Skip to main content
Log in

Corrosion Performance of AISI 304 Stainless Steel in CO2-Saturated Brine Solution

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosion behavior of 304 stainless steel exposed to a NaCl (3.5 wt %) solution saturated with CO2 has been analyzed using electrochemical techniques including, potentiodynamic polarization, polarization resistance, and electrochemical impedance measurements. The stainless steel samples were evaluated having different surface and pre-oxidation treatments. The oxide scales formed on 304 stainless steel oxidized in different pO2 at 1100°C have also been studied and compared. Different morphologies and chemical composition of the oxide scales were observed after oxidation at low and high oxygen partial pressures. Oxide layers with high chromium content were formed on the ground sample pre-oxidized in Ar while iron-rich oxides were mainly formed under air atmosphere. The electrochemical corrosion results indicate that non-oxidized 304 SS exhibits the best corrosion performance followed by the ground sample heat-treated in argon. For the oxidized stainless steels, the differences in the electrochemical responses are associated to the morphological characteristics and composition of the oxide layer. Homogeneous and dense Cr-rich oxide scale provides protection to 304 SS during exposure to CO2-saturated solutions while the formation of Fe-oxides with porous morphology increases the corrosion rate of 304 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lo, K.H., Shek, C.H., and Lai, J.K.L., Mater. Sci. Eng., 2009, vol. 65, p. 39.

    Article  CAS  Google Scholar 

  2. Lima, A.S., Nascimento, A.M., Abreu, H.F.G., and De Lima-Neto, P., J. Mater. Sci., 2005, vol. 40, p.139.

    Article  CAS  Google Scholar 

  3. Sahin, S. and Übeyli, M., J. Fusion Energy, 2008, vol. 27, p. 271.

    Article  CAS  Google Scholar 

  4. Xu, J., Wu, X., and Han, E.H., Electrochim. Acta, 2012, vol. 71, p. 219.

    Article  CAS  Google Scholar 

  5. Terachi, T., Yamada, T., Miyamoto, T., and Arioka, K., J. Nucl. Sci. Technol., 2008, vol. 45, p. 975.

    Article  CAS  Google Scholar 

  6. Townsend, H.E., Corrosion, 2001, vol. 57, p. 497.

    Article  CAS  Google Scholar 

  7. Bojinov, M., Kinnunen, P., Lundgren, K., and Wikmark, G., J. Electrochem. Soc., 2005, vol. 152, p. B250.

    Article  CAS  Google Scholar 

  8. Perez, T.E., JOM, 2013, vol. 65, p. 1033.

    Article  CAS  Google Scholar 

  9. Banaś, J., Lelek-Borkowska, U., Mazurkiewicz, B., and Solarski, W., Electrochim. Acta, 2007, vol. 52, p. 5704.

    Article  CAS  Google Scholar 

  10. Kermani, M.B. and Morshed, A., Corrosion, 2003, vol. 59, p. 659.

    Article  CAS  Google Scholar 

  11. Ziemniak, S.E., Hanson, M., and Sander, P.C., Corros. Sci., 2008, vol. 50, p. 2465.

    Article  CAS  Google Scholar 

  12. Ghosh, S., Kumar, M.K., and Kain, V., Appl. Surf. Sci., 2013, vol. 264, p. 312.

    Article  CAS  Google Scholar 

  13. Rees, E.E., McPhail, D.S., Ryan, M.P., Kelly, J., and Dowsett, M.G., Appl. Surf. Sci., 2003, vols. 203–204, p. 660.

    Article  Google Scholar 

  14. Karki, V. and Singh, M., Int. J. Mass Spectrom., 2017, vol. 421, p. 51.

    Article  CAS  Google Scholar 

  15. Zheng, Z.B. and Zheng, Y.G., Corros. Sci., 2016, vol. 112, p. 657.

    Article  CAS  Google Scholar 

  16. Cissé, S., Laffont, L., Tanguy, B., Lafont, M.C., and Andrieu, E., Corros. Sci., 2012, vol. 56, p. 209.

    Article  CAS  Google Scholar 

  17. Sun, H., Wu, X., and Han, E.H., Corros. Sci., 2009, vol. 51, p. 2840.

    Article  CAS  Google Scholar 

  18. Tsutsumi, Y., Nishikata, A., and Tsuru, T., Corros. Sci., 2007, vol. 49, p. 1394.

    Article  CAS  Google Scholar 

  19. Sim, J.H., Kim, Y.S., and Cho, I.J., Nucl. Eng. Technol., 2017, vol. 49, p. 769.

    Article  CAS  Google Scholar 

  20. Cuevas Arteaga, C., Porcayo Calderón, J., Campos Sedano, C.F., and Rodríguez, J.A., Int. J. Electrochem. Sci., 2012, vol. 7, p. 445.

