Skip to main content
Log in

Advances in Deep Learning Models for Resolving Medical Image Segmentation Data Scarcity Problem: A Topical Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Deep learning (DL) methods have recently become state-of-the-art in most automated medical image segmentation tasks. Some of the biggest challenges in this field are related to datasets. This paper aims to review the recent developments in deep learning architectures and approaches that aim to resolve dataset-related challenges faced in DL-based medical image segmentation. We have studied architectural developments in deep learning models and their recent applications in medical image segmentation tasks. Popular U-Net-based models are tested for segmentation performance comparison on a Coronavirus disease 2019 (Covid-19) lung infection Computed Tomography segmentation dataset. The comparison results prove the effectiveness of the original U-Net architecture, even in present-day medical image segmentation tasks. To overcome major dataset-related challenges such as labeled data scarcity, high annotation time and cost, distribution shifts, low-quality of images, and generalizability issues; we have studied recent developments in deep learning approaches like active learning, data augmentation, domain adaptation, and self- and semi-supervised learning, that aim to provide innovative solutions for those challenges. With rapid developments in the field, approaches like data augmentation, domain adaptation, and semi-supervised learning have become some of the hot areas of research, aiming for more efficient use of datasets, better segmentation prediction, and model generalizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhandari AK, Singh A, Kumar IV (2019) Spatial context energy curve-based multilevel 3-D Otsu algorithm for image segmentation. IEEE Trans Syst Man Cybern 51(5):2760–2773

    Article  Google Scholar 

  2. Bhandari AK, Kumar IV, Srinivas K (2019) Cuttlefish algorithm-based multilevel 3-D Otsu function for color image segmentation. IEEE Trans Instrum Meas 69(5):1871–1880

    Article  Google Scholar 

  3. Kumar S, Bhandari AK, Raj A, Swaraj K (2021) Triple clipped histogram-based medical image enhancement using spatial frequency. IEEE Trans Nanobiosci 20(3):278–286

    Article  Google Scholar 

  4. Sushanki S, Bhandari AK, Singh AK (2023) A review on computational methods for breast cancer detection in ultrasound images using multi-image modalities. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10015-0

    Article  Google Scholar 

  5. Tajbakhsh N, Jeyaseelan L, Li Q, Chiang JN, Wu Z, Ding X (2020) Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med Image Anal 63:101693. https://doi.org/10.1016/j.media.2020.101693

    Article  Google Scholar 

  6. Budd S, Robinson EC, Kainz B (2021) A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal 71:102062. https://doi.org/10.1016/j.media.2021.102062

    Article  Google Scholar 

  7. Li C et al (2013) A likelihood and local constraint level set model for liver tumor segmentation from CT volumes. IEEE Trans Biomed Eng 60(10):2967–2977. https://doi.org/10.1109/TBME.2013.2267212

    Article  Google Scholar 

  8. Upadhyay AK, Bhandari AK (2023) Semi-supervised modified-U-Net for lung infection image segmentation. IEEE Trans Radiat Plasma Med Sci. https://doi.org/10.1109/TRPMS.2023.3272209

    Article  Google Scholar 

  9. Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Müller-Gärtner HW (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886. https://doi.org/10.1109/42.650883

    Article  Google Scholar 

  10. Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching. IEEE Trans Med Imaging 20(11):1194–1200. https://doi.org/10.1109/42.963823

    Article  Google Scholar 

  11. Pandey SK, Bhandari AK, Singh H (2022) A transfer learning based deep learning model to diagnose covid-19 CT scan images. Heal Technol 12(4):845–866

    Article  Google Scholar 

  12. Tsai A et al (2003) A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2):137–154. https://doi.org/10.1109/TMI.2002.808355

    Article  Google Scholar 

  13. Preity AKB, Shahnawazuddin S (2023) Automated computationally intelligent methods for ocular vessel segmentation and disease detection: a review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09940-x

    Article  Google Scholar 

  14. Pandey SK, Bhandari AK (2023) A systematic review of modern approaches in healthcare systems for lung cancer detection and classification. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09940-x

    Article  Google Scholar 

  15. Verma PR, Bhandari AK (2023) Role of deep learning in classification of brain mri images for prediction of disorders: a survey of emerging trends. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09967-0

    Article  Google Scholar 

  16. Latif J, Xiao C, Imran A and Tu S (2019) Medical imaging using machine learning and deep learning algorithms: A review. In: 2019 2nd Int. Conf Comput Math Eng Technol iCoMET 2019. doi: https://doi.org/10.1109/ICOMET.2019.8673502.

