Skip to main content

Advertisement

Log in

Pioneering the Way: The Revolutionary Potential of Antibody–Drug Conjugates in NSCLC

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Despite targeted therapy and immunotherapy being recognized as established frontline treatments for advanced non-small cell lung cancer (NSCLC), the unavoidable development of resistance and disease progression poses ongoing challenges. Antibody–drug conjugates (ADCs) offer a potent treatment option for NSCLC through the specific delivery of cytotoxic agents to tumor cells that display distinct antigens. This review delves into the latest evidence regarding promising ADC agents for NSCLC, focusing on their targets, effectiveness, and safety assessments. Additionally, our study provides insights into managing toxicities, identifying biomarkers, devising methods to counter resistance mechanisms, tackling prevailing challenges, and outlining prospects for the clinical implementation of these innovative ADCs and combination regimens in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Antibody-drug conjugate

NSCLC:

Non-small cell lung cancer

DAR:

Drug-antibody ratio

ICIs:

Immune checkpoint inhibitors

TKI:

Tyrosine kinase inhibitor

mAb:

Monoclonal antibody

IgG:

Immunoglobulin G

CEACAM5:

Carcinoembryonic antigen-related cell adhesion molecule 5

TF:

Tissue factor

ORR:

Overall response rate

TNBC:

Triple-negative breast cancer

SCLC:

Small cell lung cancer

PR:

Partial response

DOR:

Duration of response

CBR:

Clinical benefit rate

ITT:

Intention-to-treat

PFS:

Progression-free survival

OS:

Overall survival

TROP2:

Trophoblast cell surface antigen 2

HER3:

Human epidermal growth factor receptor 3

TEAEs:

Treatment-emergent adverse events

TPS:

Tumor proportion score

SD:

Stable disease

NPLD:

Non-pegylated liposomal doxorubicin

SG:

Sacituzumab govitecan

TRAEs:

Treatment-related adverse events

FDA:

The United States Food and Drug Administration

CEACAM5:

Carcinoembryonic antigen-related cell adhesion molecule 5

ESC:

European Society of Cardiology

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Konig D, Savic Prince S, Rothschild SI. Targeted therapy in advanced and metastatic non-small cell lung cancer. An Update on Treatment of the Most Important Actionable Oncogenic Driver Alterations. Cancers (Basel). 2021;13:804.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40:611–25.

    Article  CAS  PubMed  Google Scholar 

  4. Fang L, Zhao W, Ye B, Chen D. Combination of immune checkpoint inhibitors and anti-angiogenic agents in brain metastases from non-small cell lung cancer. Front Oncol. 2021;11:670313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Passaro A, Janne PA, Peters S. Antibody-drug conjugates in lung cancer: recent advances and implementing strategies. J Clin Oncol. 2023;41:3747–61.

    Article  PubMed  Google Scholar 

  7. Salifu I, Singh N, Berraondo M, Remon J, Salifu S, Severson E, et al. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in advanced non-small cell lung cancer. Cancer Treat Res Commun. 2023;36:100713.

    Article  PubMed  Google Scholar 

  8. Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel). 2023;15:713.

    Article  CAS  PubMed  Google Scholar 

  9. Pettinato MC. Introduction to antibody-drug conjugates. Antibodies (Basel). 2021;10:42.

    Article  CAS  PubMed  Google Scholar 

  10. Coleman N, Yap TA, Heymach JV, Meric-Bernstam F, Le X. Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol. 2023;7:5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther. 2022;229:107917.

    Article  CAS  PubMed  Google Scholar 

  12. Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-drug conjugates: functional principles and applications in oncology and beyond. Vaccines (Basel). 2021;9:1111.

    Article  CAS  PubMed  Google Scholar 

  13. Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, et al. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother. 2023;161:114408.

    Article  CAS  PubMed  Google Scholar 

  14. Marei HE, Cenciarelli C, Hasan A. Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int. 2022;22:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel). 2020;13:245.

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Lin Z, Arnst KE, Miller DD, Li W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules. 2017;22:1281.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016;76:2710–9.

