5):1873–8.

    Article  CAS  PubMed  Google Scholar 

  47. Toraldo G, Roggia C, Qian W-P, Pacifici R, Weitzmann MN. IL-7 induces bone loss <i>in vivo</i> by induction of receptor activator of nuclear factor & #x3ba;B ligand and tumor necrosis factor & #x3b1; from T cells. Proc National Acad Sci. 2003;100(1):125–30.

    Article  CAS  Google Scholar 

  48. Lee Y. The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep. 2013;46(10):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song L, Tan J, Wang Z, Ding P, Tang Q, Xia M, et al. Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep. 2019;19(6):4743–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Adamopoulos IE, Chao C-c, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res Ther. 2010;12(1): R29.

  51. Tang H, Zhu S, Chen K, Yuan S, Hu J, Wang H. IL-17A regulates autophagy and promotes osteoclast differentiation through the ERK/mTOR/Beclin1 pathway. PLOS ONE. 2023;18(2):e0281845.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191(2):275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mun SH, Jastrzebski S, Kalinowski J, Zeng S, Oh B, Bae S, et al. Sexual dimorphism in differentiating osteoclast precursors demonstrates enhanced inflammatory pathway activation in female cells. J Bone Mineral Res. 2021;36(6):1104–16.

    Article  CAS  Google Scholar 

  54. Merrild DMH, Pirapaharan DC, Andreasen CM, Kjærsgaard-Andersen P, Møller AMJ, Ding M, et al. Pit- and trench-forming osteoclasts: a distinction that matters. Bone Res. 2015;3(1):15032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borggaard XG, Pirapaharan DC, Delaissé JM, Søe K. Osteoclasts’ ability to generate trenches rather than pits depends on high levels of active cathepsin K and efficient clearance of resorption products. Int J Mol Sci. 2020;21(16):5924.

  56. Delaisse J-M, Søe K, Andersen TL, Rojek AM, Marcussen N. The mechanism switching the osteoclast from short to long duration bone resorption. Front Cell Dev Biol. 2021;9:644503.

  57. Vanderoost J, Søe K, Merrild DM, Delaissé JM, van Lenthe GH. Glucocorticoid-induced changes in the geometry of osteoclast resorption cavities affect trabecular bone stiffness. Calcif Tissue Int. 2013;92(3):240–50.

    Article  CAS  PubMed  Google Scholar 

  58. Søe K, Delaissé JM. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. J Bone Miner Res. 2010;25(10):2184–92.

    Article  PubMed  Google Scholar 

  59. Harrison KD, Hiebert BD, Panahifar A, Andronowski JM, Ashique AM, King GA, et al. Cortical bone porosity in rabbit models of osteoporosis. J Bone Miner Res. 2020;35(11):2211–28.

    Article  CAS  PubMed  Google Scholar 

  60. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc National Acad Sci. 1998;95(23):13453–8.

    Article  CAS  Google Scholar 

  61. Li J, Sarosi I, Yan X-Q, Morony S, Capparelli C, Tan H-L, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc National Acad Sci. 2000;97(4):1566–71.

    Article  CAS  Google Scholar 

  62. •• Meirow Y, Jovanovic M, Zur Y, Habib J, Colombo DF, Twaik N, et al. Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res. 2022;10(1):36. Defined subsets of inflammatory osteoclast precursors that are induced during chronic inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Madel M-B, Ibáñez L, Ciucci T, Halper J, Rouleau M, Boutin A, et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. eLife. 2020;9:e54493. Identified a subset of osteoclasts that are potently resorptive in response to inflammation.

  64. Ibáñez L, Abou-Ezzi G, Ciucci T, Amiot V, Belaïd N, Obino D, et al. Inflammatory osteoclasts prime TNFα-producing CD4(+) T cells and express CX(3) CR1. J Bone Miner Res. 2016;31(10):1899–908.

    Article  PubMed  Google Scholar 

  65. • Madel M-B, Halper J, Ibáñez L, Claire L, Rouleau M, Boutin A, et al. Specific targeting of inflammatory osteoclastogenesis by the probiotic yeast S. boulardii CNCM I-745 reduces bone loss in osteoporosis. eLife. 2023;12:e82037. Demonstrated that inflammatory osteoclasts can be specifically inhibited in vivo.

