Skip to main content
Log in

Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld zone and thermo-mechanically affected zones exhibited shear texture components; however, there were many textures that deviated from ideal simple shear. Factors affecting the microstructure which are characteristic of the friction stir welding process, such as post-recrystallization deformation and complex deformation induced by tool geometry were discussed as causes for deviation from simple shear textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

BM:

Base metal

BCC:

Body-centered cubic

BCT:

Body-centered tetragonal

CDRX:

Continuous dynamic recrystallization

EBSD:

Electron backscatter diffraction

EDS:

Energy dispersive spectroscopy

FCC:

Face-centered cubic

FE-SEM:

Field emission scanning electron microscope

FSS:

Friction stir scribe

FSW:

Friction stir welding

HAZ:

Heat-affected zone

HSLA:

High-strength low alloy

HABs:

High-angle boundaries

IMCs:

Intermetallic compounds

LABs:

Low-angle boundaries

ND:

Normal direction

PNNL:

Pacific Northwest National Laboratory

PP :

Point-per-point

PF:

Pole figure

RD:

Rolling direction

SEM:

Scanning electron microscopy

SD:

Shear direction

SPN:

Shear plane normal

TMAZ:

Thermo-mechanically affected zone

TD:

Transverse direction

V Fe :

Volume fraction of steel particles

WD:

Weld direction

WZ:

Weld zone

References

  1. K. Kimapong, T. Watanabe. Weld J (2004) 83: 277–82.

    Google Scholar 

  2. R. Johnson and P.L. Threadgill: Progress in Friction Stir Welding Of Aluminum and Steel for Marine Applications. TWI: Published Papers. October, 2013. http://www.twi.co.uk/technical-knowledge/published-papers/progress-in-friction-stir-welding-of-aluminium-and-steel-for-marine-applications-october-2003/. Accessed 21 May 2013.

  3. H. Uzun, C.D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro. Mater Design 26 (2005) 41-46.

    Article  Google Scholar 

  4. R.M. Leal, A. Loureiro. Mater Design 29 (2008) 982-991.

    Article  Google Scholar 

  5. S. Xu, X. Deng. Acta Mater 56 (2008) 1326-1341.

    Article  Google Scholar 

  6. J. Young, D. Field, T. Nelson. Metall Mater Trans A 44, 7 (2013) 3167-75.

    Article  Google Scholar 

  7. M.A. Sutton, B. Yang, A.P. Reynolds, R. Taylor. Mater Sci Eng A 323 (2002) 160-66.

    Article  Google Scholar 

  8. D.A. Wang, S.C. Lee. J Mater Process Tech 186 (2007) 291-297.

    Article  Google Scholar 

  9. A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, A. Echeverria. Mater Design 32 (2011) 2021-27.

    Article  Google Scholar 

  10. S.J. Kalita. Appl Surf Sci 257 (2011) 3985-97.

    Article  Google Scholar 

  11. M.A. Sutton, A.P. Reynolds, B. Yang, R. Taylor. Mater Sci Eng A 354 (2003) 6-16.

    Article  Google Scholar 

  12. D.A. Wang, C.H. Chen. “Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets.” J Mater Process Tech 209 (2009) 367-375.

    Article  Google Scholar 

  13. M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J.Lederich, D.M. Bowden, R.J. Sebring. Acta Mater 54 (2006) 4013-4021.

    Article  Google Scholar 

  14. V-X. Tran, J. Pan. “Fatigue behavior of dissimilar spot friction welds in lap-shear and cross-tension specimens of aluminum and steel sheets.” Int J Fatigue 32 (2010) 1167–79.

    Article  Google Scholar 

  15. T. Tanaka, T. Morishige, T. Hirata. Scr. Mater 61 (2009) 756–59.

    Article  Google Scholar 

  16. S. Jana, Y. Hovanski. “Fatigue behaviour of magnesium to steel dissimilar friction stir lap joints.” Sci Technol Weld Joi 17 (2012) 141-145.

    Article  Google Scholar 

  17. H.-H. Cho, S.H. Kang, S.-H. Kim, K.H. Oh, H.J. Kim, W.-S. Chang, H.N. Han. “Microstructural evolution ahead in friction stir welding of high-strength linepipe steel.” Mater Design 34 (2012) 258-267.

