Skip to main content
Log in

Capturing the Interaction Between Mold Flux and Different Steel Compositions During Industrial-Scale Continuous Casting Trials

  • Thermodynamic and Process Modeling Tools for Material Production Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mold fluxes play pivotal roles during the continuous casting process, and it is important to choose a correct flux for the steel grade being cast. In the present work, interactions between various steel grades and CaO-SiO2-based flux is captured through plant measurements. Mold slag pool depth and composition were measured at different durations during the casting process. Further, a kinetic model has been developed to validate the change in mold flux composition with time. The model is based on the effective equilibrium reaction zone concept, and is dynamically linked to the ChemApp thermodynamic library, which provides access to thermodynamic databases of the FactSage software. Casting parameters such as casting speed variation (1–1.35 m/s), slag pool depth (10–30 mm), and temperature (1500°C, 1400°C, and 1300°C) across each flux layer have been used as inputs to the model. Three plant cases were validated using the model, namely low-C steel (C ~ 0.05%, Mn ~ 0.5%, Al ~ 0.05%), medium-C steel (C ~ 0.15%, Mn ~ 1.1%, Al ~ 0.05%), and high-Si steel (C ~ 0.005%, Mn ~ 0.2%, Al ~ 1%, Si ~ 3.2%). The model predicted the change in slag composition in real time, which showed a significant SiO2 reduction from the mold slag and at the same time an Al2O3 pick-up into it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Sauerhammer, Metall. Mater. Trans. B 36, 503 https://doi.org/10.1007/s11663-005-0042-z (2005).

    Article  Google Scholar 

  2. N. Sridhar and D. Dunn, Corrosion 50, 66 (1994).

    Article  Google Scholar 

  3. K.C. Mills and A.B. Fox, ISIJ Int. 43, 1479 https://doi.org/10.2355/isijinternational.43.1479 (2003).

    Article  Google Scholar 

  4. M. Wang, Y.-P. Bao, H. Cui, H.-J. Wu, and W.-S. Wu, ISIJ Int. 50, 1606 https://doi.org/10.2355/isijinternational.50.1606 (2010).

    Article  Google Scholar 

  5. J. Yang, H. Cui, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai, Metall. Mater. Trans. B 50, 2636 https://doi.org/10.1007/s11663-019-01667-0 (2019).

    Article  Google Scholar 

  6. J. Yang, J. Zhang, O. Ostrovski, Y. Sasaki, C. Zhang, and D. Cai, Metall. Mater. Trans. B 50, 2175 https://doi.org/10.1007/s11663-019-01643-8 (2019).

    Article  Google Scholar 

  7. J. Zhang, B. Zhao, and B. Yan, Metall. Mater. Trans. B 54, 981 https://doi.org/10.1007/s11663-023-02749-w (2023).

    Article  Google Scholar 

  8. M.-S. Kim, M.-S. Park, and Y.-B. Kang, Metall. Mater. Trans. B 50, 2077 https://doi.org/10.1007/s11663-019-01658-1 (2019).

    Article  Google Scholar 

  9. G.H. Kim and I. Sohn, Metall. Mater. Trans. B 47, 1773 https://doi.org/10.1007/s11663-016-0650-9 (2016).

    Article  Google Scholar 

  10. J. Yang, L. Wang, Y. Li, T. Wang, L. Kong, and X. Zang, Metall. Mater. Trans. B 53, 1516 https://doi.org/10.1007/s11663-022-02461-1 (2022).

    Article  Google Scholar 

  11. G.-L. Ou, Y.-C. Liu, S.-Y. Yen, H.-Y. Wang, Y.-H. Su, M.-J. Lu, and S.-K. Lin, J. Mater. Res. Technol. 9, 12091 https://doi.org/10.1016/j.jmrt.2020.08.111 (2020).

    Article  Google Scholar 

  12. P. Ni, T. Tanaka, M. Suzuki, M. Nakamoto, M. Ersson, and P.G. Jönsson, ISIJ Int. 59, 2024 https://doi.org/10.2355/isijinternational.ISIJINT-2019-007 (2019).

    Article  Google Scholar 

  13. M.-S. Kim and Y.-B. Kang, Calphad 61, 105 https://doi.org/10.1016/j.calphad.2018.02.010 (2018).

    Article  Google Scholar 

  14. J. Park, S. Sridhar, and R.J. Fruehan, Metall. Mater. Trans. B 45, 1380 https://doi.org/10.1007/s11663-014-0076-1 (2014).