  66. Marriott I, Gray DL, Tranguch SL, Fowler VG Jr, Stryjewski M, Scott Levin L, et al. Osteoblasts express the inflammatory cytokine interleukin-6 in a murine model of Staphylococcus aureus osteomyelitis and infected human bone tissue. Am J Pathol. 2004;164(4):1399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dapunt U, Giese T, Stegmaier S, Moghaddam A, Hänsch GM. The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC0 Musculoskelet Disord. 2016;17(1):243.

    Article  Google Scholar 

  68. Greenfield EM, Gornik SA, Horowitz MC, Donahue HJ, Shaw SM. Regulation of cytokine expression in osteoblasts by parathyroid hormone: rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. J Bone Miner Res. 1993;8(10):1163–71.

    Article  CAS  PubMed  Google Scholar 

  69. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 2018;18(1):e8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-α*. Endocrinology. 2000;141(11):3956–64.

    Article  CAS  PubMed  Google Scholar 

  71. Xin W, Wang X, Zhang W, Zhu H, Dong R, Zhang J. Tumor necrosis factor-α inhibits bone marrow stem cell differentiation into osteoblasts by downregulating microRNA-34a expression. Ann Clin Lab Sci. 2019;49(3):324–9.

    CAS  PubMed  Google Scholar 

  72. Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C, et al. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis. Bone. 2018;117:161–70.

    Article  CAS  PubMed  Google Scholar 

  73. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006;281(7):4326–33.

    Article  CAS  PubMed  Google Scholar 

  74. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–63.

    Article  CAS  PubMed  Google Scholar 

  75. Hengartner NE, Fiedler J, Ignatius A, Brenner RE. IL-1β inhibits human osteoblast migration. Mol Med. 2013;19(1):36–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Girasole G, Passeri G, Jilka RL, Manolagas SC. Interleukin-11: a new cytokine critical for osteoclast development. J Clin Invest. 1994;93(4):1516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sims NA, Jenkins BJ, Nakamura A, Quinn JM, Li R, Gillespie MT, et al. Interleukin-11 receptor signaling is required for normal bone remodeling. J Bone Miner Res. 2005;20(7):1093–102.

    Article  CAS  PubMed  Google Scholar 

  78. Dong B, Hiasa M, Higa Y, Ohnishi Y, Endo I, Kondo T, et al. Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis. Nat Commun. 2022;13(1):7194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kido S, Kuriwaka-Kido R, Imamura T, Ito Y, Inoue D, Matsumoto T. Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation. Bone. 2009;45(6):1125–32.

    Article  CAS  PubMed  Google Scholar 

  80. Dresner-Pollak R, Gelb N, Rachmilewitz D, Karmeli F, Weinreb M. Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Gastroenterology. 2004;127(3):792–801.

    Article  CAS  PubMed  Google Scholar 

  81. Chen E, Liu G, Zhou X, Zhang W, Wang C, Hu D, et al. Concentration-dependent, dual roles of IL-10 in the osteogenesis of human BMSCs via P38/MAPK and NF-κB signaling pathways. Faseb J. 2018;32(9):4917–29.

    Article  CAS  PubMed  Google Scholar 

  82. Xiong Y, Yan C, Chen L, Endo Y, Sun Y, Zhou W, et al. IL-10 induces MC3T3-E1 cells differentiation towards osteoblastic fate in murine model. J Cell Mol Med. 2020;24(1):1076–86.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Q, Chen B, Yan F, Guo J, Zhu X, Ma S, et al. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. Biomed Res Int. 2014;2014:284836.

    PubMed  PubMed Central  Google Scholar 

  84. Tang M, Tian L, Luo G, Yu X. Interferon-gamma-mediated osteoimmunology. Front Immunol. 2018;9:1508.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Duque G, Huang DC, Dion N, Macoritto M, Rivas D, Li W, et al. Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res. 2011;26(7):1472–83.

    Article  CAS  PubMed  Google Scholar 

  86. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117(1):122–32.

    Article  CAS  PubMed  Google Scholar 

  87. Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60.

    Article  CAS  Google Scholar 

  88. Taguchi Y, Yamamoto M, Yamate T, Lin SC, Mocharla H, DeTogni P, et al. Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians. 1998;110(6):559–74.