    Article  CAS  PubMed  Google Scholar 

  18. McKertish CM, Kayser V. Advances and limitations of antibody drug conjugates for cancer. Biomedicines. 2021;9:872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu J, Jiang F, Lu A, Zhang G. Linkers having a crucial role in antibody-drug conjugates. Int J Mol Sci. 2016;17:561.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boghaert ER, Cox MC, Vaidya KS. Pathophysiologic and pharmacologic considerations to improve the design and application of antibody-drug conjugates. Cancer Res. 2022;82:1858–69.

    Article  CAS  PubMed  Google Scholar 

  21. Menon S, Parakh S, Scott AM, Gan HK. Antibody-drug conjugates: beyond current approvals and potential future strategies. Explor Target Antitumor Ther. 2022;3:252–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riudavets M, Sullivan I, Abdayem P, Planchard D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 2021;6:100260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146:264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16:209.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36:2532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li BT, Michelini F, Misale S, Cocco E, Baldino L, Cai Y, et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Cancer Discov. 2020;10:674–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13:273–9.

    Article  CAS  PubMed  Google Scholar 

  28. Peters S, Stahel R, Bubendorf L, Bonomi P, Villegas A, Kowalski DM, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers. Clin Cancer Res. 2019;25:64–72.

    Article  CAS  PubMed  Google Scholar 

  29. Iwama E, Zenke Y, Sugawara S, Daga H, Morise M, Yanagitani N, et al. Trastuzumab emtansine for patients with non-small cell lung cancer positive for human epidermal growth factor receptor 2 exon-20 insertion mutations. Eur J Cancer. 2022;162:99–106.

    Article  CAS  PubMed  Google Scholar 

  30. Azar I, Alkassis S, Fukui J, Alsawah F, Fedak K, Al Hallak MN, et al. Spotlight on trastuzumab deruxtecan (DS-8201, T-DXd) for HER2 mutation positive non-small cell lung cancer. Lung Cancer (Auckl). 2021;12:103–14.

    PubMed  Google Scholar 

  31. Tsurutani J, Iwata H, Krop I, Janne PA, Doi T, Takahashi S, et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 2020;10:688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazieres J, et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2022;386:241–51. A multicenter, international, phase 2 study showed that trastuzumab deruxtecan had durable anticancer activity in patients with HER2-mutant NSCLC.

    Article  CAS  PubMed  Google Scholar 

  33. Passaro A, Peters S. Targeting HER2-mutant NSCLC - the light is on. N Engl J Med. 2022;386:286–9.

    Article  CAS  PubMed  Google Scholar 

  34. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goto K, Sang-We K, Kubo T, Goto Y, Ahn M, Planchard D, et al. LBA55 Trastuzumab deruxtecan (T-DXd) in patients (Pts) with HER2-mutant metastatic non-small cell lung cancer (NSCLC): interim results from the phase 2 DESTINY-Lung02 trial. Ann Oncol. 2022;33:S1422.

    Article  Google Scholar 

  36. Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989–9006.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Okajima D, Yasuda S, Maejima T, Karibe T, Sakurai K, Aida T, et al. Datopotamab deruxtecan, a novel TROP2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021;20:2329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. TROP2 ADC Intrigues in NSCLC. Cancer Discov. 2021;11:OF5.

  39. Ahn M, Lisberg A, Paz-Ares L, Cornelissen R, Girard N, Pons-Tostivint E, et al. LBA12 Datopotamab deruxtecan (Dato-DXd) vs docetaxel in previously treated advanced/metastatic (adv/met) non-small cell lung cancer (NSCLC): results of the randomized phase III study TROPION-Lung01. Ann Oncol. 2023;34:S1305–6.

    Article  Google Scholar 

  40. Guerra E, Alberti S. The anti-Trop-2 antibody-drug conjugate sacituzumab govitecan-effectiveness, pitfalls and promises. Ann Transl Med. 2022;10:501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, et al. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21:3870–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bardia A, Messersmith WA, Kio EA, Berlin JD, Vahdat L, Masters GA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021;32:746–56.