    CAS  Google Scholar 

  21. Kuang, W., Wu, X., and Han, E., Corros. Sci., 2010, vol. 52, p. 4081.

    Article  CAS  Google Scholar 

  22. Carmezim, M.J. and Simo, A.M., Corros. Sci., 2005, vol. 47, p. 581.

    Article  CAS  Google Scholar 

  23. Sun, M., Wu, X., Zhang, Z., and Han, E., Corros. Sci., 2009, vol. 51, p. 1069.

    Article  CAS  Google Scholar 

  24. Birks, N., Meier, G.H., and Pettit, F., Introduction to the High-Temperature Oxidation of Metals, New York: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  25. Baer, D.R., Appl. Surf. Sci., 1981, vol. 7, p. 69.

    Article  CAS  Google Scholar 

  26. Huntz, A.M., Reckmann, A., Haut, C., and Herbst, M., Mater. Sci. Eng., A, 2007, vol. 447, p. 266.

    Article  CAS  Google Scholar 

  27. Wild, R.K., Corros. Sci., 1977, vol. 17, p. 87.

    Article  CAS  Google Scholar 

  28. Young, D.J., High Temperature Oxidation and Corrosion of Metals, London: Elsevier, 2008.

    Google Scholar 

  29. Whittle, D.P. and Wood, G.C., J. Electrochem. Soc., 1967, vol. 114, p. 986.

    Article  CAS  Google Scholar 

  30. Yurek, G.J., Eisen, D., and Garratt-Reed, A., Metall. Trans. A, 1982, vol. 13, p. 473.

    Article  Google Scholar 

  31. Kain, V., Chandra, K., Adhe, K.N., and De, P.K., J. Nucl. Mater., 2004, vol. 334, p. 115.

    Article  CAS  Google Scholar 

  32. Merz, M.D., Metall. Trans., 1979, vol. 10, p. 71.

    Article  Google Scholar 

  33. Peng, X., Yan, J., Zhou, Y., and Wang, F., Acta Mater., 2005, vol. 53, p. 5079.

    Article  CAS  Google Scholar 

  34. Stott, F.H., Wei, F.I., and Enahoro, C.A., Werkst. Korros., 1989, vol. 40, p. 198.

    Article  CAS  Google Scholar 

  35. Riffard, F., Buscail, H., Caudron, E., Cueff, R., Issartel, C., and Perrier S., Mater Charact., 2002, vol. 49, p. 55.

    Article  CAS  Google Scholar 

  36. Devine, T.M., Corros. Sci., 1990, vol. 30, p. 135.

    Article  CAS  Google Scholar 

  37. Gurappa, I., Mater. Charact., 2002, vol. 49, p.73.

    Article  CAS  Google Scholar 

  38. Chen, C.F., Lu, M.X., Sun, D.B., Zhang, Z.H., and Chang, W., Corrosion, 2005, vol. 61, p. 594.

    Article  CAS  Google Scholar 

  39. Kargar, B.S., Moayed, M.H., Babakhani, A., and Davoodi, A., Corros. Sci., 2011, vol. 53, p. 135.

    Article  CAS  Google Scholar 

  40. Kocijan, A., Crtomir, D., and Jenko, M., Corros. Sci., 2007, vol. 49, p. 2083.

    Article  CAS  Google Scholar 

  41. Lakshminarayanan, V. and Sur, U.K., J. Phys., 2003, vol. 61, p. 361.

    CAS  Google Scholar 

  42. Porcayo-Calderon, J., Casales-Diaz, M., Rivera-Grau, L.M., Ortega-Toledo, D.M., et al., J. Chem., 2014, vol. 2014, p. 1.

    Article  CAS  Google Scholar 

  43. Beverskog, B., Bojinov, M., Englund, A., Kinnunen, P., et al., Corros. Sci., 2002, vol. 44, p. 1901.

    Article  CAS  Google Scholar 

  44. Cheng, Y.F., Bullerwell, J., and Steward, F.R., Electrochim. Acta, 2003, vol. 48, p. 1521.

    Article  CAS  Google Scholar 

  45. Linter, B.R. and Burstein, G.T., Corros. Sci., 1999, vol. 41, p. 117.

    Article  CAS  Google Scholar 

  46. Liu, C.T. and Wu, J.K., Corros. Sci., 2007, vol. 49, p. 2198.

    Article  CAS  Google Scholar 

  47. Zhang, H., Zhao, Y.L., and Jiang, Z.D., Mater. Lett., 2005, vol. 59, p. 3370.

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from CONACYT-Mexico is gratefully acknowledged. The authors also thank to the Catedras program and to the National Laboratories CENAPROT and LIDTRA, for providing all the facilities required to carrying out this work.

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ruiz-Luna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Luna, H., Porcayo-Calderón, J., Mora-García, A. et al. Corrosion Performance of AISI 304 Stainless Steel in CO2-Saturated Brine Solution. Prot Met Phys Chem Surf 55, 1226–1235 (2019). https://doi.org/10.1134/S2070205119060261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119060261

Keywords:

Navigation