Skip to main content
Log in

Joining AA7099 to Ni-Cr-Mo Steel Using Single Pass Friction Stir Dovetailing and AA6061 Butter Layer

  • Phase Transformations during Solid-phase Welding and Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel single pass friction stir dovetailing (FSD) method was developed to join thick-plate Al-8Zn-2Mg-1.8Cu alloy (AA7099) to Ni-Cr-Mo steel in a lap configuration through the use of an Al-1Mg-0.6Si-0.25Cu alloy (AA6061) butter layer that significantly reduces interfacial failures by inhibiting the formation of brittle Fe–Al intermetallic compounds (IMC). This study evaluates the strength and microstructural evolution of the aluminum/steel joint interface between single pass FSD of AA7099/AA6061(butter)/steel fabricated using three different FSD tool configurations (full thread, half smooth/half thread, no thread), of which the half smooth/half thread tool produced the strongest weld joint due to the absence of a Zn-rich IMC layer. The strength was tested using lap shear tensile testing, and the microstructure was examined using analytical electron microscopy. A discussion of the new FSD technique, joint configurations, and process parameters is provided along with joint microstructural analyses and mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Dilthey and L. Stein, Sci. Tech. Weld. Join. 11(2), 135. (2006).

    Article  Google Scholar 

  2. David, E. 2003 In: International Scientific Conference on Achievements in Mechanical and Materials Engineering. AMME.

  3. E. Polsen, L. Krogsrud, R. Carter, W. Oberle, C. Haines, and A. Littlefield. 2014, US Army TARDEC/Ground System Survivability Warren United States. Corpus ID: 113780805

  4. T. Siwowski, Struc. Eng. Int. 16(4), 286. (2006).

    Article  Google Scholar 

  5. T. Tanaka, T. Morishige, and T. Hirata, Scr. Mater. 61(7), 756. (2009).

    Article  Google Scholar 

  6. H.A. Derazkola, H.J. Aval, and M. Elyasi, Sci. Technol. Weld. Join 20(7), 553. (2015).

    Article  Google Scholar 

  7. K. Kimapong and T. Watanabe, Mater. Trans. 46(4), 835. (2005).

    Article  Google Scholar 

  8. R.P. Mahto, R. Bhoje, S.K. Pal, H.S. Joshi, and S. Das, Mater. Sci. Eng. A. 652, 136. (2016).

    Article  Google Scholar 

  9. M. Dehghani, A. Amadeh, and S.A. Mousavi, Mater. Des. 49, 433. (2013).

    Article  Google Scholar 

  10. A. Elrefaey, M. Gouda, M. Takahashi, and K. Ikeuchi, J. Mater. Eng. Perform. 14(1), 10. (2005).

    Article  Google Scholar 

  11. M. Haghshenas, A. Abdel-Gwad, A. Omran, B. Gökçe, S. Sahraeinejad, and A. Gerlich, Mater. Des. 55, 442. (2014).

    Article  Google Scholar 

  12. S. Lan, X. Liu, and J. Ni, Int. J. Adv. Des. Manuf. Technol. 82(9–12), 2183. (2016).

    Article  Google Scholar 

  13. W. Ratanathavorn, A. Melander, and H. Magnusson, Sci. Tech. Weld. Joi. 21(8), 653. (2016).

    Article  Google Scholar 

  14. T. Watanabe, H. Takayama, and A. Yanagisawa, J. Mater. Process. Technol. 178(1), 342. (2006).

    Article  Google Scholar 

  15. T. Wang, H. Sidhar, R.S. Mishra, Y. Hovanski, P. Upadhyay, and B. Carlson, Sci. Tech. Weld. Joi. 24(2), 178. (2019).

    Article  Google Scholar 

  16. A. Ebrahimian, and A.H. Kokabi, Mater. Des. 116, 599. (2017).

    Article  Google Scholar 

  17. P. Upadhyay, Y. Hovanski, S. Jana, and L.S. Fifield, J. Manuf. Sci. Eng. 139(3), 034501. (2017).

    Article  Google Scholar 

  18. Q. Zheng, X. Feng, Y. Shen, G. Huang, and P. Zhao, J. Alloys Compd. 686, 693. (2016).

    Article  Google Scholar 

  19. M. Geiger, F. Micari, M. Merklein, L. Fratini, D. Contorno, A. Giera, and D. Staud, Int. J. Mach. Tools Manuf. 48(5), 515. (2008).