  17. Wang EK, Chen CM, Hassan MM, Almogren A (2020) A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain. Futur Gener Comput Syst 108:135–144. https://doi.org/10.1016/j.future.2020.02.054

    Article  Google Scholar 

  18. Wang S, Yang DM, Rong R, Zhan X, Xiao G (2019) Pathology image analysis using segmentation deep learning algorithms. Am J Pathol 189(9):1686–1698. https://doi.org/10.1016/j.ajpath.2019.05.007

    Article  Google Scholar 

  19. Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future. Lect Notes Comput Vis Biomech 26:323–350. https://doi.org/10.1007/978-3-319-65981-7_12

    Article  Google Scholar 

  20. Zhang Y, Gorriz JM, Dong Z (2021) Deep learning in medical image analysis. J Imaging. https://doi.org/10.3390/jimaging7040074

    Article  Google Scholar 

  21. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis. IEEE Access 6:9375–9379. https://doi.org/10.1109/ACCESS.2017.2788044

    Article  Google Scholar 

  22. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  23. López-Linares Román K, García Ocaña MI, Let Urzelai N, González Ballester MÁ, Macía Oliver I (2020) Medical image segmentation using deep learning. Intell Syst Ref Libr 171:17–31. https://doi.org/10.1007/978-3-030-32606-7_2

    Article  Google Scholar 

  24. Zhou K et al. (2020) Sparse-Gan: sparsity-constrained generative adversarial network for anomaly detection in retinal OCT image. In: Proc - Int Symp Biomed Imaging. doi: https://doi.org/10.1109/ISBI45749.2020.9098374.

  25. Chalapathy R and Chawla S (2019) Deep learning for anomaly detection: a survey. Available: http://arxiv.org/abs/1901.03407

  26. Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. Lect Notes Comput Sci. https://doi.org/10.1007/978-3-319-59050-9_12

    Article  Google Scholar 

  27. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  28. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32(4):582–596. https://doi.org/10.1007/s10278-019-00227-x

    Article  Google Scholar 

  29. Rizwan I, Neubert J (2020) Deep learning approaches to biomedical image segmentation. Informatics Med Unlocked 18:100297. https://doi.org/10.1016/j.imu.2020.100297

    Article  Google Scholar 

  30. Liu L, Cheng J, Quan Q, Wu FX, Wang YP, Wang J (2020) A survey on U-shaped networks in medical image segmentations. Neurocomputing 409:244–258. https://doi.org/10.1016/j.neucom.2020.05.070

    Article  Google Scholar 

  31. Siddique N, Paheding S, Elkin CP, Devabhaktuni V (2021) U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3086020

    Article  Google Scholar 

  32. Yin XX, Sun L, Fu Y, Lu R, Zhang Y (2022) U-Net-based medical image segmentation. J Healthc Eng. https://doi.org/10.1155/2022/4189781

    Article  Google Scholar 

  33. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal. https://doi.org/10.1016/j.media.2019.101552

    Article  Google Scholar 

  34. Jeong JJ, Tariq A, Adejumo T, Trivedi H, Gichoya JW, Banerjee I (2022) Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation. J Digit Imaging 35(2):137–152. https://doi.org/10.1007/s10278-021-00556-w

    Article  Google Scholar 

  35. Xun S et al (2022) Generative adversarial networks in medical image segmentation: a review. Comput Biol Med 140:105063. https://doi.org/10.1016/j.compbiomed.2021.105063

    Article  Google Scholar 

  36. Asgari Taghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G (2021) Deep semantic segmentation of natural and medical images: a review. Springer, Heidelberg. https://doi.org/10.1007/s10462-020-09854-1

    Book  Google Scholar 

  37. Cheplygina V, de Bruijne M, Pluim JPW (2019) Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med Image Anal 54:280–296. https://doi.org/10.1016/j.media.2019.03.009

    Article  Google Scholar 

  38. Bohlender S, Oksuz I, Mukhopadhyay A (2021) A survey on shape-constraint deep learning for medical image segmentation. IEEE Rev Biomed Eng 3333:1–17. https://doi.org/10.1109/RBME.2021.3136343