    CAS  PubMed  Google Scholar 

  89. McGregor NE, Murat M, Elango J, Poulton IJ, Walker EC, Crimeen-Irwin B, et al. IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem. 2019;294(19):7850–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Metzger CE, Narayanan SA. The role of osteocytes in inflammatory bone loss. Front Endocrinol. 2019;10:285.

  91. Choi JUA, Kijas AW, Lauko J, Rowan AE. The mechanosensory role of osteocytes and implications for bone health and disease states. Front Cell Dev Biol. 2022;9:770143.

  92. Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone. Research. 2020;8(1):23.

    CAS  Google Scholar 

  93. Delgado-Calle J, Bellido T. The osteocyte as a signaling cell. Physiol Rev. 2022;102(1):379–410.

    Article  CAS  PubMed  Google Scholar 

  94. Fowler TW, Acevedo C, Mazur CM, Hall-Glenn F, Fields AJ, Bale HA, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017;7(1):44618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pathak JL, Bakker AD, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J, et al. Systemic inflammation affects human osteocyte-specific protein and cytokine expression. Calcif Tissue Int. 2016;98(6):596–608.

    Article  CAS  PubMed  Google Scholar 

  96. Wu Q, Zhou X, Huang D, Ji Y, Kang F. IL-6 Enhances osteocyte-mediated osteoclastogenesis by promoting jak2 and rankl activity in vitro. Cell Physiol Biochem. 2017;41(4):1360–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21(14):5169.

  98. Graves DT, Alshabab A, Albiero ML, Mattos M, Corrêa JD, Chen S, et al. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol. 2018;45(3):285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, et al. The roles of osteocytes in alveolar bone destruction in periodontitis. J Trans Med. 2020;18(1):479.

    Article  CAS  Google Scholar 

  100. Metzger CE, Narayanan A, Zawieja DC, Bloomfield SA. Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover. J Bone Miner Res. 2017;32(4):802–13.

    Article  CAS  PubMed  Google Scholar 

  101. Fonseca Ó, Gomes MS, Amorim MA, Gomes AC. Cystic fibrosis bone disease: the interplay between CFTR dysfunction and chronic inflammation. Biomolecules. 2023;13(3):425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Briot K, Roux C. Inflammation, bone loss and fracture risk in spondyloarthritis. RMD Open. 2015;1(1):e000052.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang L, Sun Y. Muscle-bone crosstalk in chronic obstructive pulmonary disease. Front Endocrinol (Lausanne). 2021;12:724911.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rella V, Rotondo C, Altomare A, Cantatore FP, Corrado A. Bone involvement in systemic lupus erythematosus. Int J Mol Sci. 2022;23(10):5804.

  105. Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J, et al. Chronic skin inflammation leads to bone loss by IL-17&#x2013;mediated inhibition of Wnt signaling in osteoblasts. Sci Trans Med. 2016;8(330):330ra37-ra37.

  106. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, et al. Increased cortical porosity, reduced cortical thickness, and reduced trabecular and cortical microhardness of the superolateral femoral neck confer the increased hip fracture risk in individuals with type 2 diabetes. Calcif Tissue Int. 2022;111(5):457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Villette CC, Zhang J, Phillips ATM. Influence of femoral external shape on internal architecture and fracture risk. Biomech Model Mechanobiol. 2020;19(4):1251–61.

    Article  CAS  PubMed  Google Scholar 

  109. Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E, et al. Bone microarchitecture phenotypes identified in older adults are associated with different levels of osteoporotic fracture risk. J Bone Miner Res. 2022;37(3):428–39.

    Article  CAS  PubMed  Google Scholar 

  110. Shevroja E, Cafarelli FP, Guglielmi G, Hans D. DXA parameters, Trabecular Bone Score (TBS) and bone mineral density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine. 2021;74(1):20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Florez H, Hernandez-Rodriguez J, Muxi A, Carrasco JL, Prieto-Gonzalez S, Cid MC, et al. Trabecular bone score improves fracture risk assessment in glucocorticoid-induced osteoporosis. Rheumatology (Oxford). 2020;59(7):1574–80.

    Article  CAS  PubMed  Google Scholar 

  112. Zuchowski P, Dura M, Jeka D, Waszczak-Jeka M. The applicability of trabecular bone score for osteoporosis diagnosis in ankylosing spondylitis. Rheumatol Int. 2022;42(5):839–46.