    Article  CAS  PubMed  Google Scholar 

  43. Heist RS, Guarino MJ, Masters G, Purcell WT, Starodub AN, Horn L, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, sacituzumab govitecan. J Clin Oncol. 2017;35:2790–7.

    Article  CAS  PubMed  Google Scholar 

  44. Saxena A, Michel LS, Hong Q, Hilsinger K, Kanwal C, Pichardo C, et al. TROPiCS–03: a phase II open-label study of sacituzumab govitecan (SG) in patients with metastatic solid tumors. J Clin Oncol. 2020;38:15_suppl. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS3648.

  45. Garassino MC, Reznick D, Liu SY, Reinmuth N, Girard N, De Marinis F, et al. EVOKE-01: a phase 3 study of sacituzumab govitecan (SG) versus docetaxel in patients with non–small cell lung cancer (NSCLC) progressing on or after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2022;40(16_suppl):TPS9149. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS9149.

  46. Reinmuth N, Reznick D, Liu S, Garassino M, Girard N, De Marinis F, et al. P1. 16–04 Phase 3 EVOKE-01 study of sacituzumab govitecan vs docetaxel in NSCLC after prior platinum and checkpoint inhibitors. J Thor Oncol. 2022; 17:S128.

  47. Uliano J, Corvaja C, Curigliano G, Tarantino P. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open. 2023;8:100790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koyama K, Ishikawa H, Abe M, Shiose Y, Ueno S, Qiu Y, et al. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression. PLoS ONE. 2022;17:e0267027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Janne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 2022;12:74–89.

    Article  CAS  PubMed  Google Scholar 

  50. Steuer CE, Hayashi H, Su W-C, Nishio M, Johnson ML, Kim D-W, et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in advanced/metastatic non-small cell lung cancer (NSCLC) without EGFR-activating mutations. J Clin Oncol. 2022;40(16_suppl):9017. https://doi.org/10.1200/JCO.2022.40.16_suppl.9017.

  51. •• Yu HA, Yang JC, Hayashi H, Goto Y, Felip E, Reck M, et al. HERTHENA-Lung01: a phase II study of patritumabderuxtecan (HER3-DXd) in previously treated metastatic EGFR-mutated NSCLC. Future Oncol. 2023;19(19):1319–29. A phase II study of patritumab deruxtecan in previously treated metastatic EGFR-mutated NSCLC.

  52. Landi L, Minuti G, D’Incecco A, Salvini J, Cappuzzo F. MET overexpression and gene amplification in NSCLC: a clinical perspective. Lung Cancer (Auckl). 2013;4:15–25.

    CAS  PubMed  Google Scholar 

  53. Khoury R, Saleh K, Khalife N, Saleh M, Chahine C, Ibrahim R, et al. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci. 2023;24:9674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Strickler JH, Weekes CD, Nemunaitis J, Ramanathan RK, Heist RS, Morgensztern D, et al. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018;36:3298–306.

    Article  CAS  PubMed  Google Scholar 

  55. Waqar SN, Redman MW, Arnold SM, Hirsch FR, Mack PC, Schwartz LH, et al. A phase II study of telisotuzumab vedotin in patients with c-MET-positive stage IV or recurrent squamous cell lung cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin Lung Cancer. 2021;22:170–7.

    Article  CAS  PubMed  Google Scholar 

  56. Camidge DR, Morgensztern D, Heist RS, Barve M, Vokes E, Goldman JW, et al. Phase I study of 2- or 3-week dosing of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, monotherapy in patients with advanced non-small cell lung carcinoma. Clin Cancer Res. 2021;27:5781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Camidge DR, Bar J, Horinouchi H, Goldman JW, Moiseenko FV, Filippova E, et al. Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Met–overexpressing (OE) advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2022;40(16_suppl):9016. https://doi.org/10.1200/JCO.2022.40.16_suppl.9016.

  58. Horinouchi H, Shibata Y, Looman J, Sui Y, Noon E, Lu S. Phase 2 study of telisotuzumab vedotin (Teliso-V) monotherapy in patients with previously untreated MET-amplified locally advanced/metastatic non-squamous non-small cell lung cancer (NSQ NSCLC). J Clin Oncol. 2023;41(16_suppl):TPS9149. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS9149.

