Skip to main content
Log in

Effect of Sb on the Corrosion Behavior of Low-Alloy Steels in a Simulated Polluted Marine Atmosphere

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Sb on the corrosion resistance of low-alloy steels in a simulated polluted marine atmosphere was studied by electrochemical testing and weight loss measurements. The results showed that the addition of Sb could improve the corrosion resistance, which was confirmed by the increased polarization resistance of the steels that contained Sb. X-ray photoelectron spectroscopy analysis of the surfaces indicated that Sb participated in the formation of corrosion products and formed Sb2O5 in the rust layers. In addition, the precipitation of Sb2O5 with iron oxyhydroxides made the rust layers more uniform and compact, which provided the Sb-containing steels with better corrosion resistance than the Sb-free Steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Cai, Y. Zhao, X. Ma, K. Zhou, and Y. Chen, Influence of Environmental Factors on Atmospheric Corrosion in Dynamic Environment, Corros. Sci., 2018, 137, p 163–175

    Article  CAS  Google Scholar 

  2. K. Xiao, X. Gao, L. Yan, P. Yi, D. Zhang, C. Dong, J. Wu, and X. Li, Atmospheric Corrosion Factors of Printed Circuit Boards in a Dry-Heat Desert Environment: Salty Dust and Diurnal Temperature Difference, Chem. Eng. J., 2018, 336, p 92–101

    Article  CAS  Google Scholar 

  3. C. Dong, Z. Liu, X. Li, and Y. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrogen Energy, 2009, 34(24), p 9879–9884

    Article  CAS  Google Scholar 

  4. S.J. Thomas and C.J. Earls, Cross-Sectional Compactness and Bracing Requirements for HPS483W Girders, ASCE J. Struct. Eng., 2003, 129, p 1569–1583

    Article  Google Scholar 

  5. A. Usami, M. Okushima, and K. Kojima, An Innovative Acid-Resistant Low-Alloy Steel, Nippon Steel Tech. Rep., 2004, 90, p 25–32

    Google Scholar 

  6. L. Hao, S. Zhang, J. Dong, and W. Ke, Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments, Corros. Sci., 2011, 53(12), p 4187–4192

    Article  CAS  Google Scholar 

  7. W. Wu, Z. Zeng, X. Cheng, X. Li, and B. Liu, Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment, J. Mater. Eng. Perform., 2017, 26(12), p 6075–6086

    Article  CAS  Google Scholar 

  8. W. Wu, X. Cheng, H. Hou, B. Liu, and X. Li, Insight into the Product Film Formed on Ni-Advanced Weathering Steel in a Tropical Marine Atmosphere, Appl. Surf. Sci., 2018, 436, p 80–89

    Article  CAS  Google Scholar 

  9. T. Kandavel, R. Chandramouli, and P. Karthikeyan, Influence of Alloying Elements and Density on Aqueous Corrosion Behaviour of Some Sintered Low Alloy Steels, Mater. Des., 2012, 40, p 336–342

    Article  CAS  Google Scholar 

  10. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, The Corrosion Resistance and Passive Film Compositions of 12% Cr and 15% Cr Oxide Dispersion Strengthened Steels in Nitric Acid Media, Corros. Sci., 2014, 78, p 322–334

    Article  CAS  Google Scholar 

  11. R. Wang, S. Luo, M. Liu, and Y. Xue, Electrochemical Corrosion Performance of Cr and Al Alloy Steels Using a J55 Carbon Steel as Base Alloy, Corros. Sci., 2014, 85, p 270–279

    Article  CAS  Google Scholar 

  12. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. de la Fuente, Characterization of Corrosion Products Formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% Weathering Steel Exposed in Marine Atmospheres, Corros. Sci., 2014, 87, p 438–451

    Article  CAS  Google Scholar 

  13. J.W. Sowards, E.A. Pfeif, M.J. Connolly, J.D. McColskey, S.L. Miller, B.J. Simonds, and J.R. Fekete, Low-Cycle Fatigue Behavior of Fiber-Laser Welded, Corrosion-Resistant, High-Strength Low Alloy Sheet Steel, Mater. Des., 2017, 121, p 393–405