    Article  Google Scholar 

  39. Xie X, Niu J, Liu X, Chen Z, Tang S, Yu S (2021) A survey on incorporating domain knowledge into deep learning for medical image analysis. Med Image Anal 69:101985. https://doi.org/10.1016/j.media.2021.101985

    Article  Google Scholar 

  40. Zhou T, Ruan S, Canu S (2019) “A review: deep learning for medical image segmentation using multi-modality fusion. Array. https://doi.org/10.1016/j.array.2019.100004

    Article  Google Scholar 

  41. Devunooru S, Alsadoon A, Chandana PWC, Beg A (2021) Deep learning neural networks for medical image segmentation of brain tumours for diagnosis: a recent review and taxonomy. J Ambient Intell Humaniz Comput 12(1):455–483. https://doi.org/10.1007/s12652-020-01998-w

    Article  Google Scholar 

  42. Wadhwa A, Bhardwaj A, Singh Verma V (2019) A review on brain tumor segmentation of MRI images. Magn Reson Imaging 61:247–259. https://doi.org/10.1016/j.mri.2019.05.043

    Article  Google Scholar 

  43. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X (2021) A review of deep learning based methods for medical image multi-organ segmentation. Phys Medica 85:107–122. https://doi.org/10.1016/j.ejmp.2021.05.003

    Article  Google Scholar 

  44. Shi F et al (2021) Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng 14:4–15. https://doi.org/10.1109/RBME.2020.2987975

    Article  Google Scholar 

  45. COVID-19 CT Segmentation Dataset (2020). https://medicalsegmentation.com/covid19/ Accessed 15 Aug 2022

  46. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  47. Wang G (2016) A perspective on deep imaging. IEEE Access 4:8914–8924. https://doi.org/10.1109/ACCESS.2016.2624938

    Article  Google Scholar 

  48. Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10(3):257–273. https://doi.org/10.1007/s12194-017-0406-5

    Article  Google Scholar 

  49. Albawi S, Mohammed TA and Al-Zawi S (2018) Understanding of a convolutional neural network. In: Proc 2017 Int Conf Eng Technol ICET 2017. doi: https://doi.org/10.1109/ICEngTechnol.2017.8308186.

  50. Agarap AF (2018) Deep learning using rectified linear units (ReLU). Available: http://arxiv.org/abs/1803.08375

  51. Kingma DP and Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.

  52. Commandeur F et al (2018) Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans Med Imaging 37(8):1835–1846. https://doi.org/10.1109/TMI.2018.2804799

    Article  Google Scholar 

  53. Zhang W et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214–224. https://doi.org/10.1016/j.neuroimage.2014.12.061

    Article  Google Scholar 

  54. Roth HR et al (2014) A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Lect Notes Comput Sci 8673:520–527. https://doi.org/10.1007/978-3-319-10404-1_65

    Article  Google Scholar 

  55. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a Triplanar convolutional neural network. Lect Notes Comput Sci 8150:246–253. https://doi.org/10.1007/978-3-642-40763-5_31

    Article  Google Scholar 

  56. Moeskops P et al (2016) Deep learning for multi-task medical image segmentation in multiple modalities. Lect Notes Comput Sci 9901:478–486. https://doi.org/10.1007/978-3-319-46723-8_55

    Article  Google Scholar 

  57. Gupta P and Malhi AK (2018) Using deep learning to enhance head and neck cancer diagnosis and classification. In: 2018 IEEE Int Conf Syst Comput Autom Networking, ICSCA 2018. doi: https://doi.org/10.1109/ICSCAN.2018.8541142.

  58. Dou Q et al (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54. https://doi.org/10.1016/j.media.2017.05.001

    Article  Google Scholar 

  59. Kleesiek J et al (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. Neuroimage 129:460–469. https://doi.org/10.1016/j.neuroimage.2016.01.024

    Article  Google Scholar 

  60. Jakab M, Stevuliak M and Benesova W (2020) Multi-modal brain tumor segmentation utilizing convolutional neural networks. doi: https://doi.org/10.1117/12.2557599.