    Article  CAS  PubMed  Google Scholar 

  113. Tamaki J, Iki M, Sato Y, Winzenrieth R, Kajita E, Kagamimori S, et al. Does Trabecular Bone Score (TBS) improve the predictive ability of FRAX((R)) for major osteoporotic fractures according to the Japanese Population-based Osteoporosis (JPOS) cohort study? J Bone Miner Metab. 2019;37(1):161–70.

    Article  PubMed  Google Scholar 

  114. Kushioka J, Chow SK-H, Toya M, Tsubosaka M, Shen H, Gao Q, et al. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen. 2023;43(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clark D, Nakamura M, Miclau T, Marcucio R. Effects of Aging on Fracture Healing. Curr Osteoporos Rep. 2017;15(6):601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–9.

    Article  CAS  PubMed  Google Scholar 

  117. Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc National Acad Sci. 2019;116(14):6995–7004.

    Article  CAS  Google Scholar 

  118. Lopez EM, Leclerc K, Ramsukh M, Parente PEL, Patel K, Aranda CJ, et al. Modulating the systemic and local adaptive immune response after fracture improves bone regeneration during aging. Bone. 2022;157:116324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Josephson AM, Leclerc K, Remark LH, Lopeź EM, Leucht P. Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging (Albany NY). 2021;13(10):13421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Piccoli A, Cannata F, Strollo R, Pedone C, Leanza G, Russo F, et al. Sclerostin regulation, microarchitecture, and advanced glycation end-products in the bone of elderly women with type 2 diabetes. J Bone Miner Res. 2020;35(12):2415–22.

    Article  CAS  PubMed  Google Scholar 

  121. Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14–21.

    Article  PubMed  Google Scholar 

  123. Ilesanmi-Oyelere BL, Schollum L, Kuhn-Sherlock B, McConnell M, Mros S, Coad J, et al. Inflammatory markers and bone health in postmenopausal women: a cross-sectional overview. Immun Ageing. 2019;16:15.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Damani JJ, De Souza MJ, Strock NCA, Koltun KJ, Williams NI, Weaver C, et al. Associations between inflammatory mediators and bone outcomes in postmenopausal women: a cross-sectional analysis of baseline data from the Prune Study. J Inflamm Res. 2023;16:639–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Al-Daghri NM, Aziz I, Yakout S, Aljohani NJ, Al-Saleh Y, Amer OE, et al. Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Medicine (Baltimore). 2017;96(4):e5780.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chow SK, Chim YN, Wang JY, Wong RM, Choy VM, Cheung WH. Inflammatory response in postmenopausal osteoporotic fracture healing. Bone Joint Res. 2020;9(7):368–85.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL. Effect of blockade of TNF-alpha and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res. 2007;22(5):724–9.

    Article  CAS  PubMed  Google Scholar 

  128. •• Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, et al. Ovariectomy activates chronic low-grade inflammation mediated by memory t cells, which promotes osteoporosis in mice. J Bone Miner Res. 2020;35(6):1174–87. Described how estrogen depletion induces low-grade inflammation, specifically affecting a subset of memory T-cells, to induce bone loss.

    Article  CAS  PubMed  Google Scholar 

  129. Sakthiswary R, Uma Veshaaliini R, Chin K-Y, Das S, Sirasanagandla SR. Pathomechanisms of bone loss in rheumatoid arthritis. Front Med. 2022;9:962969.

  130. Goldring SR, Gravallese EM. Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res. 2000;2(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  131. Rubin DA. MRI and ultrasound of the hands and wrists in rheumatoid arthritis. I. Imaging findings. Skelet Radiol. 2019;48(5):677–95.

    Article  Google Scholar 

  132. Yong W, Hongbin L, Jing W, Jing Z, Ning T, Lijie B. Associations of changes in serum inflammatory factors, MMP-3, 25(OH)D and intestinal flora with osteoporosis and disease activity in rheumatoid arthritis patients. Clin Lab. 2020;66(12). https://doi.org/10.7754/Clin.Lab.2020.200242.

  133. Wu C-Y, Yang H-Y, Lai J-H. Potential therapeutic targets beyond cytokines and Janus kinases for autoimmune arthritis. Biochemical Pharmacology. 2023;213:115622.