    Article  Google Scholar 

  15. Q. Wang, S. Qiu, and P. Zhao, Metall. Mater. Trans. B 43, 424 https://doi.org/10.1007/s11663-011-9600-8 (2012).

    Article  Google Scholar 

  16. W. Ju-jin, Z. Li-feng, C. Wei, W. Sheng-dong, Z. Yue-xin, and R. Ying, J. Eng. Sci. 43, 786 (2021).

    Google Scholar 

  17. M.-A. Van Ende and I.-H. Jung, ISIJ Int. 54, 489 https://doi.org/10.2355/isijinternational.54.489 (2014).

    Article  Google Scholar 

  18. N. Pradhan, M. Ghosh, D.S. Bhor, and S. Mazumdar, ISIJ Int. 39, 804 https://doi.org/10.2355/isijinternational.39.804 (1999).

    Article  Google Scholar 

  19. J.L. Klug, M.M. d. S.M. Pereira, E.L. Nohara, S.L. d. Freitas, G.T. Ferreira, and D. Jung, Ironmak. Steelmak. 43, 559 (2016). https://doi.org/10.1080/03019233.2016.1213026

  20. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic Press, New York, 1970), pp74–91.

    Google Scholar 

  21. C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, and J. Melançon, Calphad 55, 1 https://doi.org/10.1016/j.calphad.2016.07.004 (2016).

    Article  Google Scholar 

  22. A.D. Pelton and P. Chartrand, Metall. Mater. Trans. A 32, 1355 https://doi.org/10.1007/s11661-001-0226-3 (2001).

    Article  Google Scholar 

  23. T. Schulz, B. Lychatz, N. Haustein, and D. Janke, Metall. Mater. Trans. B 44, 317 https://doi.org/10.1007/s11663-013-9796-x (2013).

    Article  Google Scholar 

  24. I.-H. Jung and M.-A. Van Ende, Metall. Mater. Trans. B 51, 1851 https://doi.org/10.1007/s11663-020-01908-7 (2020).

    Article  Google Scholar 

  25. M.-A. Van Ende and I.-H. Jung, Metall. Mater. Trans. B 48, 28 https://doi.org/10.1007/s11663-016-0698-6 (2017).

    Article  Google Scholar 

  26. M.-A. Van Ende and I.-H. Jung, Comput. Mater. Syst. Des. 47, 66 (2018).

    Google Scholar 

  27. M.-A. Van Ende, Y.-M. Kim, M.-K. Cho, J. Choi, and I.-H. Jung, Metall. Mater. Trans. B 42, 477 https://doi.org/10.1007/s11663-011-9495-4 (2011).

    Article  Google Scholar 

  28. S. Petersen and K. Hack, Int. J. Mater. Res. 10, 98 https://doi.org/10.3139/146.101551 (2007).

    Article  Google Scholar 

  29. M. Dapiaggi, G. Artioli, C. Righi, R. Carli, and J. Non-Cryst, Solids 353, 2852 https://doi.org/10.1016/j.jnoncrysol.2007.05.019 (2007).

    Article  Google Scholar 

  30. R. Carli, C. Righi, and M. Dapiaggi, in Proceedings of the 8th Conference on Molten Slags, Fluxes and Salts. Editor M. Sanches (Santiago, Chile: GECAMIN), 1121 (2009).

  31. T. Watanabe, H. Fukuyama, and K. Nagata, ISIJ Int. 42, 489 https://doi.org/10.2355/isijinternational.42.489 (2002).

    Article  Google Scholar 

  32. M.-D. Seo, C.-B. Shi, H. Wang, J.-W. Cho, S.-H. Kim, and J. Non-Cryst, Solids 412, 58 https://doi.org/10.1016/j.jnoncrysol.2015.01.008 (2015).

    Article  Google Scholar 

  33. H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar, ISIJ Int. 50, 1142 https://doi.org/10.2355/isijinternational.50.1142 (2010).

    Article  Google Scholar 

  34. Z. Zhang, G. Wen, J. Liao, and S. Sridhar, Steel Res. Int. 81, 3264 https://doi.org/10.1002/srin.201000058 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Management of Tata Steel, India, for all the financial assistance given to carry out the research and giving permission to publish the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 462 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.P., Ranjan, M., Srivastava, K. et al. Capturing the Interaction Between Mold Flux and Different Steel Compositions During Industrial-Scale Continuous Casting Trials. JOM (2024). https://doi.org/10.1007/s11837-024-06570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06570-x

Navigation