Skip to main content

Advertisement

Log in

Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches

  • Acute Myeloid Leukemias (U Borate, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow that has a poor prognosis with traditional cytotoxic chemotherapy, especially in elderly patients. In recent years, small molecule inhibitors targeting AML-associated IDH1, IDH2, and FLT3 mutations have been FDA approved. However, the majority of AML cases do not have a targetable mutation. A variety of novel agents targeting both previously untargetable mutations and general pathways in AML are currently being investigated. Herein, we review selected new targeted therapies currently in early-phase clinical investigation in AML.

Recent Findings

The DOT1L inhibitor pinometostat in KMT2A-rearranged AML, the menin inhibitors KO-539 and SYNDX-5613 in KMT2Ar and NPM1-mutated AML, and the mutant TP53 inhibitor APR-246 are examples of novel agents targeting specific mutations in AML. In addition, BET inhibitors, polo-like kinase inhibitors, and MDM2 inhibitors are promising new drug classes for AML which do not depend on the presence of a particular mutation.

Summary

AML remains in incurable disease for many patients but advances in genomics, epigenetics, and drug discovery have led to the development of many potential novel therapeutic agents, many of which are being investigated in ongoing clinical trials. Additional studies will be necessary to determine how best to incorporate these novel agents into routine clinical treatment of AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52. https://doi.org/10.1056/NEJMra1406148.

    Article  PubMed  Google Scholar 

  2. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson AG, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74. https://doi.org/10.1056/NEJMoa1301689.

    Article  CAS  PubMed  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21. https://doi.org/10.1056/NEJMoa1516192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eisfeld AK, Mrόzek K, Kohlschmidt J, Nicolet D, Orwick S, Walker CJ, et al. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia. 2017;31:2211–8. https://doi.org/10.1038/leu.2017.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130:722–31. https://doi.org/10.1182/blood-2017-03-779405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pollyea DA, Tallman MS, de Botton S, Kantarjian HM, Collins R, Stein AS, et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia. 2019;33:2575–84. https://doi.org/10.1038/s41275-019-0472-2.

    Article  CAS  PubMed  Google Scholar 

  7. DiNardo CD, Stein EM, do Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98. https://doi.org/10.1056/NEJMoa1716984.

    Article  CAS  PubMed  Google Scholar 

  8. Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135:463–71. https://doi.org/10.1182/blood.2019002140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64. https://doi.org/10.1056/NEJMoa1614359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381:1728–40. https://doi.org/10.1056/NEJMoa1902688.

    Article  CAS  PubMed  Google Scholar 

  11. Wei AH, Montensinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135:2137–45. https://doi.org/10.1182/blood.2020004856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29. https://doi.org/10.1056/NEJMoa2012971.

    Article  CAS  PubMed  Google Scholar 

  13. Cortes JE, Heidel FH, Hellmann A, Fiedler W, Smith BD, Robak T, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019;33:379–89. https://doi.org/10.1038/s41375-018-0312-9.

    Article  CAS  PubMed  Google Scholar 

  14. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukemia. Nature. 2011;478:524–8. https://doi.org/10.1038/nature10334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herrmann H, Blatt K, Shi J, Gleixner KV, Cerny-Reiterer S, Mȕllauer L, et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget. 2012;3(12):1588–99. https://doi.org/10.18632/oncotarget.733.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pericole FV, Lazarini M, de Paiva LB, Duarte ADSS, Ferro KPV, Niemann FS, et al. BRD4 inhibition enhances azacitidine efficacy in acute myeloid leukemia and myelodysplastic syndromes. Front Oncol. 2019;9:16. https://doi.org/10.3389/fonc.2019.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tzelepis K, De Braekeleer E, Aspris D, Barbieri I, Vijayabaskar MS, Liu WH, et al. SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nat Commun. 2018;9:5378. https://doi.org/10.1038/s41467-018-07620-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Roe JS, Vakoc CR. The essential transcriptional function of BRD4 in acute myeloid leukemia. Cold Spring Harb Symp Quant Biol. 2016;81:61–6. https://doi.org/10.1101/sqb.2016.81.031039. An excellent review of the function of BRD4 in AML.

    Article  PubMed  Google Scholar 

  19. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33. https://doi.org/10.1038/nature10509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacob HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17. https://doi.org/10.1016/j.cell.2011.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dawson MA, Gudgin EJ, Horton SJ, Giotopoulos G, Meduri E, Robson S, et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia. 2014;28:311–20. https://doi.org/10.1038/leu.2013.338.

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Liu Y, Lu C, Cross JR, Morris JP 4th, Shroff AS, et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 2013;27:2974–85. https://doi.org/10.1101/gad.226613.113.

    Article  CAS  Google Scholar 

  23. Zhang P, He F, Bai J, Yamamoto S, Chen S, Zhang L, et al. Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. J Clin Invest. 2018;128:5383–98. https://doi.org/10.1172/JCI121366.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Liu Q, Acharya P, Stengel KR, Sheng Q, Zhou X, et al. High-resolution mapping of RNA polymerases identifies mechanisms of sensitivity and resistance to BET inhibitors in t(8;21) AML. Cell Rep. 2016;16:2003–16. https://doi.org/10.1016/j.celrep.2016.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saenz DT, Fiskus W, Manshouri T, Rajapakshe K, Krieger S, Sun B, et al. BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells. Leukemia. 2017;31:678–87. https://doi.org/10.1038/leu.2016.260.