    Article  CAS  Google Scholar 

  14. A. Pardo, M. Merino, M. Carboneras, F. Viejo, R. Arrabal, and J. Munoz, Influence of Cu and Sn Content in the Corrosion of AISI, 304 and 316 Stainless Steels in H2SO4, Corros. Sci., 2006, 48(5), p 1075–1092

    Article  CAS  Google Scholar 

  15. Y. He, K.B. Yoo, J.C. Park, B.H. Lee, J.B. Yoon, J.G. Kim, and K. Shin, TEM Study the Corrosion Behavior of the Low Alloy Steels Developed for Flue Gas Desulfurization System, Mater. Charact., 2018, 142, p 540–549

    Article  CAS  Google Scholar 

  16. K.T. Kim and Y.S. Kim, Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-Bearing Low Alloy Steels, Corros. Sci. Technol., 2018, 17(4), p 154–165

    Google Scholar 

  17. Q.H. Zhao, W. Liu, J.W. Yang, Y.C. Zhu, B.L. Zhang, and M.X. Lu, Corrosion Behavior of Low Alloy Steels in a Wet–Dry Acid Humid Environment, Int. J. Miner. Metall. Mater., 2016, 23(9), p 1076–1086

    Article  CAS  Google Scholar 

  18. K.A. Lichti, M. Ko, and L. Wallis, Galvanic Corrosion Study of Carbon Steel to Arsenic and Antimony Couples, Geothermics, 2015, 58, p 15–21

    Article  Google Scholar 

  19. D.P. Le, W.S. Ji, J.G. Kim, K.J. Jeong, and S.H. Lee, Effect of Antimony on the Corrosion Behavior of Low-Alloy Steel for Flue Gas Desulfurization System, Corros. Sci., 2008, 50(4), p 1195–1204

    Article  CAS  Google Scholar 

  20. S.A. Park, S.H. Kim, Y.H. Yoo, and J.G. Kim, Effect of Chloride Ions on the Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony in Sulfuric Acid Solution, Met. Mater. Int., 2015, 21(3), p 470–478

    Article  CAS  Google Scholar 

  21. L. Zheng and S.H. Song, Antimony-Induced Embrittlement in Welding Heat-Affected Zones In a Cr–Mo Low-Alloy Steel, Philos. Mag. Lett., 2013, 93(7), p 405–412

    Article  CAS  Google Scholar 

  22. S. Ahn, K.J. Park, K. Oh, S. Hwang, B. Park, H. Kwon, and M. Shon, Effects of Sn and Sb on the Corrosion Resistance of AH 32 Steel in a Cargo Oil Tank Environment, Met. Mater. Int., 2015, 21(5), p 865–873

    Article  CAS  Google Scholar 

  23. B.Y. Wu, W. Liang, and A.H. Wang, Compositional Design of Low Carbon Sulphuric Acid Dewpoint Corrosion Resistant Steel and Corresponding Anticorrosive Mechanism, Corros. Eng. Sci. Technol., 2013, 48(4), p 313–320

    Article  CAS  Google Scholar 

  24. V.F.C. Lins, R.B. Soares, and E.A. Alvarenga, Corrosion Behaviour of Experimental Copper–Antimony–Molybdenum Carbon Steels in Industrial and Marine Atmospheres and in a Sulphuric Acid Aqueous Solution, Corros. Eng. Sci. Technol., 2017, 52(5), p 397–403

    Article  CAS  Google Scholar 

  25. E. do Vale-Júnior, S. Dosta, I.G. Cano, J.M. Guilemany, S. Garcia-Segura, and C.A. Martínez-Huitle, Acid Blue 29 Decolorization and Mineralization by anodic oxidation with a Cold Gas Spray Synthesized Sn–Cu–Sb Alloy Anode, Chemosphere, 2016, 148, p 47–54