  61. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  62. Chen H, Dou Q, Yu L, Qin J, Heng PA (2018) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170:446–455. https://doi.org/10.1016/j.neuroimage.2017.04.041

    Article  Google Scholar 

  63. Zhao F, Xie X (2013) An overview of interactive medical image segmentation. Ann Br Mach Vis Assoc 2013(7):1–22

    Google Scholar 

  64. Rajchl M et al (2017) DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans Med Imaging 36(2):674–683. https://doi.org/10.1109/TMI.2016.2621185

    Article  Google Scholar 

  65. Xu N, Price B, Cohen S, Yang J, Huang T (2016) Deep interactive object selection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2016.47

    Article  Google Scholar 

  66. Ribeiro HL and Gonzaga A (2006) Hand image segmentation in video sequence by GMM: a comparative analysis. In: Brazilian Symp Comput Graph Image Process. doi: https://doi.org/10.1109/SIBGRAPI.2006.23.

  67. Wang G et al (2018) Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 37(7):1562–1573. https://doi.org/10.1109/TMI.2018.2791721

    Article  Google Scholar 

  68. Roth HR et al. (2018) Deep learning and its application to medical image segmentation. vol 36, pp. 63–71. doi: https://doi.org/10.11409/mit.36.63.

  69. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  70. Zhou X, Takayama R, Wang S, Hara T, Fujita H (2017) Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 44(10):5221–5233. https://doi.org/10.1002/mp.12480

    Article  Google Scholar 

  71. Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D (2017) Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg 12(3):399–411. https://doi.org/10.1007/s11548-016-1501-5

    Article  Google Scholar 

  72. Wong KKL, Fortino G, Abbott D (2020) Deep learning-based cardiovascular image diagnosis: a promising challenge. Futur Gener Comput Syst 110:802–811. https://doi.org/10.1016/j.future.2019.09.047

    Article  Google Scholar 

  73. Christ PF et al (2016) Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. Lect Notes Comput Sci 9901:415–423. https://doi.org/10.1007/978-3-319-46723-8_48

    Article  Google Scholar 

  74. Christ PF et al. (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. Available: http://arxiv.org/abs/1702.05970

  75. Wu L, Xin Y, Li S, Wang T, Heng PA and Ni D (2017) Cascaded Fully Convolutional Networks for automatic prenatal ultrasound image segmentation. In: Proc - Int Symp Biomed Imaging. doi: https://doi.org/10.1109/ISBI.2017.7950607.

  76. Chen L, Kokkinos I, Murphy K and Yuille AL (2015) S EMANTIC I MAGE S EGMENTATION WITH D EEP C ON.

  77. Chen L, Papandreou G, Member S, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab : semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  78. Chen LC, Papandreou G, Schroff F and Adam H (2017) Rethinking atrous convolution for semantic image segmentation. Available: http://arxiv.org/abs/1706.05587

  79. Chen L, Zhu Y, Papandreou G, Schroff F and Aug CV Encoder-decoder with atrous separable convolution for semantic image segmentation.

  80. Zeng G and Zheng G (2018) Multi-stream 3D FCN with multi-scale deep supervision for multi-modality isointense infant brain MR image segmentation Guodong Zeng and Guoyan Zheng Institute for Surgical Technology & Biomechanics. University of Bern. Bern.

  81. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  82. Yu L, Chen H, Dou Q, Qin J, Heng PA (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004. https://doi.org/10.1109/TMI.2016.2642839

    Article  Google Scholar 

  83. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4

    Book  Google Scholar 

  84. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2019) No new-net. Lect Notes Comput Sci 11384:234–244. https://doi.org/10.1007/978-3-030-11726-9_21

    Article  Google Scholar 

  85. Suah FBM (2017) Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane. Anal Chem Res 12:40–46. https://doi.org/10.1016/j.ancr.2017.02.001

    Article  Google Scholar 

  86. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. Lect Notes Comput Sci 9901:424–432. https://doi.org/10.1007/978-3-319-46723-8_49

    Article  Google Scholar 

  87. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J (2018) Unet++: a nested u-net architecture for medical image segmentation. Lect Notes Comput Sci 11045:3–11. https://doi.org/10.1007/978-3-030-00889-5_1

    Article  Google Scholar 

  88. Oktay O et al (2018) Attention U-Net: learning where to look for the pancreas. Available: http://arxiv.org/abs/1804.03999

  89. Alom VKA, Zahangir Md, Hasan M, Yakopcic C, Taha TM (2020) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. Lect Notes Comput Sci 12085:207–219. https://doi.org/10.1007/978-3-030-47436-2_16

    Article  Google Scholar 

  90. Zuo Q, Chen S, Wang Z (2021) R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation. Secur Commun Netw. https://doi.org/10.1155/2021/6625688

    Article  Google Scholar 

  91. Milletari F, Navab N and Ahmadi SA (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation.In: Proc - 2016 4th Int Conf 3D Vision, 3DV 2016. doi: https://doi.org/10.1109/3DV.2016.79.