    Article  Google Scholar 

  20. W.T. Evans, B.T. Gibson, J.T. Reynolds, A.M. Strauss, and G.E. Cook (2015) Manuf. Lett., 5(25)

  21. M. Reza-E-Rabby, K. Ross, N.R. Overman, M.J. Olszta, M. McDonnell, and S.A. Whalen, Scr. Mater. 148, 63. (2018).

    Article  Google Scholar 

  22. E.E. Patterson, Y. Hovanski, and D.P. Field, Metall. Mater. Trans. A 47(6), 2815. (2016).

    Article  Google Scholar 

  23. N.R. Council, Application of Lightweighting Technology to Military Aircraft, Vessels, and Vehicles (The National Academies Press, Washington, DC, 2012).

    Google Scholar 

  24. P. Goel, N.Z. Khan, Z.A. Khan, A. Ahmari, N. Gangil, M.H. Abidi, and A.N. Siddiquee, Mater. Manuf. Process. 34(2), 192. (2019).

    Article  Google Scholar 

  25. Y.C. Lim, L. Squires, T.-Y. Pan, M. Miles, G.-L. Song, Y. Wang, and Z. Feng, Mater. Des. 69, 37. (2015).

    Article  Google Scholar 

  26. M.D. Reza E Rabby, M.J. Olszta, N.R. Overman, M. McDonnell, and S.A. Whalen, J. Manuf. Process, 61, 25 (2021).

    Article  Google Scholar 

  27. Z.-I. Hu, H.-y. Yu, and Q. Pang, J. Manuf. Sci. Eng., 142(9), 091002 (2020).

    Google Scholar 

  28. M. Reza-E-Rabby, K. Ross, S. Whalen, Y. Hovanski, and M. McDonnell, in Friction Stir Welding and Processing IX (Springer, Cham, 2017), pp 67–77.

    Book  Google Scholar 

  29. M. Reza-E-Rabby, S. Whalen, K. Ross, and M. McDonnell, Friction Stir Welding and Processing X (Springer, Cham, 2019).

    Google Scholar 

  30. K. Ross and C. Sorensen, Friction stir welding and processing VII (Springer, Cham, 2013), pp 301–310.

    Google Scholar 

  31. J. Mayer, L.A. Giannuzzi, T. Kamino, and J. Michael, MRS Bull. 32(5), 400. (2007).

    Article  Google Scholar 

  32. K. Thompson, D. Lawrence, D. Larson, J. Olson, T. Kelly, and B. Gorman, Ultramicroscopy 107(2), 131. (2007).

    Article  Google Scholar 

  33. J. Grin, U. Burkhardt, M. Ellner, K. Peters, and Z. Kristallogr, Cryst. Mater. 209(6), 479. (1994).

    Google Scholar 

  34. U. Burkhardt, Y. Grin, M. Ellner, and K. Peters, Acta. Cryst. B 50(3), 313. (1994).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Army Combat Capabilities Development Command Ground Vehicle Systems Center [Military Interdepartmental Purchase Requests 10834736, 11008837, 11079043]. Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the United States Department of Energy under contract DE-AC05-76RL01830. The authors would also like to thank PNNL staff Alan Schemer-Kohrn and Anthony Guzman for assisting in microstructural analysis and mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Olszta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olszta, M.J., Overman, N.R., Reza-E-Rabby, M. et al. Joining AA7099 to Ni-Cr-Mo Steel Using Single Pass Friction Stir Dovetailing and AA6061 Butter Layer. JOM 73, 2203–2211 (2021). https://doi.org/10.1007/s11837-021-04668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04668-0

Navigation