Skip to main content
Log in

Intervening Interfacial Reaction Between Refractory and Rare Earth-Bearing Molten Steel by Pulsed Electric Current to Inhibit the Clogging of Submerged Entry Nozzle

  • Corrosion and Protection of Materials at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Pulsed electric current is used to inhibit the erosion of rare earth-bearing molten steel to refractory by interfering with its interface reaction. The refractory samples are eroded by molten steel for 5–30 min, and the average thickness of the erosion layer increases by 397% from 160 μm to 795 μm. However, the average thickness of the erosion layer only increases by 40% from 150 to 210 μm under the action of pulsed electric current. The desiliconization and oxidation of Ce/La at interface lead to a loose and porous erosion layer and the formation of initial deposits CeAlO3/LaAlO3 and CeAl11O18/LaAl11O18. The adhesion of inclusions to the deposits leads to an increase in the thickness of the erosion layer. However, the pulsed electric current inhibits the desiliconization and oxidation of RE, thereby forming a Si-rich amorphous phase, which coats on refractory surface and acts as a protective film to reduce further erosion of the refractory by the molten steel. As a result, the refractory material forms a dense erosion layer and a smooth surface under the action of pulsed electric current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Roungos, and C.G. Aneziris, Ceram. Int. 38, 919. (2012).

    Article  Google Scholar 

  2. A. Mertke, and C.G. Aneziris, Ceram. Int. 41, 1541. (2015).

    Article  Google Scholar 

  3. K. Narita, Transactions ISIJ 15, 145. (1975).

    Article  Google Scholar 

  4. H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, and J.D. Xing, Mater. Sci. Eng. A 466, 160. (2007).

    Article  Google Scholar 

  5. C.Y. Yang, Y.K. Luan, D.Z. Li, and Y.Y. Li, J. Mater. Sci. Technol. 35, 1298. (2019).

    Article  Google Scholar 

  6. C. Liu, R.I. Reynier, Z.Y. Liu, D.W. Zhang, X.G. Li, and H. Herman, Corros. Sci. 129, 82. (2017).

    Article  Google Scholar 

  7. H. Cui, Y.P. Bao, M. Wang, and W.S. Wu, Int. J. Miner. Mater. 17, 154. (2010).

    Article  Google Scholar 

  8. P.E. Waubdy, Int. Meter. Rev. 23, 74. (1978).

    Google Scholar 

  9. J.K.S. Svensson, A. Memarpour, S. Ekerot, V. Brabie, and P.G. Jonsson, Ironmak. Steelmak. 44, 117. (2017).

    Article  Google Scholar 

  10. Z.P. Chen, M.Y. Zhu, and G.H. Wen, Iron Steel 44, 28. (2009).

    Google Scholar 

  11. M.K. Sardar, S. Mukhopadhyay, U.K. Bandopadhyay, and S.K. Dhua, Steel Res. Int. 78, 136. (2007).

    Article  Google Scholar 

  12. L.F. Zhang, Y.F. Wang, and X.J. Zuo, Metall. Mater. Trans. B 39, 534. (2008).

    Article  Google Scholar 

  13. X.F. Zhang, and L.G. Yan, Acta Metall. Sin. 56, 257. (2020).

    Google Scholar 

  14. C.L. Liang, and K.L. Lin, Mater. Charact. 145, 545. (2018).

    Article  Google Scholar 

  15. J.D. Guo, X.L. Wang, and W.B. Dai, Mater. Sci. Technol. 31, 1545. (2015).

    Article  Google Scholar 

  16. X.F. Zhang, and R.S. Qin, Steel Res. Int. 89, 1800062. (2018).

    Article  Google Scholar 

  17. X.F. Zhang, and R.S. Qin, Appl. Phys. Let. 104, 114106. (2014).

    Article  Google Scholar 

  18. X.F. Zhang, W.J. Lu, and R.S. Qin, Scr. Mater. 69, 453. (2013).

    Article  Google Scholar 

  19. W.B. Dai, X.L. Zhou, X. Yang, G.P. Tang, D.B. Jia, N.L. Cheng, and J.K. Yu, Acta Metall. Sin. Engl. Lett. 29, 500. (2016).

    Article  Google Scholar 

  20. X. Yang, J.K. Yu, Z.Y. Liu, X.H. Hou, and B.Y. Ma, Ceram. Int. 43, 2881. (2016).

    Article  Google Scholar 

  21. J.K. Yu, X. Yang, Z.Y. Liu, X.H. Hou, and Z.K. Yin, Ceram. Int. 43, 13025. (2017).

    Article  Google Scholar 

  22. X. Yang, Z.Y. Liu, and J.K. Yu, J. Mater. Process. Tech. 259, 341. (2018).

    Article  Google Scholar 

  23. C. Tian, J.K. Yu, E.D. Jin, T.P. Wen, D.B. Jia, and L. Yuan, J. Alloys Compd. 809, 151825. (2019).

    Article  Google Scholar 

  24. C. Tian, J.K. Yu, E.D. Jin, T.P. Wen, D.B. Jia, Z.L. Liu, P.X. Fu, and L.Y, J. Alloys Compd. 792, 1 (2019).

  25. K. Sasai, and Y. Mizukami, ISIJ Int. 34, 802. (1994).

    Article  Google Scholar 

  26. S.N. Singh, Metall. Trans. 5, 2165. (1974).

    Article  Google Scholar 

  27. J.H. Lee, and Y.B. Kang, ISIJ Int. 60, 258. (2020).

    Article  Google Scholar 

  28. J.H. Lee, and Y.B. Kang, ISIJ Int. 60, 426. (2020).

    Article  Google Scholar 

  29. J.H. Lee, M.H. Kang, S.K. Kim, J. Kim, M.S. Kim, and Y.B. Kang, ISIJ Int. 59, 749. (2019).

    Article  Google Scholar 

  30. L.G. Yan, L. Chen, C.B. Liu, and X.F. Zhang, Metall. Mater. Trans. B 52, 1603. (2021).

    Article  Google Scholar 

  31. Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jang, and C. Peng, Metall. Res. Technol. 114, 304. (2017).

    Article  Google Scholar 

  32. Y. Vermeulen, B. Coletti, B. Blanpain, P. Wollants, and J. Vleugels, ISIJ Int. 42, 1234. (2002).

    Article  Google Scholar 

  33. J.H. Lee, M.H. Kang, S.K. Kim, and Y.B. Kang, ISIJ Int. 58, 1257. (2018).

    Article  Google Scholar 

  34. A. Memarpour, V. Brabie, and P. Jonsson, Ironmak. Steelmak. 38, 229. (2011).

    Article  Google Scholar 

  35. Y. Li, C. Liu, T. Zhang, M. Jiang, and C. Peng, Ironmak. Steelmak. 1 (2016)

  36. R.B. Tuttle, J.D. Smith, and K.D. Perslee, Metall. Mater. Trans. B 38, 101. (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (U1860206, 51874023), Fundamental Research Funds for the Central Universities (FRF-TP-20-04B), National Key Research and Development Program of China (2019YFC1908403), and Recruitment Program of Global Experts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfang Zhang or Lifeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Chen, L., Liu, C. et al. Intervening Interfacial Reaction Between Refractory and Rare Earth-Bearing Molten Steel by Pulsed Electric Current to Inhibit the Clogging of Submerged Entry Nozzle. JOM 73, 3910–3919 (2021). https://doi.org/10.1007/s11837-021-04869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04869-7

Navigation