    Article  CAS  PubMed  Google Scholar 

  26. Petretich M, Demont E, Grandi P, et al. Domain-selective targeting of BET proteins in cancer and immunological diseases. Curr Opin Chem Biol. 2020;S1367-5931:30019-3. https://doi.org/10.1016/j.cbpa.2020.02.003.

    Article  CAS  Google Scholar 

  27. Tyler DS, Vappiani J, Cañeque T, Lam EYN, Ward A, Gilan O, et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science. 2017;356:1397–401. https://doi.org/10.1126/science.aal2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gilan O, Rioja I, Knezevic K, Bell MJ, Yeung MM, Harker NR, et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science. 2020;368:387–94. https://doi.org/10.1126/science.aaz8455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. •• Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3:e186–95. https://doi.org/10.1016/S2352-3026(15)00247-1First clinical trial of a BET inhibitor in acute leukemia.

    Article  PubMed  Google Scholar 

  30. • Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 2016;3:E196–204. https://doi.org/10.1016/S2452-3026(16)00021-1. The phase 1 study of the BET inhibitor OTX015 in lymphoid malignancies, a companion study to reference 29 above.

    Article  PubMed  Google Scholar 

  31. Borthakur GM, Odenike O, Aldoss I, Rizzieri DA, Prebet T, Modi DA, et al. Biomarker modulation by mivebresib (ABBV-075) +/- venetoclax in relapsed/refractory acute myeloid leukemia. Blood. 2019;134(Supplement_1):539. https://doi.org/10.1182/blood-2019-126854.

    Article  Google Scholar 

  32. Mascarenhas J, Saab R, Brackman D, Modi DA, Abraham L, Ward JE, et al. Two phase 1b studies evaluating the safety and tolerability of BET inhibitors, ABBV-744 and mivebresib, as monotherapies and in combination with ruxolitinib or navitoclax in patients with myelofibrosis. Blood. 2020;136(Supplement 1):18–9. https://doi.org/10.1182/blood-2020-137686.

    Article  Google Scholar 

  33. Talpaz M, Rampal R, Verstovsek S, Harrison C, Drummond M, Kiladjian JJ, et al. CPI-0610, a bromodomain and extraterminal domain protein (BET) inhibitor, as monotherapy in advanced myelofibrosis patients refractory/intolerant to JAK inhibitor: update from phase 2 Manifest study. European Hematology Association 2020 Annual Meeting. Abstract EP1091.

  34. Mascarenhas J, Harrison C, Ptriarca A, Devos T, Palandri F, Rampal R, et al. CPI-0610, a bromodomain and extraterminal domain protein (BET) inhibitor, in combination with ruxolitinib, in JAK inhibitor treatment naïve myelofibrosis patients: update from the Manifest phase 2 study. European Hematology Association 2020 Annual Meeting. Abstract EP1084.

  35. Verstovsek S, Mascarenhas J, Kremyanskaya M, Hoffman R, Rampal R, Gupta V, et al. CPI-0610, bromodomain and extraterminal domain protein (BET) inhibitor, as ‘add-on’ to ruxolitinib (RUX), in advanced myelofibrosis patients with suboptimal response: update of Manifest phase 2 study. European Hematology Association 2020 Annual Meeting. Abstract EP1083.

  36. Mascarenhas J, Harrison C, Luptakova K, Christo J, Wang J, Mertz JA, et al. MANIFEST-2, a global, phase 3, randomized, double-blind, active-control study of CPI-0610 and ruxolitinib vs. placebo and ruxolitinib in JAK-inhibitor-naive myelofibrosis patients. Blood. 2020;136(Supplement 1):43. https://doi.org/10.1182/blood-2020-140901.

    Article  Google Scholar 

  37. Patel MR, Garcia-Manero G, Paquette R, Dinner S, Donnellan WB, Grunwald MR, et al. Phase 1 dose escalation and expansion study to determine safety, tolerability, pharmacokinetics, and pharmacodynamics of the BET inhibitor FT-1101 as a single agent in patients with relapsed or refractory hematologic malignancies. Blood. 2019;134(Supplement_1):390.

    Article  Google Scholar 

  38. Dawson M, Stein EM, Huntly BJP, Karadimitris A, Kamdar M, de Larrea CF, et al. A phase I study of GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of phase I/II open label single agent study in patients with acute myeloid leukemia (AML). Blood. 2017;130(Supplement 1):1377. https://doi.org/10.1182/blood.V130.Suppl_1.1377.1377.

    Article  Google Scholar 

  39. Lihou C, Zhou G, Zheng F. A phase 1 study of INCB057643 monotherapy in patients with relapsed or refractory myelofibrosis (INCB 57643-103). Blood. 2020;136(Supplement 1):16–7. https://doi.org/10.1182/blood-2020-134604.

    Article  Google Scholar 

  40. Mims AS, Solh MD, Borate U, Pemmaraju N, Borthakur G, Roboz GJ, et al. Phase 1b study of BET inhibitor PLX2853 in patients with relapsed or refractory acute myeloid leukemia or high risk myelodysplastic syndrome. Blood. 2020;136(Supplement 1):14–5. https://doi.org/10.1182/blood-2020-140138.