  59. Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32:643–71.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Han X, Zuo P, Zhang X, Xu H. CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J Int Med Res. 2020;48:300060520959478.

    CAS  PubMed  Google Scholar 

  61. Lefebvre AM, Adam J, Nicolazzi C, Larois C, Attenot F, Falda-Buscaiot F, et al. The search for therapeutic targets in lung cancer: preclinical and human studies of carcinoembryonic antigen-related cell adhesion molecule 5 expression and its associated molecular landscape. Lung Cancer. 2023;184:107356.

    Article  CAS  PubMed  Google Scholar 

  62. Decary S, Berne PF, Nicolazzi C, Lefebvre AM, Dabdoubi T, Cameron B, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020;26:6589–99.

    Article  CAS  PubMed  Google Scholar 

  63. Gazzah A, Ricordel C, Cousin S, Cho BC, Calvo E, Kim TM, et al. Efficacy and safety of the antibody-drug conjugate (ADC) SAR408701 in patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). J Clin Oncol. 2020;38:9505.

    Article  Google Scholar 

  64. Isambert N, Nagy T, Ravoire M, Rodriguez-Abreu D, Gonzalez-Larriba J, Huang C, et al. 13MO Safety and efficacy of tusamitamab ravtansine in combination with pembrolizumab±chemotherapy in patients with CEACAM5-positive nonsquamous NSCLC (CARMEN-LC05 phase II study). J Thorac Oncol. 2023;18:S46–7.

    Article  Google Scholar 

  65. Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22:641–61.

    Article  CAS  PubMed  Google Scholar 

  66. Fuentes-Antras J, Genta S, Vijenthira A, Siu LL. Antibody-drug conjugates: in search of partners of choice. Trends Cancer. 2023;9:339–54.

    Article  CAS  PubMed  Google Scholar 

  67. Haikala HM, Lopez T, Kohler J, Eser PO, Xu M, Zeng Q, et al. EGFR inhibition enhances the cellular uptake and antitumor-activity of the HER3 antibody-drug conjugate HER3-DXd. Cancer Res. 2022;82:130–41.

    Article  CAS  PubMed  Google Scholar 

  68. Yonesaka K, Tanizaki J, Maenishi O, Haratani K, Kawakami H, Tanaka K, et al. HER3 augmentation via blockade of EGFR/AKT signaling enhances anticancer activity of HER3-targeting patritumab deruxtecan in EGFR-mutated non-small cell lung cancer. Clin Cancer Res. 2022;28:390–403.

    Article  CAS  PubMed  Google Scholar 

  69. Tarantino P, Carmagnani Pestana R, Corti C, Modi S, Bardia A, Tolaney SM, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 2022;72:165–82.

    Article  PubMed  Google Scholar 

  70. Tarantino P, Ricciuti B, Pradhan SM, Tolaney SM. Optimizing the safety of antibody-drug conjugates for patients with solid tumours. Nat Rev Clin Oncol. 2023;20:558–76.

    Article  CAS  PubMed  Google Scholar 

  71. Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018;36:121–35.

    Article  CAS  PubMed  Google Scholar 

  73. Dominguez-Llamas S, Caro-Magdaleno M, Mataix-Albert B, Aviles-Prieto J, Romero-Barranca I, Rodriguez-de-la-Rua E. Adverse events of antibody-drug conjugates on the ocular surface in cancer therapy. Clin Transl Oncol. 2023;25:3086–100.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Eaton JS, Miller PE, Mannis MJ, Murphy CJ. Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther. 2015;31:589–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moilanen T, Jokimaki A, Tenhunen O, Koivunen JP. Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients. J Cancer Res Clin Oncol. 2018;144:1613–21.

    Article  CAS  PubMed  Google Scholar 

  76. D’Arienzo A, Verrazzo A, Pagliuca M, Napolitano F, Parola S, Viggiani M, et al. Toxicity profile of antibody-drug conjugates in breast cancer: practical considerations. EClinicalMedicine. 2023;62:102113.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fu Z, Liu J, Li S, Shi C, Zhang Y. Treatment-related adverse events associated with HER2-targeted antibody-drug conjugates in clinical trials: a systematic review and meta-analysis. EClinicalMedicine. 2023;55:101795.

