Skip to main content
Log in

Effects of \({{{S}}^{{{2} - }}}\)- and \({{S_2}O_3^{2 - }}\)-Containing Bayer Solutions on Corrosion of 16Mn Low-Alloy Steel at Elevated Temperatures

  • Corrosion and Protection of Materials at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Serious pipe corrosion caused by accumulated \({\text{S}}^{{{2} - }}\) in Bayer solutions occurs when treating high-sulfur diasporic bauxite by the Bayer process at elevated temperatures. The effects of \({\text{S}}^{{{2} - }}\) and \({\text{S}}_{{2}} {\text{O}}_{{3}}^{{{2} - }}\) anions on the corrosion behavior of 16Mn low-alloy steel have been investigated under simulated high-temperature Bayer digestion conditions. The structure of the corrosion layers was analyzed. Results show that \({\text{S}}^{{{2} - }}\) anions markedly accelerate such corrosion because of the generation of loose FeS-containing corrosion product, whereas \({\text{S}}_{{2}} {\text{O}}_{{3}}^{{{2} - }}\) anions with concentration > 8.7 g L−1 can remarkably retard the corrosion process by forming a compact magnetite layer with dense and fine particles. Corrosion surface topography analyses support all the experimental corrosion results. Thus, \({\text{S}}_{{2}} {\text{O}}_{{3}}^{{{2} - }}\) represents an effective corrosion inhibitor for 16Mn low-alloy steel, and \({\text{S}}^{{{2} - }}\) to \({\text{S}}_{{2}} {\text{O}}_{{3}}^{{{2} - }}\) transformations may contribute to preventing equipment corrosion when using high-sulfur bauxite in the Bayer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. 24.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Li, C. Li, Q. Zhou, T. Qi, G. Liu, and Z. Peng, Int. J. Miner. Process. 137, 9. (2015).

    Article  Google Scholar 

  2. W. Chai, Y. Huang, W. Peng, G. Han, Y. Cao, and J. Liu, Miner. Eng. 129, 93. (2018).

    Article  Google Scholar 

  3. X. Hu, W. Chen, and Q. Xie, Trans. Nonferrous Metal Soc. 21, 1641. (2011).

    Article  Google Scholar 

  4. B. Quan, J. Li, and C. Chen, Mater. Res. Express. 7, 035602. (2020).

    Article  Google Scholar 

  5. Z. Liu, H. Yan, W. Ma, and P. Xiong, Mining Metall. Explor. 37, 1617. (2020).

    Google Scholar 

  6. L. Freire, M.J. Carmezim, M.G.S. Ferreira, and M.F. Montemor, Electrochim. Acta. 56, 5280. (2011).

    Article  Google Scholar 

  7. I. Betova, M. Bojinov, O. Hyökyvirta, and T. Saario, Corros. Sci. 52, 1499. (2010).

    Article  Google Scholar 

  8. D. Singbeil, and D. Tromans, J. Electrochem. Soc. 128, 2065. (1981).

    Article  Google Scholar 

  9. D.C. Crowe, and D. Tromans, Corrosion 44, 142. (Houston, TX U. S.) (1988).

    Article  Google Scholar 

  10. P.M. Singh, O. Ige, and J. Mahmood, Corrosion 59, 843. (Houston, TX U. S.) (2003).

    Article  Google Scholar 

  11. R. Feng, J. Beck, M. Ziomek-Moroz, and S.N. Lvov, Electrochim. Acta. 241, 341. (2017).

    Article  Google Scholar 

  12. R. Sriram, and D. Tromans, Corros. Sci. 25, 79. (1985).

    Article  Google Scholar 

  13. Q. Xie, and W. Chen, Corros. Sci. 86, 252. (2014).

    Article  Google Scholar 

  14. H. Fu, C. Chen, J. Li, Y. Lan, L. Wang, and J. Yuan, Mater. Res. Express. 6, 1065a9. (2019).

    Article  Google Scholar 

  15. B.L. Quan, J.Q. Li, and C.Y. Chen, Int. J. Corros. 2016, 1. (2016).

    Article  Google Scholar 

  16. B.L. Quan, J.Q. Li, and C.Y. Chen, Mater. Res. Express. 6, 10. (2019).

    Google Scholar 

  17. J. Yuan, C. Chen, J. Li, B. Quan, L. Wang, Y. Lan, X. Du, and H. Fu, Mater. Express. 9, 914. (2019).

    Article  Google Scholar 

  18. J. Yuan, C. Chen, J. Li, B. Quan, Y. Lan, L. Wang, H. Fu, and J. Gai, Metals. 10, 1283. (2020).

    Article  Google Scholar 

  19. Q.L. Xie, W.M. Chen, and Q. Yang, Corrosion 70, 842. (Houston, TX , U. S.) (2014).

    Article  Google Scholar 

  20. X. Li, C. Li, Z. Peng, G. Liu, Q. Zhou, and T. Qi, Trans. Nonferrous Met. Soc. 25, 608. (2015).

    Article  Google Scholar 

  21. X. Li, F. Niu, G. Liu, T. Qi, Q. Zhou, and Z. Peng, Trans. Nonferrous Met. Soc. 27, 908. (2017).

    Article  Google Scholar 

  22. F. Hong, L. Feng, W. Qiao, and X. Lu, Heat Treat. Met. 44, 165. (Beijing, China) (2019).

    Google Scholar 

  23. H.L. Watts, and D.W. Utley, Anal. Chem. 25, 864. (1953).

    Article  Google Scholar 

  24. X. Li, Z. Zhou, Y. Wang, Q. Zhou, T. Qi, G. Liu, and Z. Peng, Trans. Nonferrous Met. Soc. 30, 1980. (2020).

    Article  Google Scholar 

  25. A. Bhattacharya, and P.M. Singh, Corros. Sci. 53, 71. (2011).

    Article  Google Scholar 

  26. D. Tromans, J. Electrochem. Soc. 127, 1253. (1980).

    Article  Google Scholar 

  27. P.E. Hazlewood, P.M. Singh, and J.S. Hsieh, Ind. Eng. Chem. Res. 45, 7789. (2006).

    Article  Google Scholar 

  28. R.J. Biernat, and R.G. Robins, Electrochim. Acta 17, 1261. (1972).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 51804142 and 51604309) and the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology (jxxjbs17077) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Niu or Xiaobin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2334 kb)

Supplementary file2 (TIFF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Niu, F., Wang, Y. et al. Effects of \({{{S}}^{{{2} - }}}\)- and \({{S_2}O_3^{2 - }}\)-Containing Bayer Solutions on Corrosion of 16Mn Low-Alloy Steel at Elevated Temperatures. JOM 73, 3920–3927 (2021). https://doi.org/10.1007/s11837-021-04918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04918-1

Navigation