    Article  Google Scholar 

  41. Patnaik A, Carvajal RD, Komatsubara KM, Britten CD, Wesolowski R, Michelson G, et al. Phase ib/2a study of PLX51107, a small molecule BET inhibitor, in subjects with advanced hematological malignancies and solid tumors. J Clin Oncol. 2018;36:2550. https://doi.org/10.1200/JCO.2018.36.15_suppl.2550.

    Article  Google Scholar 

  42. Roboz GJ, Desai P, Lee S, Ritchie EK, Winer ES, DeMario M, et al. A dose escalation study of RO6870810/TEN-10 in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma 2021;1-13. https://doi.org/10.1080/10428194.2021.1881509. Online ahead of print.

  43. Yang L, Ding L, Liang J, Chen J, Tang Y, Xue H, et al. Relatively favorable prognosis for MLL-rearranged childhood acute leukemia with reciprocal translocations. Pediatr Blood Cancer. 2018;65:e27266. https://doi.org/10.1002/pbc.27266.

    Article  CAS  PubMed  Google Scholar 

  44. Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J, et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood. 1993;83:3705–11.

    Article  Google Scholar 

  45. Chen Y, Kantarjian H, Pierce S, Faderl S, O’Brien S, Qiao W, et al. Prognostic significance of 11q23 aberrations in adult acute myeloid leukemia and the role of allogeneic stem cell transplantation. Leukemia. 2013;27:836–42. https://doi.org/10.1038/leu.2012.319.

    Article  CAS  PubMed  Google Scholar 

  46. Uckelmann HJ, Armstrong SA. Chromatin complexes maintain self-renewal of myeloid progenitors in AML: opportunities for therapeutic intervention. Stem Cell Rep. 2020;15:6–12. https://doi.org/10.1016/j.stemcr.2020.05.013.

    Article  CAS  Google Scholar 

  47. • Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20:L66–78. https://doi.org/10.1016/j.ccr.2011.06.010. Demonstration of the dependence of MLLr AML on DOT1L.

    Article  CAS  Google Scholar 

  48. • Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20:53–65. https://doi.org/10.1016/j.ccr.2011.06.009. Pre-clinical development of a DOT1L inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meyer C, Burmeister T, Gröger D, Tsaur G, Fechina L, Renneville A, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32:273–84. https://doi.org/10.1038/leu.2017.213.

    Article  CAS  PubMed  Google Scholar 

  50. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013;122:1017–25. https://doi.org/10.1182/blood-2013-04-497644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018;131:2661–9. https://doi.org/10.1182/blood-2017-09-806679. Initial phase 1 study of pinometostat in acute leukemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shukla N, Wetmore C, O’Brien MM, Silverman LB, Brown P, Cooper TM, et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in children with relapsed or refractory MLL-r acute leukemia. Blood. 2016;128:2780. https://doi.org/10.1182/blood.V128.22.2780.2780.

    Article  Google Scholar 

  53. • Goroschuk O, Kolosenko I, Vidarsdottir L, Azimi A, Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene. 2019;38:1–16. https://doi.org/10.1038/s41388-018-0443-5. An excellent review on the role of polo-like kinases in leukemia.

    Article  CAS  Google Scholar 

  54. Liu X. Targeting polo-like kinases: a promising therapeutic approach for cancer treatment. Transl Oncol. 2015;8:185–95. https://doi.org/10.1016/j.tranon.2015.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Renner AG, Santos CD, Recher C, Bailly C, Créancier L, Kruczynski A, et al. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood. 2009;114:659–62. https://doi.org/10.1182/blood-208-12-195867.

    Article  CAS  PubMed  Google Scholar 

  56. Tao YF, Li ZH, Du WW, Xu LX, Ren JL, Li XL, et al. Inhibiting PLK1 induces autophagy of acute myeloid leukemia cells via mammalian target of rapamycin pathway dephosphorylation. Oncol Rep. 2017;37:1419–29. https://doi.org/10.3892/or.2017.5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ikezoe T, Yang J, Nishioka C, Takezaki Y, Tasaka T, Togitani K, et al. A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Leukemia. 2009;29:1564–76. https://doi.org/10.1038/leu.2009.94.

    Article  CAS  Google Scholar 

  58. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krssák M, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol. 2007;17:316–22. https://doi.org/10.1016/j.cub.2006.12.037.

    Article  CAS  PubMed  Google Scholar 

  59. • Moison C, Lavallée P, Thiollier C, Lehnertz B, Boivin I, Mayotte N, et al. Complex karyotype AML displays G2/M signature and hypersensitivity to PLK1 inhibition. Blood Adv. 2019;3:552–63. https://doi.org/10.1182/bloodadvances.2018.028480. Evidence for a PLK1 dependence in complex karyotype AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, et al. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer. 2019;126:712–25. https://doi.org/10.1002/cncr.31837.

    Article  CAS  Google Scholar 

  61. Dill V, Kauschinger J, Hauch RT, Buschhorn L, Odinius TO, Mȕller-Thomas C, et al. Inhibition of PLK1 by capped-dose volasertib exerts substantial efficacy in MDS and sAML while sparing healthy haematopoiesis. Eur J Haematol. 2020;104:125–37. https://doi.org/10.1111/ejh.13354.

