Skip to main content
Log in

Improving the Intergranular Corrosion Resistance of Aged 316L Stainless Steel Heat Affected Zone by Electropulsing Beneath the Critical Temperature

  • Corrosion and Protection of Materials at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The improvement of the intergranular corrosion resistance of aged 316L stainless steel (316L) heat-affected zone by electropulsing treatment was studied. The results showed that the intergranular corrosion resistance of aged 316L HAZ increased with the increase of electropulsing frequency. As electropulsing frequency reached 170 Hz, most of M23C6 produced in austenite and δ-ferrite was dissolved during the aging process, and the intergranular corrosion resistance was basically restored. Thermodynamics and kinetic analysis clarified that electropulsing could reduce the thermodynamic dissolution barrier of M23C6 and improve the atomic diffusion flux, thereby promoting the dissolution and discontinuous distribution of M23C6 below its thermodynamic dissolution critical temperature and improving the intergranular corrosion resistance of aged 316L HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Ming, Z. Zhang, J. Wang, E.H. Han, and W. Ke, Mater. Charact. 97, 101. (2014).

    Article  Google Scholar 

  2. R. Zhu, J. Wang, L. Zhang, Z. Zhang, and E.H. Han, Corros. Sci. 112, 373. (2016).

    Article  Google Scholar 

  3. L. Dong, C. Ma, Q. Peng, E.H. Han, and W. Ke, J. Mater. Sci. Technol. 40, 1. (2020).

    Article  Google Scholar 

  4. Q. Xiong, H. Li, Z. Lu, J. Chen, Q. Xiao, J. Ma, and X. Ru, J. Nucl. Mater. 498, 227. (2018).

    Article  Google Scholar 

  5. G.F. Li, and J. Congleton, Corros. Sci. 42, 1005. (2000).

    Article  Google Scholar 

  6. L. Dong, Q. Peng, E.H. Han, W. Ke, and L. Wang, Corros. Sci. 107, 172. (2016).

    Article  Google Scholar 

  7. S.A. David, J.M. Vitek, and D.J. Alexander, J. Nondestruct. Eval. 15, 129. (1995).

    Article  Google Scholar 

  8. A.B. Rhouma, T. Amadou, H. Sidhom, and C. Braham, J. Alloys Compd. 708, 871. (2017).

    Article  Google Scholar 

  9. H.M. Chung, Int. J. Press. Vessel. Pip. 50, 179. (1992).

    Article  Google Scholar 

  10. S. Hong, H. Kim, B.S. Kong, C. Jang, I.H. Shin, J.S. Yang, and K.S. Lee, Int. J. Press. Vessel. Pip. 167, 32. (2018).

