Skip to main content

Advertisement

Log in

The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future with Green Hydrogen

  • Corrosion and Protection of Materials at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydrogen is being considered integral to the future energy landscape but there is limited mechanistic understanding and a lack of predictive models to describe the combined effects of alloy and gas composition, temperature, thermal cycling and water vapor contents on the oxidation behavior of high-temperature materials. Experimental evaluations were combined with coupled thermodynamic-kinetic modeling to investigate the oxidation behavior of five representative Ni-based superalloys in two water vapor contents (10%, 60% H2O) under thermal cycling (1-h, 100-h cyles) conditions at 800°C and 1000°C. The alloy with the highest Ti content demonstrated the poorest cyclic oxidation behavior while the alloy with highest Cr and Al contents was expected to continue to support protective formation of a compact Al2O3 scale. Accelerated degradation of the chromia-forming alloys was observed in the higher water vapor content but the impact on transient oxidation of the alumina-forming alloys needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Federal Government Nationally Determined Contribution, Reducing Greenhouse Gases in the United States: A 2030 Emissions Target. 2021. 1. https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf

  2. S. Bragg-Sitton, J. Gorman, G. Burton, M. Moore, A. Siddiqui, T. Nagasawa, H. Kamide, T. Shibata, S. Arai, K. Araj, E. Chesire, T. Stone, P. Rogers, G. Peel, H. Kamide, M. Berthelemy, H. Paillere, P. Fraser, B. Wanner, C. Pavarini, M. Berthelemy, S. Bilbao-Y-Leon, A. Rising, S. Feutry, A. Herzog, D. Throne, M. Korsnick, K. Frick, M. Brown, J. Cox, C. Hughes, A. Omoto, and C. Forsberg, NREL/TP-6A50-77088, National Renewable Energy Lab. (NREL), Golden, CO (2020)

  3. M. Noussan, P.P. Raimondi, R. Scita, and M. Hafner, Sustain. Basel, 13 (2021)

  4. J. Matthew, and S.J.D. Donachie, Superalloys: A Technical Guide, 2nd edn. (ASM International, New York, 2002), pp 1–24.

    Google Scholar 

  5. B.A. Pint, J.R. DiStefano, and I.G. Wright, Mater. Sci. Eng. A 415, 255. (2006).

    Article  Google Scholar 

  6. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2006), pp 1–31.

    Book  Google Scholar 

  7. C.L. Angerman, Oxid. Metals 5, 149. (1972).

    Article  Google Scholar 

  8. H. Hindam, and D.P. Whittle, Oxid. Metals 18, 245. (1982).

    Article  Google Scholar 

  9. P. Huczkowski, W. Lehnert, H.H. Angermann, A. Chyrkin, R. Pillai, D. Grüner, E. Hejrani, and W.J. Quadakkers, Mater. Corr. 68, 159. (2017).

    Google Scholar 

  10. B.A. Pint, Oxid. Metals 95, 335. (2021).

    Article  Google Scholar 

  11. H. Asteman, J.E. Svensson, L.G. Johansson, and M. Norell, Oxid. Metals 52, 95. (1999).

    Article  Google Scholar 

  12. K. Onal, M.C. Maris-Sida, G.H. Meier, and F.S. Pettit, Mater. High Temp. 20, 327. (2003).

    Article  Google Scholar 

  13. K. Wollgarten, T. Galiullin, W.J. Nowak, W.J. Quadakkers, and D. Naumenko, Corros. Sci. 173, 1. (2020).

    Article  Google Scholar 

  14. P. Chiesa, G. Lozza, and L. Mazzocchi, J. Eng. Gas Turbines Power 127, 73. (2005).

    Article  Google Scholar 

  15. M. Welch, Decarbonizing power generation through the use of hydrogen as a gas turbine fuel, in Paper presented at the ASME Power Conference, Salt Lake City, Utah (2019)

  16. Y. Wu, and T. Narita, Surf. Coat. Tech 202, 140. (2007).

    Article  Google Scholar 

  17. M.C. Maris-Sida, G.H. Meier, and F.S. Pettit, Metall. Trans. A 34A, 2609. (2003).

    Article  Google Scholar 

  18. R. Viswanathan, J. Shingledecker, and R. Purgert, Power 154, 41. (2010).

    Google Scholar 

  19. R. Pillai, W.G. Sloof, A. Chyrkin, L. Singheiser, and W.J. Quadakkers, Mater. High Temp. 32, 57. (2015).

    Article  Google Scholar 

  20. W. Leng, R. Pillai, D. Naumenko, T. Galiullin, and W.J. Quadakkers, Corros. Sci. 167, 1. (2020).

    Article  Google Scholar 

  21. R. Pillai, A. Chyrkin, T. Galiullin, E. Wessel, D. Gruener, and W.J. Quadakkers, Corros. Sci. 127, 27. (2017).

    Article  Google Scholar 

  22. R. Pillai, K. Kane, M. Lance, and B.A. Pint, Computational methods to accelerate development of corrosion resistant coatings for industrial gas turbines, in Paper presented at the superalloys, virtual (2021)