  92. Goodfellow I et al (2020) Generative adversarial networks. Commun ACM 63(11):139–144. https://doi.org/10.1145/3422622

    Article  MathSciNet  Google Scholar 

  93. Majurski M et al. (2019) Cell image segmentation using generative adversarial networks, transfer learning, and augmentations. In: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work. doi: https://doi.org/10.1109/CVPRW.2019.00145.

  94. Luc P, Couprie C, Chintala S and Verbeek J (2016) Semantic segmentation using adversarial networks. Available: http://arxiv.org/abs/1611.08408

  95. Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) SegAN: adversarial network with multi-scale L 1 loss for medical image segmentation. Neuroinformatics 16(3–4):383–392. https://doi.org/10.1007/s12021-018-9377-x

    Article  Google Scholar 

  96. W. Dai, N. Dong, Z. Wang, X. Liang, H. Zhang, and E. P. Xing, “Scan: Structure correcting adversarial network for organ segmentation in chest x-rays,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11045 LNCS, pp. 263–273, 2018, doi: https://doi.org/10.1007/978-3-030-00889-5_30.

  97. Khosravan N, Mortazi A, Wallace M, Bagci U (2019) PAN: projective adversarial network for medical image segmentation. Lect Notes Comput Sci 11769:68–76. https://doi.org/10.1007/978-3-030-32226-7_8

    Article  Google Scholar 

  98. Chang Q et al. (2020) Synthetic learning: learn from distributed asynchronized discriminator GaN without sharing medical image data. In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. doi: https://doi.org/10.1109/CVPR42600.2020.01387.

  99. Kim T et al (2020) Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: evaluation on kidney segmentation in abdominal CT. Sci Rep 10(1):1–7. https://doi.org/10.1038/s41598-019-57242-9

    Article  MathSciNet  Google Scholar 

  100. Wu X, Chen C, Zhong M, Wang J, Shi J (2021) COVID-AL: the diagnosis of COVID-19 with deep active learning. Med Image Anal 68:101913. https://doi.org/10.1016/j.media.2020.101913

    Article  Google Scholar 

  101. Nath V, Yang D, Landman BA, Xu D, Roth HR (2021) Diminishing uncertainty within the training pool: active learning for medical image segmentation. IEEE Trans Med Imaging 40(10):2534–2547. https://doi.org/10.1109/TMI.2020.3048055

    Article  Google Scholar 

  102. Zhao Z, Zeng Z, Xu K, Chen C, Guan C (2021) DSAL: deeply supervised active learning from strong and weak labelers for biomedical image segmentation. IEEE J Biomed Heal Informatics 25(10):3744–3751. https://doi.org/10.1109/JBHI.2021.3052320

    Article  Google Scholar 

  103. Jin Q, Yuan M, Qiao Q, Song Z (2022) One-shot active learning for image segmentation via contrastive learning and diversity-based sampling. Knowledge-Based Syst 241:108278. https://doi.org/10.1016/j.knosys.2022.108278

    Article  Google Scholar 

  104. Zhang J et al (2021) Interactive medical image segmentation via a point-based interaction. Artif Intell Med 111:101998. https://doi.org/10.1016/j.artmed.2020.101998

    Article  Google Scholar 

  105. Luo X et al (2021) MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning. Med Image Anal 72:102102. https://doi.org/10.1016/j.media.2021.102102

    Article  Google Scholar 

  106. Wang G et al (2019) DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Trans Pattern Anal Mach Intell 41(7):1559–1572. https://doi.org/10.1109/TPAMI.2018.2840695

    Article  Google Scholar 

  107. H. S. B et al Medical image synthesis for data augmentation and anonymization using generative adversarial networks. vol 1, pp. 1–11, doi: https://doi.org/10.1007/978-3-030-00536-8.