    Article  CAS  PubMed  Google Scholar 

  62. •• Müller-Tidow C, Bug G, Lübbert M, Krämer A, Krauter J, Valent P, et al. A randomized, open-label, phase I/II trial to investigate the maximum tolerated dose of the polo-like kinase inhibitor BI 2536 in elderly patients with refractory/relapsed acute myeloid leukaemia. Br J Haematol. 2013;163:214–22. https://doi.org/10.1111/bjh.12518. The first study of a PLK inhibitor in AML.

    Article  CAS  PubMed  Google Scholar 

  63. Murphy T, Leber B, Bray MR, Chan SM, Gupta V, Khalaf D, et al. Preliminary results from a phase 1 study of Cfi-400495, a PLK4 inhibitor, in patients with acute myeloid leukemia and high risk MDS. Blood. 2020;136(Supplement 1):1–2. https://doi.org/10.1182/blood-2020-138822.

    Article  Google Scholar 

  64. Jonas BA, Bixby DL, Brandwein JM, Yee KWL, Murphy T, Minden MD, et al. A phase 2 open-label, multicenter, dose optimization clinical study of the safety, tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) profiles of Cfi-400945 as a single agent or in combination with azacitidine or decitabine in patients with acute myeloid leukemia. Blood. 2020;136(Supplement 1):24–5. https://doi.org/10.1182/blood-2020-136004.

    Article  Google Scholar 

  65. •• Zeidan AM, Ridinger M, Lin TL, Becker PS, Schiller GJ, Patel PA, et al. A phase Ib study of onvansertib, a novel oral PLK1 inhibitor, in combination therapy for patients with relapsed or refractory acute myeloid leukemia. Clin Cancer Res. 2020;26:6132–40. https://doi.org/10.1158/1078-0432.CCR-20-2586 Clinical trial of onvansertib in AML.

    Article  CAS  PubMed  Google Scholar 

  66. Zeidan AM, Lin T, Becker PS, Schiller GJ, Patel PA, Spira AI, et al. Updated analysis of a phase 1b/2 study of onvansertib, a PLK1 inhibitor, in combination with decitabine in patients with relapsed or refractory acute myeloid leukemia. Am Soc Hematol 2020 Annual Meeting: Abstract 1954.

  67. Navada SC, Garcia-Manero G, Odchimar Reissig R, Pemmaraju N, Alvarado Y, Ohanian MN, et al. Rigosertib in combination with azacitidine in patients with myelodysplastic syndromes or acute myeloid leukemia: results of a phase 1 study. Leuk Res. 2020;94:106369. https://doi.org/10.1016/j.leukres.2020.106369.

    Article  CAS  PubMed  Google Scholar 

  68. Navada SC, Fruchtman SM, Odchimar-Reissig R, Demakos EP, Petrone ME, Zbyszewski PS, et al. A phase 1/2 study of rigosertib in patients with myelodysplastic syndromes (MDS) and MDS progressed to acute myeloid leukemia. Leuk Res. 2018;64:10–6. https://doi.org/10.1016/j.leukres.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Manero G, Fenaux P, Al-Kali A, Baer MR, Sekeres MA, Roboz GJ, et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomized, controlled, phase 3 trial. Lancet Oncol. 2016;17:496–508. https://doi.org/10.1016/S1470-2045(16)00009-7.

    Article  CAS  PubMed  Google Scholar 

  70. •• Ottmann OG, Müller-Tidow C, Krämer A, Schlenk RF, Lübbert M, Bug G, et al. Phase I dose-escalation trial investigating volasertib as monotherapy or in combination with cytarabine in patients with relapsed/refractory acute myeloid leukaemia. Br J Haematol. 2019;184:1018–21. https://doi.org/10.1111/bjh.15204. Phase 1 study of volasertib in r/r AML showing safety as monotherapy and when combined with LDAC.

    Article  PubMed  Google Scholar 

  71. Döhner H, Lübbert M, Fiedler W, Fouillard L, Haaland A, Brandwein JM, et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood. 2014;124:1426–33. https://doi.org/10.1182/blood-2014-03-560557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Döhner H, Symeonidis A, Sanz AM, Deeren D, Demeter J, Anagnostopoulos A, et al. Phase III randomized trial of volasertib plus low-dose cytarabine (LDAC) versus placebo plus LDAC in patients aged ≥65 years with previously untreated AML, ineligible for intensive therapy. Eur Hematol Assoc 2016 Annual Meeting. Abstract S501.

  73. Cortes J, Podoltsev N, Kantarjian H, Borthakur G, Zeidan AM, Stahl M, et al. Phase 1 dose escalation trial of volasertib in combination with decitabine in patients with acute myeloid leukemia. Int J Hematol. 2021;113:92–9. https://doi.org/10.1007/s12185-020-02994-8.

    Article  CAS  PubMed  Google Scholar 

  74. Gjertsen BT, Schöffski P. Discovery and development of the polo-like kinase inhibitor volasertib in cancer therapy. Leukemia. 2015;29:11–9. https://doi.org/10.1038/leu.2014.222.

    Article  CAS  PubMed  Google Scholar 

  75. Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, et al. BI 6727, a polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15:3094–102. https://doi.org/10.1158/1078-0432.CCR-08-2445.