  23. R. Pillai, S.S. Raiman, and B.A. Pint, J. Nucl. Mater. 546, 1. (2021).

    Article  Google Scholar 

  24. B.A. Pint, R. Peraldi, and P.J. Maziasz, The use of model alloys to develop corrosion-resistant stainless steels, in Paper Presented at the High Temperature Corrosion and Protection of Materials 6, Prt 1 and 2, Proceedings (2004)

  25. R. Pillai, T. Galiullin, A. Chyrkin, and W.J. Quadakkers, Calphad 53, 62. (2016).

    Article  Google Scholar 

  26. H. Larsson, H. Strandlund, and M. Hillert, Acta Mater. 54, 945. (2006).

    Article  Google Scholar 

  27. H. Larsson, and A. Engstrom, Acta Mater. 54, 2431. (2006).

    Article  Google Scholar 

  28. TCNi8 version 8 (Thermo-Calc, Sweden, 2018), Accessed 15 July, 2021

  29. MobNi4 version 4 (Thermo-Calc, Sweden, 2018), Accessed 15 July, 2021

  30. C.S. Giggins, and F.S. Pettit, J. Electrochem. Soc. 118, 1782. (1971).

    Article  Google Scholar 

  31. M. Levy, P. Farrell, and F. Pettit, Corrosion 42, 708. (1986).

    Article  Google Scholar 

  32. S.W. Yang, Oxid. Metals 15, 375. (1981).

    Article  Google Scholar 

  33. W.J. Nowak, B. Wierzba, and J. Sieniawski, High Temp. Mater. Process. (Lond.) 37, 801. (2018).

    Article  Google Scholar 

  34. W.J. Nowak, D. Naumenko, A. Jalowicka, D.J. Young, V. Nischwitz, and W.J. Quadakkers, Mater. Corr. 68, 171. (2017).

    Google Scholar 

  35. D.J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, 2008).

    Google Scholar 

  36. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Metals 44, 113. (1995).

    Article  Google Scholar 

  37. A. Holt, and P. Kofstad, Solid State Ionics 117, 21. (1999).

    Article  Google Scholar 

  38. N. Vialas, and D. Monceau, Oxid. Metals 66, 155. (2006).

    Article  Google Scholar 

  39. B. Li, and B. Gleeson, Oxid. Metals 62, 45. (2004).

    Article  Google Scholar 

  40. A. Jalowicka, PhD Thesis, Fakultaet fuer Maschinenwesen (RWTH Aachen, 2013)

  41. W. Nowak, P. Wierzba, D. Naumenko, W. Quadakkers, and J. Sieniawski, Adv. Manuf. Sci. Technol. 40, 41. (2016).

    Google Scholar 

  42. R. Pillai, M. Romedenne, J.A. Haynes, and B.A. Pint, Oxid. Metals 95, 157. (2021).

    Article  Google Scholar 

  43. J.L. Smialek and B.A. Pint, High Temperature Corrosion and Protection of Materials 5, Pts 1 and 2, 369-3, p. 459 (2001)

  44. B.A. Pint, J. Am. Ceram. Soc. 86, 686. (2003).

    Article  Google Scholar 

  45. D. Naumenko, B.A. Pint, and W.J. Quadakkers, Oxid. Metals 86, 1. (2016).

    Article  Google Scholar 

  46. D.J. Young, and B.A. Pint, Oxid. Metals 66, 137. (2006).

    Article  Google Scholar 

  47. R. Pillai, H. Ackermann, and K. Lucka, Corros. Sci. 69, 181. (2013).

    Article  Google Scholar 

  48. R. Duan, A. Jalowicka, K. Unocic, B.A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai, and W.J. Quadakkers, Oxid. Metals 87, 11. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank G. Garner, T. Lowe and V. Cox for assistance with the experimental work and microstructural characterization at ORNL. This research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Combined Heat and Power Program. The authors sincerely thank M. Romedenne and C. Parker for providing valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pillai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, R., Pint, B.A. The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future with Green Hydrogen. JOM 73, 3988–3997 (2021). https://doi.org/10.1007/s11837-021-04972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04972-9

Navigation