    Article  Google Scholar 

  11. H. Sahlaoui, K. Makhlouf, H. Sidhom, and J. Philibert, Mater. Sci. Eng. A 372, 98. (2004).

    Article  Google Scholar 

  12. C. Garcia, M.P.D. Tiedra, Y. Blanco, O. Martin, and F. Martin, Corros. Sci. 50, 2390. (2008).

    Article  Google Scholar 

  13. A. Kashiwar, N.P. Vennela, S.L. Kamath, and R.K. Khatirkar, Mater. Charact. 74, 55. (2012).

    Article  Google Scholar 

  14. Y. Jiao, W. Zheng, D.A. Guzonas, W.G. Cook, and J.R. Kish, J. Nucl. Mater. 464, 356. (2015).

    Article  Google Scholar 

  15. X. Liu, and X. Zhang, Scr. Mater. 153, 86. (2018).

    Article  Google Scholar 

  16. X. Cheng, and X. Zhang, ISIJ Int. 60, 1022. (2020).

    Article  Google Scholar 

  17. W. Wu, Y. Wang, J. Wang, and S. Wei, Mater. Sci. Eng. A 608, 190. (2014).

    Article  Google Scholar 

  18. X. Xu, Y. Zhao, B. Ma, and M. Zhang, Mater. Charact. 105, 90. (2015).

    Article  Google Scholar 

  19. W.J. Lu, X.F. Zhang, and R.S. Qin, Mater. Sci. Technol. 31, 1530. (2015).

    Article  Google Scholar 

  20. S. Qin, X. Ba, and X. Zhang, Scr. Mater. 178, 24. (2020).

    Article  Google Scholar 

  21. X.B. Liu, L.G. Yan, and X.F. Zhang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2020.140514 (2020).

    Article  Google Scholar 

  22. J.Y. Gao, X.B. Liu, H.F. Zhou, and X.F. Zhang, Acta Metall. Sin. 31, 1233. (2018).

    Article  Google Scholar 

  23. X. Liu, W. Lu, and X. Zhang, Acta Mater. 183, 51. (2020).

    Article  Google Scholar 

  24. R. Ma, S. Xiang, H. Zhang, and X. Zhang, Int. J. Hydrogen Energy 45, 9128. (2020).

    Article  Google Scholar 

  25. S. Ding, S. Xiang, X. Ba, X. Zhang, and Y. Fu, ISIJ Int. 60, 2015. (2020).

    Article  Google Scholar 

  26. K. Chandra, V. Kain, V.S. Raja, R. Tewari, and G.K. Dey, Corros. Sci. 54, 278. (2012).

    Article  Google Scholar 

  27. C.A.D. Rovere, F.S. Santos, R. Silva, C.A.C. Souza, and S.E. Kuri, Corros. Sci. 68, 84. (2013).

    Article  Google Scholar 

  28. V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P.D. Hodgson, and S. Thomas, Corros. Sci. 164, 108314. (2020).

    Article  Google Scholar 

  29. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, and R. Arrabal, Acta Mater. 55, 2239. (2007).

    Article  Google Scholar 

  30. B. Weiss, and R. Stickler, Met. Trans. 3, 851. (1972).

    Article  Google Scholar 

  31. Y. Jiang, G. Tang, C. Shek, Y. Zhu, and Z. Xu, Acta Mater. 57, 4797. (2009).

    Article  Google Scholar 

  32. J. Hao, H. Zhang, X. Zhang, and C. Liu, Steel Res. Int. 91, 2000041. (2020).

    Article  Google Scholar 

  33. S.N. L’vov, V.F. Nemchenko, P.S. Kislyi, T.S. Verkhoglyadova and T.Y. Kosolapova, Sov. Powder Metall. Met. Ceram., 1, 243 (1962).

  34. U. Bohnenkamp, R. Sandström, and G. Grimvall, J. Appl. Phys. 92, 4402. (2002).

    Article  Google Scholar 

  35. R.S. Qin, E.I. Samuel, and A. Bhowmik, J. Mater. Sci. 46, 2838. (2011).

    Article  Google Scholar 

  36. J.R. Lloyd, J. Phys. D. Appl. Phys. 32, 109. (1999).

    Article  Google Scholar 

  37. Y. Jiang, G. Tang, L. Guan, S. Wang, Z. Xu, C. Shek, and Y. Zhu, J. Mater. Res. 23, 2685. (2008).

    Article  Google Scholar 

  38. Z. Xu, G. Tang, S. Tian, and J. He, Mater. Sci. Eng. A 424, 300. (2006).

    Article  Google Scholar 

  39. V.M. Koleshko, and I.V. Kiryushin, Thin Solid Films 192, 181. (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (U1860206, 51874023), the National Key Research and Development Program of China (2019YFC1908403), Fundamental Research Funds for the Central Universities (FRF-TP-20-04B), and Recruitment Program of Global Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Yan, L., Cheng, X. et al. Improving the Intergranular Corrosion Resistance of Aged 316L Stainless Steel Heat Affected Zone by Electropulsing Beneath the Critical Temperature. JOM 73, 3928–3940 (2021). https://doi.org/10.1007/s11837-021-04941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04941-2

Navigation