    Article  CAS  PubMed  Google Scholar 

  76. Ciceri P, Müller S, O’Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol. 2014;10:305–12. https://doi.org/10.1038/nchembio.1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schöffski P, Awada A, Dumez H, Gil T, Bartholomeus S, Wolter P, et al. A phase I, dose-escalation study of the novel polo-like kinase inhibitor volasertib (BI 9727) in patients with advanced solid tumours. Eur J Cancer. 2012;48:179–86. https://doi.org/10.1016/j.ejca.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  78. Stadler WM, Vaughn DJ, Sonpavde G, Vogelzang NJ, Tagawa ST, Petrylak DP, et al. An open-label, single-arm, phase 2 trial of the polo-like kinase inhibitor volasertib (BI 6727) in patients with locally advanced or metastatic urothelial cancer. Cancer. 2014;120:976–82. https://doi.org/10.1002/cncr.28519.

    Article  CAS  PubMed  Google Scholar 

  79. Lin CC, Su WC, Yen CJ, Hsu CH, Su WP, Yeh KH, et al. A phase I study of two dosing schedules of volasertib (BI 6727), an intravenous polo-like kinase inhibitor, in patients with advanced solid malignancies. Br J Cancer. 2014;110:2434–40. https://doi.org/10.1038/bjc.2014.195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Benetatos L, Dasoula A, Hatzimichael E, Syed N, Voukelatou M, Dranitsaris G, et al. Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions. Ann Hematol. 2011;90:1037–45. https://doi.org/10.1007/s00277-011-1193-4.

    Article  CAS  PubMed  Google Scholar 

  81. Deng S, Wang H, Jia C, Zhu S, Chu X, Ma Q, et al. MicroRNA-146a induces linage-negative bone marrow cell apoptosis and senescence by targeting polo-like kinase 2 expression. Arterioscler Thromb Vasc Biol. 2017;37:280–90. https://doi.org/10.1161/ATVBAHA.116.308378.

    Article  CAS  PubMed  Google Scholar 

  82. Beria I, Bossi RT, Brasca MG, Caruso M, Ceccarelli W, Fachin G, et al. NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h] quinazoline derivative as potent and selective polo-like kinase 1 inhibitor. Bioorg Med Chem Lett. 2011;21:2969–74. https://doi.org/10.1016/j.bmcl.2011.03.054.

    Article  CAS  PubMed  Google Scholar 

  83. Valsasina B, Beria I, Alli C, Alzani R, Avanzi N, Ballinari D, et al. NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol Cancer Ther. 2012;11:1006–16. https://doi.org/10.1158/1535-7613.MCT-11-0765.

    Article  CAS  PubMed  Google Scholar 

  84. •• Weiss GJ, Jameson G, Von Hoff DD, Valsasina B, Davite C, Giulio CD, et al. Phase I dose escalation study of NMS-1286937, an orally available polo-like kinase 1 inhibitor, in patients with advanced or metastatic solid tumors. Investig New Drugs. 2018;36:85–95. https://doi.org/10.1007/s10637-017-0491-7. First clinical trial of onvansertib, which has improved PLK1 specificity.

    Article  CAS  Google Scholar 

  85. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Consenza SC, et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell. 2016;165:643–55. https://doi.org/10.1016/j.cell.2016.03.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duffy MJ, Synnott NC, O’Grady S, Crown J. Targeting p53 for the treatment of cancer. Seminars Cancer Biol 2020:30LS1044-579X(20)30160-7. https://doi.org/10.1016/j.semcancer.2020.07.005.

  87. Wong TN, Ramsingh R, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2014;518:552–5. https://doi.org/10.1038/nature13968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30. https://doi.org/10.1056/NEJMoa1716614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mrózek K, Eisfeld AK, Kohlschmidt J, Carroll AJ, Walker CJ, Nicolet D, et al. Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia. 2019;33:1620–34. https://doi.org/10.1038/s41375-019-0390-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119:2114–21. https://doi.org/10.1182/blood-2011-08-3715758.

    Article  PubMed  Google Scholar 

  91. Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivstov A, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science. 2019;365:599–604. https://doi.org/10.1126/science.aax3649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mims AS, Kohlschmidt J, Eisfeld AK, Mrózek K, Blachly JS, Orwick S, et al. Comparison of clinical and molecular characteristics of patients with acute myeloid leukemia and either TP73 or TP53 mutations. Leukemia. 2020. https://doi.org/10.1038/s41375-020-1007-6.

  93. Prochazka KT, Pregartner G, Rücker FG, Heitzer E, Pabst G, Wölfer A, et al. Clinical implications of subclonal TP53 mutations in acute myeloid leukemia. Haematologica. 2019;104:516–23. https://doi.org/10.3324/haematol.2018.205013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Welch JS, Pett AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375:2023–36. https://doi.org/10.1056/NEJMoa1605949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Becker H, Pfeifer D, Ihorst G, Pantic M, Wehrle J, Rüter BH, et al. Monosomal karyotype and chromosome 17p loss or TP53 mutations in decitabine-treated patients with acute myeloid leukemia. Ann Hematol. 2020;99:1551–60. https://doi.org/10.1007/s00277-020-04082-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Short NJ, Kantarjian HM, Loghavi S, Huang X, Qiao W, Borhakur G, et al. Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomized phase 2 trial. Lancet Haematol. 2019;6:e29–37. https://doi.org/10.1016/S2352-2036(1)30182-0.