    Article  PubMed  Google Scholar 

  78. Chiu JWY, Lee SC, Ho JC, Park YH, Chao TC, Kim SB, et al. Clinical guidance on the monitoring and management of trastuzumab deruxtecan (T-DXd)-related adverse events: insights from an Asia-Pacific multidisciplinary panel. Drug Saf. 2023;46:927–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Riudavets M, Azarine A, Smaali S, Kim YW, Thomas de Montpreville V, Grecea AM, et al. Unexpected cardiotoxicity in patients with HER2-mutant NSCLC treated with trastuzumab deruxtecan: a case report. JTO Clin Res Rep. 2022;3:100432.

    PubMed  PubMed Central  Google Scholar 

  80. Lyon AR, Lopez-Fernandez T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43:4229–361.

    Article  PubMed  Google Scholar 

  81. Marks S, Naidoo J. Antibody drug conjugates in non-small cell lung cancer: an emerging therapeutic approach. Lung Cancer. 2022;163:59–68.

    Article  CAS  PubMed  Google Scholar 

  82. Cortes J, Dieras V, Lorenzen S, Montemurro F, Riera-Knorrenschild J, Thuss-Patience P, et al. Efficacy and safety of trastuzumab emtansine plus capecitabine vs trastuzumab emtansine alone in patients with previously treated ERBB2 (HER2)-positive metastatic breast cancer: a phase 1 and randomized phase 2 trial. JAMA Oncol. 2020;6:1203–9.

    Article  PubMed  Google Scholar 

  83. Lopez-Miranda E, Perez-Garcia JM, Di Cosimo S, Brain E, Ravnik M, Escriva-de-Romani S, et al. Trastuzumab emtansine plus non-pegylated liposomal doxorubicin in HER2-positive metastatic breast cancer (thelma): a single-arm, multicenter, phase Ib trial. Cancers (Basel). 2020;12:3509.

    Article  CAS  PubMed  Google Scholar 

  84. Nicolo E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM, et al. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev. 2022;106:102395.

    Article  CAS  PubMed  Google Scholar 

  85. •• Goto Y, Su W-C, Levy BP, Rixe O, Yang T-Y, Tolcher AW, et al. TROPION-Lung02: datopotamab deruxtecan (Dato-DXd) plus pembrolizumab (pembro) with or without platinum chemotherapy (Pt-CT) in advanced non-small cell lung cancer (aNSCLC). Am Soc Clin Oncol: J Clin Oncol. 2023:41(16_suppl):9004. https://doi.org/10.1200/JCO.2023.41.16_suppl.9004. A phase 1b, global, dose-escalation and -expansion study evaluating Datopotamab deruxtecan plus pembrolizumab with or without platinum chemotherapy in advanced non-small cell lung cancer.

  86. Levy BP, Felip E, Reck M, Yang JC, Cappuzzo F, Yoneshima Y, et al. TROPION-Lung08: phase III study of datopotamab deruxtecan plus pembrolizumab as first-line therapy for advanced NSCLC. Future Oncol. 2023;19:1461–72.

    Article  CAS  PubMed  Google Scholar 

  87. Borghaei H, Besse B, Bardia A, Mazieres J, Popat S, Augustine B, et al. P01. 02 Trastuzumab deruxtecan plus pembrolizumab in advanced/metastatic breast or non-small cell lung cancer: a phase 1b study. J Thor Oncol. 2021;16:S236.

  88. Planchard D, Yang J-H, Brahmer J, Ragone A, Chen J, Liu F, et al. 185TiP A phase Ib dose-escalation study evaluating trastuzumab deruxtecan (T-DXd) and durvalumab in combination with chemotherapy as first-line treatment in patients with advanced or metastatic nonsquamous non-small cell lung cancer (NSCLC) and HER2 overexpression (DESTINY-Lung03). J Thorac Oncol. 2021;16:S798.