  108. Gilbert A, Marciniak M, Rodero C, Lamata P, Samset E, Mcleod K (2021) Generating synthetic labeled data from existing anatomical models : an example with echocardiography segmentation. IEEE Trans Med Imaging 40(10):2783–2794. https://doi.org/10.1109/TMI.2021.3051806

    Article  Google Scholar 

  109. Dalmaz O, Yurt M, Tolga C (2022) ResViT : residual vision transformers for multi-modal medical image synthesis. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2022.3167808

    Article  Google Scholar 

  110. Id VT, Salehi P, Sheshkal SA, Hicks SA, Id AR (2022) SinGAN-Seg : synthetic training data generation for medical image segmentation. PLoS ONE. https://doi.org/10.1371/journal.pone.0267976

    Article  Google Scholar 

  111. Shaham TR, Dekel T and Michaeli T (2019) SinGAN: learning a generative model from a single natural image. In: Proc IEEE Int Conf Comput Vis. doi: https://doi.org/10.1109/ICCV.2019.00467.

  112. Li W, Li J, Polson J, Wang Z, Speier W, Arnold C (2022) High resolution histopathology image generation and segmentation through adversarial training. Med Image Anal 75:102251. https://doi.org/10.1016/j.media.2021.102251

    Article  Google Scholar 

  113. Tang Y et al (2018) CT image enhancement using stacked generative adversarial networks and transfer learning for lesion segmentation improvement. Lect Notes Comput Sci 11046:46–54. https://doi.org/10.1007/978-3-030-00919-9_6

    Article  Google Scholar 

  114. Oktay O et al (2018) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395. https://doi.org/10.1109/TMI.2017.2743464

    Article  Google Scholar 

  115. Zhu J, Tan C, Yang J, Heart N, Lio P (2021) Arbitrary scale super-resolution for medical images. Int J Neural Syst. https://doi.org/10.1142/S0129065721500374

    Article  Google Scholar 

  116. Ma Y et al (2021) Medical image super-resolution using a relativistic average generative adversarial network. Nucl Instruments Methods Phys Res 992:165053. https://doi.org/10.1016/j.nima.2021.165053

    Article  Google Scholar 

  117. Xia Y, Ravikumar N, Greenwood JP, Neubauer S, Petersen SE, Frangi AF (2021) Super-resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning. Med Image Anal 71:102037. https://doi.org/10.1016/j.media.2021.102037

    Article  Google Scholar 

  118. Ma Y, Liu J, Member S, Liu Y, Fu H, Member S (2021) Structure and illumination constrained GAN for medical image enhancement. IEEE Trans Med Imaging 40(12):3955–3967

    Article  Google Scholar 

  119. You H, Yu L, Tian S, Cai W (2022) DR-Net: dual-rotation network with feature map enhancement for medical image segmentation. Complex Intell Syst 8(1):611–623. https://doi.org/10.1007/s40747-021-00525-4

    Article  Google Scholar 

  120. Karimi D, Warfield SK, Gholipour A (2021) Transfer learning in medical image segmentation: new insights from analysis of the dynamics of model parameters and learned representations. Artif Intell Med 116:102078. https://doi.org/10.1016/j.artmed.2021.102078

    Article  Google Scholar 

  121. Liu S et al (2018) 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-00934-2_94

    Book  Google Scholar 

  122. Chen S, Ma K and Zheng Y (2019) Med3D: transfer learning for 3D medical image analysis. Available: http://arxiv.org/abs/1904.00625

  123. Niu S, Liu M, Liu Y, Wang J, Song H (2021) Distant domain transfer learning for medical imaging. IEEE J Biomed Heal Informatics 25(10):3784–3793. https://doi.org/10.1016/B978-0-12-374979-6.00016-2

    Article  Google Scholar 

  124. Guan H, Liu M (2022) Domain adaptation for medical image analysis: a survey. IEEE Trans Biomed Eng 69(3):1173–1185. https://doi.org/10.1109/TBME.2021.3117407

    Article  Google Scholar 

  125. Trullo R, Lian J, Wang L, Petitjean C, Ruan S (2018) Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng 65(12):2720–2730

    Article  Google Scholar 

  126. Wang C et al (2021) DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis. Inf Fusion. https://doi.org/10.1016/j.inffus.2020.10.015

    Article  Google Scholar 

  127. Luo Y et al (2021) Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion. Neurocomputing 452:63–77. https://doi.org/10.1016/j.neucom.2021.04.060