    Article  CAS  PubMed  Google Scholar 

  134. Chedid VG, Kane SV. Bone health in patients with inflammatory bowel diseases. J Clin Densitom. 2020;23(2):182–9.

    Article  PubMed  Google Scholar 

  135. Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, et al. PTH induces bone loss via microbial-dependent expansion of intestinal TNF(+) T cells and Th17 cells. Nat Commun. 2020;11(1):468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu M, Pal S, Paterson CW, Li JY, Tyagi AM, Adams J, et al. Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J Clin Invest. 2021;131(4):e143137.

  137. Chen Y, Wang X, Zhang C, Liu Z, Li C, Ren Z. Gut microbiota and bone diseases: a growing partnership. Front Microbiol. 2022;13:877776.

  138. Ding P, Tan Q, Wei Z, Chen Q, Wang C, Qi L, et al. Toll-like receptor 9 deficiency induces osteoclastic bone loss via gut microbiota-associated systemic chronic inflammation. Bone Res. 2022;10(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res. 2023;11(1):31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C. The correlation between the Th17/Treg cell balance and bone health. Immun Ageing. 2020;17(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol. 2022;12:908859.

  142. Hong S-J, Yang B-E, Yoo D-M, Kim S-J, Choi H-G, Byun S-H. Analysis of the relationship between periodontitis and osteoporosis/fractures: a cross-sectional study. BMC Oral Health. 2021;21(1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  143. •• Fan Y, Lyu P, Bi R, Cui C, Xu R, Rosen CJ, et al. Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling. eLife. 2023;12:e82537. Developed a single-cell atlas of alveolar bone in healthy and inflammatory disease states. Showed that mesenchymal progenitor cells have osteogenic potential in response to acute periodontal inflammation.

  144. Górska R, Gregorek H, Kowalski J, Laskus-Perendyk A, Syczewska M, Madaliński K. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. J Clin Periodontol. 2003;30(12):1046–52.

    Article  PubMed  Google Scholar 

  145. Glowacki AJ, Yoshizawa S, Jhunjhunwala S, Vieira AE, Garlet GP, Sfeir C, et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc National Acad Sci. 2013;110(46):18525–30.

    Article  CAS  Google Scholar 

  146. Yu B, Wang C-Y. Osteoporosis and periodontal diseases – an update on their association and mechanistic links. Periodontol 2000. 2022;89(1):99-113.

  147. •• Li X, Wang H, Yu X, Saha G, Kalafati L, Ioannidis C, et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell. 2022;185(10):1709-27.e18. Demonstrated that systemic inflammation alters progenitor cell epigenetic programming, increasing production of myeloid cells prepared to respond to inflammation. This work shows that inflammatory comorbidities may be a result of impaired innate immune training.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocrine Rev. 2018;39(5):519–48.

    Article  Google Scholar 

  150. Güler-Yüksel M, Hoes JN, Bultink IEM, Lems WF. Glucocorticoids, inflammation and bone. Calcif Tissue Int. 2018;102(5):592–606.

    Article  PubMed  Google Scholar 

  151. Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, et al. 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017;69(8):1521–37.

    Article  PubMed  Google Scholar 

  152. Steverink JG, Oostinga D, van Tol FR, van Rijen MHP, Mackaaij C, Verlinde-Schellekens SAMW, et al. Sensory innervation of human bone: an immunohistochemical study to further understand bone pain. J Pain. 2021;22(11):1385–95.

    Article  PubMed  Google Scholar 

  153. Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther. 2014;16(6):504.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 2022;34(12):1914–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34(8):1393–406.

    Article  PubMed  Google Scholar 

  156. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune cytokines and their receptors in inflammatory pain. Trends in Immunology. 2018;39(3):240–55.

    Article  CAS  PubMed  Google Scholar 

  157. Nencini S, Ringuet M, Kim D-H, Chen Y-J, Greenhill C, Ivanusic JJ. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Molec Pain. 2017;13:1744806917697011.

    Article  CAS  Google Scholar 

  158. Nencini S, Ringuet M, Kim D-H, Greenhill C, Ivanusic JJ. GDNF, neurturin, and artemin activate and sensitize bone afferent neurons and contribute to inflammatory bone pain. J Neurosci. 2018;38(21):4899–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Enomoto M, Mantyh PW, Murrell J, Innes JF, Lascelles BDX. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet Rec. 2019;184(1):23.

    Article  PubMed  Google Scholar 

  160. Noronha NdC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131.

    Article  PubMed  Google Scholar 

  161. Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Sig Transduct Target Ther. 2022;7(1):92.