    Article  Google Scholar 

  26. B. Lin, R. Hu, C. Ye, Y. Li, and C. Lin, A Study on the Initiation of Pitting Corrosion in Carbon Steel in Chloride-Containing Media Using Scanning Electrochemical Probes, Electrochim. Acta, 2010, 55(22), p 6542–6545

    Article  CAS  Google Scholar 

  27. Y. Kayali and B. Anaturk, Investigation of Electrochemical Corrosion Behavior in a 3.5 wt% NaCl Solution of Boronized Dual-Phase Steel, Mater. Des., 2013, 46, p 776–783

    Article  CAS  Google Scholar 

  28. H. Li, H. Yu, T. Zhou, B. Yin, S. Yin, and Y. Zhang, Effect of Tin on the Corrosion Behavior of Sea-Water Corrosion-Resisting Steel, Mater. Des., 2015, 84, p 1–9

    Article  CAS  Google Scholar 

  29. A. Biswas, S. Pal, and G. Udayabhanu, Experimental and Theoretical Studies of Xanthan Gum and Its Graft Co-polymer as Corrosion Inhibitor for Mild Steel in 15% HCl, Appl. Surf. Sci., 2015, 353, p 173–183

    Article  CAS  Google Scholar 

  30. M. Sun, M. Luo, C. Lu, T.W. Liu, Y.P. Wu, L.Z. Jiang, and J. Li, Effect of Alloying Tin on the Corrosion Characteristics of Austenitic Stainless Steel in Sulfuric Acid and Sodium Chloride Solutions, Acta Metall. Sin. (Engl. Lett.), 2015, 28(9), p 1089–1096

    Article  CAS  Google Scholar 

  31. X. Cheng, Z. Jin, M. Liu, and X. Li, Optimizing the Nickel Content in Weathering Steels to Enhance Their Corrosion Resistance in Acidic Atmospheres, Corros. Sci., 2017, 115, p 135–142

    Article  CAS  Google Scholar 

  32. N.K. Tewary, A. Kundu, R. Nandi, J. Saha, and S. Ghosh, Microstructural Characterisation and Corrosion Performance of Old Railway Girder Bridge Steel and Modern Weathering Structural Steel, Corros. Sci., 2016, 113, p 57–63

    Article  CAS  Google Scholar 

  33. O. Joseph, C. Loto, S. Sivaprasad, J. Ajayi, and S. Tarafder, Role of Chloride in the Corrosion and Fracture Behavior of Micro-alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment, Materials, 2016, 9(6), p 463

    Article  Google Scholar 

  34. E. Huttunen-Saarivirta, E. Isotahdon, J. Metsäjoki, T. Salminen, H. Ronkainen, and L. Carpén, Behaviour of Leaded Tin Bronze in Simulated Seawater in the Absence and Presence of Tribological Contact with Alumina Counterbody: Corrosion, Wear and Tribocorrosion, Tribol. Int., 2019, 129, p 257–271

    Article  CAS  Google Scholar 

  35. T. Hirasawa, K. Sasaki, M. Taguchi, and H. Kaneko, Electrochemical Characteristics of Pb–Sb Alloys in Sulfuric Acid Solutions, J. Power Sources, 2000, 85(1), p 44–48

    Article  CAS  Google Scholar 

  36. S. El-Egamy, Electrochemical Behavior of Antimony and Antimony Oxide Films in Acid Solutions, Corrosion, 2006, 62(9), p 739–744

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the National Key Research and Development Program of China (No. 2016YFB0300604) and the National Natural Science Foundation of China (Nos. 51871024 and 51671028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuequn Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jiang, C., Cheng, X. et al. Effect of Sb on the Corrosion Behavior of Low-Alloy Steels in a Simulated Polluted Marine Atmosphere. J. of Materi Eng and Perform 29, 2648–2657 (2020). https://doi.org/10.1007/s11665-020-04765-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04765-2

Keywords

Navigation