    Article  PubMed  Google Scholar 

  97. Lambert JMR, Gorzov P, Veprintsev DB, Söderqvist SD, Bergman J, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15:376–88. https://doi.org/10.1016/j.ccr.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  98. • Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J, et al. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 2018;9:439. https://doi.org/10.1038/s41419-018-0463-7. Description of the mechanism by which APR-246 converts mutated p53 to wild-type activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tessoulin B, Descamps G, Moreau P, Maïga S, Lodé L, Godon C, et al. PRIMA-1met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood. 2014;124:1626–36. https://doi.org/10.1182/blood-2014-01-548800.

    Article  CAS  PubMed  Google Scholar 

  100. Maslah N, Salomao N, Drevon L, Verger E, Partouche N, Ly P, et al. Synergistic effects of PRIMA-1Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2020;105:L1539–51. https://doi.org/10.3324/haematol.2019.218453.

    Article  CAS  Google Scholar 

  101. •• Lehman S, Bykov VJN, Ali D, Andrén O, Cherif H, Tidefelt U, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30:3633–9. https://doi.org/10.1200/JCO.2011.40.7783. First-in-man study of a mutant TP53 inhibitor.

    Article  CAS  Google Scholar 

  102. •• Deneberg S, Cherif H, Lazarevic V, Andersson P-O, von Euler M, Juliusson G, et al. An open-label phase I dose-finding study of APR-246 in hematological malignancies. Blood Cancer J. 2016;6:e447. https://doi.org/10.1038/bcj.2016.60. Optimization of infusion protocol allowed for increased APR-246 MTD in hematologic malignancies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. •• Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol. 2021. https://doi.org/10.1200/JCO.20.02341 Online ahead of print. Phase 1 study of APR-146 in TP53-mutated myeloid malignancies.

  104. •• Cluzeau T, Sebert M, Rahmé R, Cuzzubo S, Lehmann-Che J, Madelaine I, et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the Groupe Francophone des Myélodysplasies (GFM). J Clin Oncol. 2021. https://doi.org/10.1200/JCO.20.02342 Online ahead of print. Phase 2 study of APR-146 in TP53-mutated myeloid malignancies.

  105. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

    Article  CAS  PubMed  Google Scholar 

  106. •• Andreeff M, Kelly KR, Yee K, Assouline S, Strair R, Popplewell L, et al. Results of the phase 1 trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res. 2016;22:868–76. https://doi.org/10.1158/1078-0432.CCR-15-0481. First phase 1 study of a MDM2 inhibitor in leukemia.

    Article  CAS  PubMed  Google Scholar 

  107. Ray-Coquard I, Blay JY, Italiano A, Cesne AL, Penel N, Zhi J, et al. Effect of the MDM2 antagonist RG7112 on the p53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 2012;13:1133–40. https://doi.org/10.1016/S1470-2045(12)70474-6.

    Article  CAS  PubMed  Google Scholar 

  108. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013;56:5979–83. https://doi.org/10.1021/jm400487c.

    Article  CAS  PubMed  Google Scholar 

  109. Yee K, Papayannidis C, Vey N, Dickinson MJ, Kelly KR, Assouline S, et al. Murine double minute 2 inhibition alone or with cytarabine in acute myeloid leukemia: results from an idasanutlin phase 1/1b study. Leuk Res. 2021;100:106489. https://doi.org/10.1016/j.leukres.2020.106489.

    Article  CAS  PubMed  Google Scholar 

  110. Reis B, Jukofsky L, Chen G, Martinelli G, Zhong HSo WV, et al. Acute myeloid leukemia patients’ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica. 2016;101:e185–8. https://doi.org/10.3324/haematol.2015.139717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mascarenhas J, Lu M, Kosiorek H, Virtgaym E, Xia L, Sandy L, et al. Oral idasanutlin in patients with polycythemia vera. Blood. 2019;134:525–33. https://doi.org/10.1182/blood.2018893545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Montesinos P, Beckermann BM, Catalani O, Esteve J, Gamel K, Konopleva MY, et al. MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol. 2020;16:807–15. https://doi.org/10.2217/fon-2020-0044.

    Article  CAS  PubMed  Google Scholar 

  113. Siu LL, Italiano A, Miller WH, Blay JY, Gietema JA, Bang YJ, et al. Phase 1 dose escalation, food effect, and biomarker study of RG7388, a more potent second-generation MDM2 antagonist, in patients (pts) with solid tumors. J Clin Oncol. 2014;32:2535. https://doi.org/10.1200/jco.2014.32.15_suppl.2535.

    Article  Google Scholar 

  114. Nemunaitis J, Young A, Ejadi S, Miller W, Chen LC, Nichols G, et al. Effects of posaconazole (a strong CYP3A4 inhibitor), two new tablet formulations, and food on the pharmacokinetics of idasanutlin, an MDM2 antagonist, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2018;81:529–37. https://doi.org/10.1007/s00280-018-3521-z.