    Article  Google Scholar 

  128. Liu J et al (2021) Automated cardiac segmentation of cross-modal medical images using unsupervised multi-domain adaptation and spatial neural attention structure. Med Image Anal 72:102135. https://doi.org/10.1016/j.media.2021.102135

    Article  Google Scholar 

  129. Wu F, Zhuang X (2021) Unsupervised domain adaptation with variational approximation for cardiac segmentation. IEEE Trans Med Imaging 40(12):3555–3567. https://doi.org/10.1007/s00180-021-01063-w

    Article  Google Scholar 

  130. Xie Q et al (2022) Unsupervised domain adaptation for medical image segmentation by disentanglement learning and self-training. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2022.3192303

    Article  Google Scholar 

  131. Yao K et al (2022) A novel 3D unsupervised domain adaptation framework for cross-modality medical image segmentation. IEEE J Biomed Heal Informatics. https://doi.org/10.1109/jbhi.2022.3162118

    Article  Google Scholar 

  132. Liu Z, Zhu Z, Zheng S, Liu Y, Zhou J, Zhao Y (2022) Margin preserving self-paced contrastive learning towards domain adaptation for medical image segmentation. IEEE J Biomed Heal Informatics 26(2):638–647. https://doi.org/10.1109/JBHI.2022.3140853

    Article  Google Scholar 

  133. Liu L, Zhang Z, Li S, Ma K, Zheng Y (2021) S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation. Med Image Anal 74:102214. https://doi.org/10.1016/j.media.2021.102214

    Article  Google Scholar 

  134. Bian C, Yuan C, Ma K, Yu S, Wei D, Zheng Y (2022) Domain adaptation meets zero-shot learning: an annotation-efficient approach to multi-modality medical image segmentation. IEEE Trans Med Imaging 41(5):1043–1056. https://doi.org/10.1109/TMI.2021.3131245

    Article  Google Scholar 

  135. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D (2019) Self-supervised learning for medical image analysis using image context restoration. Med Image Anal 58:101539. https://doi.org/10.1016/j.media.2019.101539

    Article  Google Scholar 

  136. Zheng H et al (2021) Hierarchical self-supervised learning for medical image segmentation based on multi-domain data aggregation. Lect Notes Comput Sci 12901:622–632. https://doi.org/10.1007/978-3-030-87193-2_59

    Article  Google Scholar 

  137. Fang F, Yao Y, Zhou T, Xie G, Lu J (2021) Self-supervised multi-modal hybrid fusion network for brain tumor segmentation. IEEE J Biomed Heal Informatics 2194:1–11. https://doi.org/10.1109/JBHI.2021.3109301

    Article  Google Scholar 

  138. Ouyang DR, Cheng, Biffi C, Chen C, Kart T, Qiu H (2022) Self-supervised Learning for Few-shot medical image segmentation In: IEEE Trans Med Imaging. Available: http://arxiv.org/abs/2003.08462

  139. van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109(2):373–440. https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  Google Scholar 

  140. Nie D, Gao Y, Wang L, Shen D (2018) ASDNet: attention based semi-supervised deep networks for medical image segmentation. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-00937-3_43

    Book  Google Scholar 

  141. Fan DP et al (2020) Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging 39(8):2626–2637. https://doi.org/10.1109/TMI.2020.2996645

    Article  Google Scholar 

  142. Chaitanya K et al (2021) Semi-supervised task-driven data augmentation for medical image segmentation. Med Image Anal 68:101934. https://doi.org/10.1016/j.media.2020.101934

    Article  Google Scholar 

  143. Wu Y et al (2022) Mutual consistency learning for semi-supervised medical image segmentation. Med Image Anal 81:102530. https://doi.org/10.1016/j.media.2022.102530

    Article  Google Scholar 

  144. Wang X et al (2022) SSA-Net: spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning. Med Image Anal 79:102459. https://doi.org/10.1016/j.media.2022.102459

    Article  Google Scholar 

  145. Luo X et al (2022) Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med Image Anal 80:102517. https://doi.org/10.1016/j.media.2022.102517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A.K., Bhandari, A.K. Advances in Deep Learning Models for Resolving Medical Image Segmentation Data Scarcity Problem: A Topical Review. Arch Computat Methods Eng 31, 1701–1719 (2024). https://doi.org/10.1007/s11831-023-10028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10028-9

Navigation