    Article  Google Scholar 

  162. Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11(1):492.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rao AJ, Nich C, Dhulipala LS, Gibon E, Valladares R, Zwingenberger S, et al. Local effect of IL-4 delivery on polyethylene particle induced osteolysis in the murine calvarium. J Biomed Mater Res A. 2013;101(7):1926–34.

    Article  PubMed  Google Scholar 

  164. Sato T, Pajarinen J, Behn A, Jiang X, Lin TH, Loi F, et al. The effect of local IL-4 delivery or CCL2 blockade on implant fixation and bone structural properties in a mouse model of wear particle induced osteolysis. J Biomed Mater Res A. 2016;104(9):2255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang J, Shi H, Zhang N, Hu L, Jing W, Pan J. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect. Cell Proliferation. 2020;53(10):e12907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao DW, Ren B, Wang HW, Zhang X, Yu MZ, Cheng L, et al. 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis. Bone Joint Res. 2021;10(7):411–24.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, et al. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact Mater. 2021;6(11):4110–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang Y, Feng Z, Liu X, Yang C, Gao R, Liu W, et al. Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways. Regen Biomater. 2022;9:rbac003.

  169. Cheng A, Vantucci CE, Krishnan L, Ruehle MA, Kotanchek T, Wood LB, et al. Early systemic immune biomarkers predict bone regeneration after trauma. Proc Natl Acad Sci USA. 2021;118(8):e2017889118.

  170. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.

    Article  PubMed  Google Scholar 

  172. Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun. 2018;9(1):5435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhu R, Wan H, Yang H, Song M, Chai Y, Yu B. The role of senescence-associated secretory phenotype in bone loss. Front Cell Dev Biol. 2022;10.

  174. Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31(11):1920–9.

    Article  CAS  PubMed  Google Scholar 

  175. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Farr JN, Saul D, Doolittle ML, Kaur J, Rowsey JL, Vos SJ, et al. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J Clin Invest. 2023;133(8):e162519.

  177. •• Aquino-Martinez R, Eckhardt BA, Rowsey JL, Fraser DG, Khosla S, Farr JN, et al. Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. J Periodontol. 2021;92(10):1483–95. Demonstrated that senescent osteocytes exacerbate chronic inflammation and cause alveolar bone destruction in periodontitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Eckhardt BA, Rowsey JL, Thicke BS, Fraser DG, O’Grady KL, Bondar OP, et al. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight. 2020;5(9):e135236.

  179. Chandra A, Lagnado AB, Farr JN, Monroe DG, Park S, Hachfeld C, et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J Bone Miner Res. 2020;35(6):1119–31.

    Article  CAS  PubMed  Google Scholar 

  180. Wang Z, Zhang X, Cheng X, Ren T, Xu W, Li J, et al. Inflammation produced by senescent osteocytes mediates age-related bone loss. Frontiers in Immunology. 2023;14:1114006. Demonstrated that proteins associated with inflammation were increased in elderly human bone tissue which was enriched for senescent osteocytes.

  181. Wan M, Gray-Gaillard EF, Elisseeff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021;9(1):41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu X, Chai Y, Liu G, Su W, Guo Q, Lv X, et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat Commun. 2021;12(1):1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, et al. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab. 2023;35(4):667-84.e6.

    Article  CAS  PubMed  Google Scholar 

  184. Wang T, Yang L, Liang Z, Wang L, Su F, Wang X, et al. Targeting cellular senescence prevents glucocorticoid-induced bone loss through modulation of the DPP4-GLP-1 axis. Sig Transduct Target Ther. 2021;6(1):143.

    Article  CAS  Google Scholar 

  185. Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, et al. Modulation of fracture healing by the transient accumulation of senescent cells. eLife. 2021;10:e69958.

Download references

Funding

This work was supported by NIH K99AR080745 (SRW), T32DK007352 (HMT), R21AR82134 (JJW), T32AR056950 (MO), the Mayo Clinic Robert and Arlene Kogod Center on Aging (SRW), and the Mayo Clinic Graduate School of Biomedical Sciences (KMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha R. Weaver.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, H.M., Arnold, K.M., Oviedo, M. et al. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 21, 842–853 (2023). https://doi.org/10.1007/s11914-023-00824-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00824-4

Keywords

Navigation