    Article  CAS  PubMed  Google Scholar 

  115. Higgins B, Glenn K, Walz A, Tovar C, Filipovic Z, Hussain S, et al. Preclinical optimization of MDM2 antagonist scheduling for cancer treatment by using a model-based approach. Clin Cancer Res. 2014;20:3742–52. https://doi.org/10.1158/1078-0432.CCR-14-0460.

    Article  CAS  PubMed  Google Scholar 

  116. Daver NG, Garcia JS, Jonas BA, Kelly KR, Assouline S, Brandwein JM, et al. Updated results from the venetoclax (Ven) in combination with idasanutlin (Idasa) arm of a phase 1b trial in elderly patients with relapsed or refractory (R/R) AML ineligible for cytotoxic chemotherapy. Blood. 2019;134:229.

    Article  Google Scholar 

  117. Rew Y, Sun D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J Med Chem. 2014;57:6332–41. https://doi.org/10.1021/jm500627s.

    Article  CAS  PubMed  Google Scholar 

  118. Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, Cassier PA, et al. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced p53 wild-type solid tumors or multiple myeloma. Investig New Drugs. 2020;38:831–43. https://doi.org/10.1007/s10637-019-00840-1.

    Article  CAS  Google Scholar 

  119. •• Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, Zhu M, et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 2019;3:1393–949. https://doi.org/10.1182/bloodadvances.2019030916. Phase 1 study showing safety and evidence for activity of AMG-232 in AML.

    Article  CAS  Google Scholar 

  120. Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med. 2018;10:eaao3003. https://doi.org/10.1126/scitranslmed.aao3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sallman DA, Borate U, Cull EH, Donnellan WB, Komrokji RS, Steidl UG, et al. Phase 1/1b study of the stapled peptide ALRN-6924, a dual inhibitor of MDMX and MDM2, as monotherapy or in combination with cytarabine for the treatment of relapsed/refractory AML and advanced MDS with TP53 wild-type. Blood. 2018;132:4066. https://doi.org/10.1182/blood-2018-99-118780.

    Article  Google Scholar 

  122. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 30:41–7. https://doi.org/10.1038/ng765.

  123. Hinai ASAA, Pratcorona M, Grob T, Kavelaars FG, Bussaglia E, Sanders MA, et al. The landscape of KMT2A-PTD AML: concurrent mutations, gene expression signatures, and clinical outcome. Hemasphere. 2019;3:e181. https://doi.org/10.1097/HS9.0000000000000181.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood. 2005;106:899–902. https://doi.org/10.1182/blood-2005-02-0560.

    Article  CAS  PubMed  Google Scholar 

  125. Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA, et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia. 2007;9:2000–9. https://doi.org/10.1038/sj.leu.2404808.

    Article  CAS  Google Scholar 

  126. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O'Laughlin M, et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia. 2015;6:1279–89. https://doi.org/10.1038/leu.2015.6.

    Article  CAS  Google Scholar 

  127. Caligiuri MA, Strout MP, Lawrence D, Arthur DC, Baer MR, Yu F, et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res. 1998;58:55–9.

    CAS  PubMed  Google Scholar 

  128. Döhner K, Tobis K, Ulrich R, Fröhling S, Benner A, Schlenk RF, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol. 2002;20:3254–61. https://doi.org/10.1200/JCO.2002.09.088.

    Article  CAS  PubMed  Google Scholar 

  129. Falini B, Brunetti L, Sportoletti P, Martelli MP. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136:1707–21. https://doi.org/10.1182/blood.2019004226.

    Article  PubMed  Google Scholar 

  130. Brown P, McIntyre E, Rau R, Meshinchi S, Lacayo N, Dahl G, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110:979–85. https://doi.org/10.1182/blood-2007-02-076604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bhatlekar S, Fields JZ, Boman BM. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int. 2018;2018:3569493. https://doi.org/10.1155/2018/3569493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 2013;27:1000–8. https://doi.org/10.1038/leu.2012.356.

    Article  CAS  PubMed  Google Scholar 

  133. Antunes ETB, Ottersbach K. The MLL/SET family and haematopoiesis. Biochim Biophys Acta Gene Regul Mech. 1863;2020:194579. https://doi.org/10.1016/j.bbagrm.2020.194579.

    Article  CAS  Google Scholar 

  134. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10:1107–17. https://doi.org/10.1016/s1097-2765(02)00741-4.

    Article  CAS  PubMed  Google Scholar 

  135. Dorrance AM, Liu S, Yuan W, Becknell B, Arnoczky KJ, Guimond M, et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest. 2006;116:2707–16. https://doi.org/10.1172/JCI25546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol. 2004;24:5639–49. https://doi.org/10.1128/MCB.24.13.5639-5649.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123:207–18. https://doi.org/10.1016/j.cell.2005.09.025.