    Article  Google Scholar 

  89. Borghaei H, Gutierrez M, Waqar S, Kitazono S, Yin J, Xie J, et al. P47. 06 TROPION-Lung04: datopotamab deruxtecan (Dato-DXd) plus durvalumab and platinum-based chemotherapy in advanced NSCLC. J Thor Oncol. 2021;16:S1098-S9.

  90. Garon EB, Liu SV, Owen SP, Reck M, Neal JW, Vicente D, et al. EVOKE-02: a phase 2 study of sacituzumab govitecan (SG) plus pembrolizumab (pembro) with or without platinum chemotherapy in first-line metastatic non–small cell lung cancer (NSCLC). Am Soc Clin Oncol. 2022.

  91. Kayatani H, Ohashi K, Ninomiya K, Makimoto G, Nishii K, Higo H, et al. Beneficial effect of erlotinib and trastuzumab emtansine combination in lung tumors harboring EGFR mutations. Biochem Biophys Res Commun. 2020;532:341–6.

    Article  CAS  PubMed  Google Scholar 

  92. Jebbink M, de Langen AJ, Monkhorst K, Boelens MC, van den Broek D, van der Noort V, et al. Trastuzumab-emtansine and osimertinib combination therapy to target HER2 bypass track resistance in EGFR mutation-positive NSCLC. JTO Clin Res Rep. 2023;4:100481.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Camidge DR, Barlesi F, Goldman JW, Morgensztern D, Heist R, Vokes E, et al. Phase Ib study of telisotuzumab vedotin in combination with erlotinib in patients with c-Met protein-expressing non-small-cell lung cancer. J Clin Oncol. 2023;41:1105–15.

    Article  CAS  PubMed  Google Scholar 

  94. Li Y, Li L, Fu H, Yao Q, Wang L, Lou L. Combined inhibition of PARP and ATR synergistically potentiates the antitumor activity of HER2-targeting antibody-drug conjugate in HER2-positive cancers. Am J Cancer Res. 2023;13:161–75.

    PubMed  PubMed Central  Google Scholar 

  95. Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35:e00225.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers (Basel). 2023;15:1845.

    Article  CAS  PubMed  Google Scholar 

  97. Subbiah V, Erwin W, Mawlawi O, McCoy A, Wages D, Wheeler C, et al. Phase I study of P-cadherin-targeted radioimmunotherapy with (90)Y-FF-21101 monoclonal antibody in solid tumors. Clin Cancer Res. 2020;26:5830–42.

    Article  CAS  PubMed  Google Scholar 

  98. Dumbrava EI, Sharma MR, Carvajal RD, Catenacci D, Emens LA, Gadgeel SM, et al. Abstract OT-03–02: phase 1/2 study of a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), BDC-1001, as a single agent and in combination with an immune checkpoint inhibitor in patients with advanced HER2-expressing solid tumors. Cancer Res. 2021;81:OT-03–02.

  99. Yamazaki CM, Yamaguchi A, Anami Y, Xiong W, Otani Y, Lee J, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun. 2021;12:3528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oh D-Y, Hamilton E, Hanna D, Beeram M, Lee K-W, Kang Y-K, et al. Safety, anti-tumour activity, and biomarker results of the HER2-targeted bispecific antibody ZW25 in HER2-expressing solid tumours. Ann Oncol. 2019;30:ix22.

  101. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29:117–29.

    Article  CAS  PubMed  Google Scholar 

  102. Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, et al. Factors affecting the pharmacology of antibody-drug conjugates. Antibodies (Basel). 2018;7:10.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 82270940).

Author information

Authors and Affiliations

Authors

Contributions

XH C and CC Z conceived and designed the work. XH C drafted the manuscript. XH C and CC Z revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Changchun Zeng MD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zeng, C. Pioneering the Way: The Revolutionary Potential of Antibody–Drug Conjugates in NSCLC. Curr. Treat. Options in Oncol. 25, 556–584 (2024). https://doi.org/10.1007/s11864-024-01196-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-024-01196-2

Keywords

Navigation