    Article  Google Scholar 

  18. S. Jana, Y. Hovanski, G.J. Grant. “Friction stir lap welding of magnesium alloy to steel: A preliminary investigation.” Metall Mater Trans A 41A (2010) 3173-3182.

    Article  Google Scholar 

  19. S. Jana, Y. Hovanski, G.J. Grant, K. Mattlin: Effect of Tool Feature on the Joint Strength of Dissimilar Friction Stir Lap Welds. TMS International Conference Proceedings. 2011.

  20. W.H. Jiang, R. Kovacevic: Proc. Inst. Mech Eng B 218 (2004):1323-31

    Article  Google Scholar 

  21. T. Watanabe, H. Takayama, A. Yanagisawa. “Joining of aluminum alloy to steel by friction stir welding.” J Mater Process Tech 178 (2006) 342–49.

    Article  Google Scholar 

  22. W-B Lee, M. Schmuecker, U.A. Mercardo, G. Biallas, S-B Jung. “Interfacial reaction in steel-aluminum joints made by friction stir welding.” Scripta Mater 55 (2006) 355-358.

    Article  Google Scholar 

  23. M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, W.J. Cheng, C.J. Wang. Mater Des. (2012), doi: 10.1016/j.matdes.2012.08.028

    Google Scholar 

  24. R.W. Fonda, J.F. Bingert. “Texture variations in an aluminum friction stir weld.” Scripta Mater 57 (2007) 1052-1055.

    Article  Google Scholar 

  25. R.W. Fonda, J.F. Bingert, K.J. Colligan. “Development of grain structure during friction stir welding.” Scripta Mater 51 (2004) 243-248.

    Article  Google Scholar 

  26. D.P. Field, T.W. Nelson, Y. Hovanski, K.V. Jata. “Heterogeneity of crystallographic texture in friction stir welds of aluminum.” Metall Mater Trans A 32 (2001) 2869-2867.

    Article  Google Scholar 

  27. U.F. Kocks, C.N. Tomé, H.-R. Wenk. Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties. Cambridge: Cambridge University Press. 2000.

    Google Scholar 

  28. Z.Y. Ma, R.S. Mishra, M.W. Mahoney. “Superplastic deformation behavior of friction stir processed 7075 Al alloy.” Acta Mater 50 (2002) 4419-4430.

    Article  Google Scholar 

  29. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, M. Calabrese. “Fine-grain evolution in friction stir processed 7050 aluminum.” Scripta Mater 48 (2003) 1451-1455.

    Article  Google Scholar 

  30. S. Gourdet, F. Montheillet. “A model of continuous dynamic recrystallization.” Acta Mater 51 (2003) 2685-2699.

    Article  Google Scholar 

  31. Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, C.-O. Pettersson. “Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel.” Mater Sci Eng A 397 (2005) 376-384.

    Article  Google Scholar 

  32. H.G. Salem, A.P. Reynolds, J.S. Lyons. “Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet.” Scripta Mater 46 (2002) 337-342.

    Article  Google Scholar 

  33. J.C. Russ. Practical Stereology 2nd ed. New York: Plenum Press. 1999.

    Google Scholar 

  34. Y.-C. Chen, D. Bakavos, A. Gholinia, P.B. Pragnell. “HAZ development and accelerated post-weld natural ageing in ultrasonic spot welding aluminium 6111-T4 automotive sheet.” Acta Mater 60 (2012) 2816-2828.

    Article  Google Scholar 

  35. S.J. Unfried, C.M. Garzón, J.E. Giraldo. J Mater Process Tech 209 (2009) 1688-1700.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the United States Army Tank Automotive Research, Development, and Engineering Center via subcontract with Pacific Northwest National Laboratory. The insight of Dr. Nathaniel Sanchez and Dr. John Young on mechanical polishing of aluminum and dissimilar alloy specimens for EBSD is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Field.

Additional information

Manuscript submitted August 26, 2014.

Manuscript Authored by Battelle Memorial Institute Under Contract Number DE·AC05-76RL01830 with the US Department of Energy. The US Government retains and the publisher, by accepting this article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so for US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan: (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, E.E., Hovanski, Y. & Field, D.P. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints. Metall Mater Trans A 47, 2815–2829 (2016). https://doi.org/10.1007/s11661-016-3428-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3428-4

Keywords

Navigation