    Article  CAS  PubMed  Google Scholar 

  138. Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell. 2008;14:36–46. https://doi.org/10.1016/j.ccr.2008.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen YX, Yan J, Keeshan K, Tubbs AT, Wang H, Silva A, et al. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci U S A. 2006;103:1018–23. https://doi.org/10.1073/pnas.0510347103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A, et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet. 2011;43:470–5. https://doi.org/10.1038/ng.796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, et al. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood. 2017;130:1911–22. https://doi.org/10.1182/blood-2017-01-760595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, Gadrey JY, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 2020;367:586–90. https://doi.org/10.1126/science.aax5863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34:499–512. https://doi.org/10.1016/j.ccell.2018.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gu X, Ebrahem Q, Mahfouz RZ, Hasipek M, Enane F, Radivoyevitch T, et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest. 2018;128:4260–79. https://doi.org/10.1172/JCI97117.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kühn MW, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 2016;6:1166–81. https://doi.org/10.1158/2159-8290.CD-16-0237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cierpicki T, Grembecka J. Challenges and opportunities in targeting the menin-MLL interaction. Future Med Chem. 2014;6:447–62. https://doi.org/10.4155/fmc.13.214.

    Article  CAS  PubMed  Google Scholar 

  147. • Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol. 2012;8:277–84. https://doi.org/10.1038/nchembio.773. First pre-clinical report of a menin inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Perner F, Armstrong SA. Targeting chromatin complexes in myeloid malignancies and beyond: from basic mechanisms to clinical innovation. Cells. 2020;9:2721. https://doi.org/10.3390/cells9122721.

    Article  CAS  PubMed Central  Google Scholar 

  149. He S, Malik B, Borkin D, Miao H, Shukla S, Kempinska K, et al. Menin-MLL inhibitors block oncogenic transformation by MLL-fusion proteins in a fusion partner-independent manner. Leukemia. 2016;30:508–13. https://doi.org/10.1038/leu.2015.144.

    Article  CAS  PubMed  Google Scholar 

  150. Timmers HTM, Özyerli Göknar E, Nizamuddin S. A box of chemistry to inhibit the MEN1 tumor suppressor gene promoting leukemia. Chem Med Chem. 2021. https://doi.org/10.1002/cmdc.202000972 Online ahead of print.

  151. •• Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim E, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest. 2020;130:981–97. https://doi.org/10.1172/JCI129126. Report of an optimized menin inhibitor suitable for in vivo use.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kessler L, Wu T, Grembecka J, Cierpicki T, Purohit T, Miaoand H, et al. Discovery of novel menin-MLL small molecule inhibitors that display high potency and selectivity in vitro and in vivo. Eur J Cancer. 2016;69S:88. https://doi.org/10.1016/S0959-8049(16)32859-3.

    Article  Google Scholar 

  153. Wu T, Kessler L, Li S, Purohit T, Li S, Miao H, et al. A novel small molecule menin-MLL inhibitor for potential treatment of MLL-rearranged leukemias. Cancer Res. 2017;77(13 Suppl):5077. https://doi.org/10.1158/1538-7445.AM2017-5077.

    Article  Google Scholar 

  154. Burrows F, Wu T, Kessler L, Li S, Zhang J, Zarrinkar P, et al. A novel small molecule menin-MLL inhibitor for potential treatment of MLL-rearranged leukemias and NPM1/DNMT3A-mutant AML. Mol Cancer Ther. 2018;17(1 Suppl):LB-A27. https://doi.org/10.1158/1535-7163.TARG-17-LB-A27.

    Article  Google Scholar 

  155. •• Wang ES, Altman JK, Pettit K, De Botton S, Walter RP, Fenaux P, et al. Preliminary data on a phase 1/2A first in human study of the menin-KMT2A (MLL) inhibitor KO-539 in patients with relapsed or refractory acute myeloid leukemia. Blood. 2020;136(Supplement 1):7–8. https://doi.org/10.1182/blood-2020-134942. First-in-man report of the menin inhibitor KO-539.

    Article  Google Scholar 

  156. Libbrecht C, Xie HM, Kingsley MC, Haladyna JN, Riedel SS, Alikarami F, et al. Menin is necessary for long term maintenance of meningioma-1 driven leukemia. Leukemia. 2021. https://doi.org/10.1038/s41375-021-01146-z Online ahead of print.

  157. Dzama MM, Steiner M, Rausch J, Sasca D, Schönfeld J, Kunz K, et al. Synergistic targeting of FLT3 mutations in AML via combined menin-MLL and FLT3 inhibition. Blood. 2020;136:2442–56. https://doi.org/10.1182/blood.2020005037.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Schmidt L, Heyes E, Scheiblecker L, Eder T, Volpe G, Frampton J, et al. CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex. Leukemia. 2019;33:1608–19. https://doi.org/10.1038/s41375-019-0382-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. •• Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, et al. A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 2019;36:660–73. https://doi.org/10.1016/j.ccell.2019.11.001. Report of a second, structurally distinct menin inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. •• McGeehan G. A first-in-class menin-MLL1 antagonist for the treatment of MLL-r and NPM1 mutant leukemias. Presentation at the 2020 American Association for Cancer Research Virtual Annual Meeting I 2020. First report of a menin inhibitor clinical trial.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice S. Mims.

Ethics declarations

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by either of the authors.

Conflict of Interest

Dr. Nicole Grieselhuber declares that she has no conflict of interest.

Dr. Alice Mims has served on the advisory boards for Syndax Pharmaceuticals, Kura Oncology, Jazz Pharmaceuticals, and AbbVie Pharmaceuticals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Acute Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grieselhuber, N.R., Mims, A.S. Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Curr Hematol Malig Rep 16, 192–206 (2021). https://doi.org/10.1007/s11899-021-00621-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00621-9

Keywords

Navigation