Skip to main content
Log in

Role of Deep Learning in Classification of Brain MRI Images for Prediction of Disorders: A Survey of Emerging Trends

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Image classification is the act of labeling groups of pixels or voxels of an image based on some rules. It finds applications in medical image analysis, and satellite image identification, along with others. Numerous studies are present in the literature where the classification is done after segmentation especially in medical images to extract only necessary areas and thereby classify them based on some criteria. It finds applications in the detection of disorders and detailed study of a particular human organ of interest. In this regard, it is important to know the challenges in this field, for accurate segmentation and classification of the region of interest. Recently, deep learning (DL) based methods for the same are being used because of higher performance as compared to the handcrafted features. Increased performance comes with various challenges like complexity, the requirement of a large amount of data, and so on. This study provides a comprehensive review of issues related to recent works on segmentation and classification techniques. This review also discusses the gaps in the literature not discussed so far and put a contributed viewpoint on the same along with future directions. It will also compare and relate each work with another and examine the datasets used along with the parametric metrics and the challenges in their use. The main focus of this review is an object-based classification used in medical imagery. It is estimated that this study will address the recent challenges and provides insights into the suggestions on different types of methods being used in the current decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

AAL:

Automated anatomical labeling

ABD:

Average boundary distance

ABIDE:

Autism brain imaging data exchange

ADHD:

Attention deficit hyperactivity disorder

ADNI:

Alzheimer’s Disease Neuroimaging Initiative

AIBL:

Australian imaging biomarkers and lifestyle study of ageing

ASD:

Autism spectrum disorder

ASSD:

Average symmetric surface distance

AUC:

Area under the curve

AVD:

Absolute volumetric difference

BraTS:

Brain tumor segmentation challenge

CSF:

Cerebrospinal fluid

CNN:

Convolutional neural networks

DARTS:

Dense U-Net-based automatic rapid tool for brain segmentation

DL:

Deep learning

DMN:

Default mode network

DSC/DC:

Dice similarity coefficient/Dice score

DTI:

Diffusion tensor imaging

EML:

Enhance mixing loss

FCN:

Fully convolutional network

GANs:

Generative adversarial networks

GMM:

Gaussian mixture model

GR:

Generalization rate

GM:

Grey matter

HD:

Hausdorff distance

HCP:

Human connectome project

HGG:

High-grade gliomas

IBSR:

Internet brain segmentation repository

ISLES:

Ischemic stroke lesion segmentation challenge

JEM:

Joint energy model

JI:

Jaccard index

LGG:

Low-grade gliomas

LSTM:

Long short-term memory

MCC:

Matthews correlation coefficient

MDD:

Major depressive disorder

MHD:

Modified hausdorff distance

MI:

Minkowski index

MRI:

Magnetic resonance imaging

MSCNNs:

Multi-slice CNNs

NCI:

National cancer institute

NPV:

Negative predictive value

PCC:

Pearson correlation coefficient

PET:

Positron emission tomography

PPMI:

Parkinson’s progression marker initiative

PPV:

Positive predictive value

PPV:

Positive predictive value

RAVD:

Relative absolute volume difference

RNN:

Recurrent neural network

ROI:

Region of interest

SACNNs:

Simple assemble CNNs

SBPCNNs:

Simple broaden plain CNNs

TCIA:

The cancer imaging archive

VD:

Volume difference

WM:

White matter

References

  1. Laine AF (2008) In the spotlight: biomedical imaging. IEEE Rev Biomed Eng 1:4–7. https://doi.org/10.1109/RBME.2008.2008221

    Article  Google Scholar 

  2. Liu J, Pan Y, Li M, Chen Z, Tang L, Lu C et al (2018) Applications of deep learning to MRI images: a survey. Big Data Min Anal 1:1–18. https://doi.org/10.26599/BDMA.2018.9020001

    Article  Google Scholar 

  3. Weiskopf N, Mathiak K, Bock S, Scharnowski F, Veit R, Grodd W et al (2004) Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51:966–970. https://doi.org/10.1109/TBME.2004.827063

    Article  Google Scholar 

  4. Sujji GE, Lakshmi YVS, Jiji GW (2013) MRI brain image segmentation based on thresholding. Int J Adv Comput Res 3:97

    Google Scholar 

  5. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  Google Scholar 

  6. Turner R, Howseman A, Rees G, Josephs O, Friston K (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 123:5–12. https://doi.org/10.1007/s002210050538

    Article  Google Scholar 

  7. Michalak H, Okarma K (2019) Improvement of image binarization methods using image preprocessing with local entropy filtering for alphanumerical character recognition purposes. Entropy 21:562

    Article  MathSciNet  Google Scholar 

  8. Roy S, Bhattacharyya D, Bandyopadhyay S, Kim T-H (2017) An improved brain MR image binarization method as a preprocessing for abnormality detection and features extraction. Front Comput Sci. https://doi.org/10.1007/s11704-016-5129-y

    Article  Google Scholar 

  9. Nowak RD (1999) Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process 8:1408–1419. https://doi.org/10.1109/83.791966

    Article  Google Scholar 

  10. Chang Y, Yan L, Chen M, Fang H, Zhong S (2020) Two-stage convolutional neural network for medical noise removal via image decomposition. IEEE Trans Instrum Meas 69:2707–2721. https://doi.org/10.1109/TIM.2019.2925881

    Article  Google Scholar 

  11. Youssef K, Jarenwattananon N, Bouchard L (2015) Feature-preserving noise removal. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2015.2409265

    Article  Google Scholar 

  12. Mishro PK, Agrawal S, Panda R, Abraham A (2021) A survey on state-of-the-art denoising techniques for brain magnetic resonance images. IEEE Rev Biomed Eng. https://doi.org/10.1109/RBME.2021.3055556

    Article  Google Scholar 

  13. Diaz I, Boulanger P, Greiner R, Murtha A (2011) A critical review of the effects of de-noising algorithms on MRI brain tumor segmentation. 2011 Annu Int Conf IEEE Eng Med Biol Soc. https://doi.org/10.1109/IEMBS.2011.6090977

    Article  Google Scholar 

  14. Wadhwa A, Bhardwaj A, Singh VV (2019) A review on brain tumor segmentation of MRI images. Magn Reson Imaging 61:247–259. https://doi.org/10.1016/j.mri.2019.05.043

    Article  Google Scholar 

  15. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31:1426–1438. https://doi.org/10.1016/j.mri.2013.05.002

    Article  Google Scholar 

  16. Abd-Ellah MK, Awad AI, Khalaf AAM, Hamed HFA (2019) A review on brain tumor diagnosis from MRI images: practical implications, key achievements, and lessons learned. Magn Reson Imaging 61:300–318. https://doi.org/10.1016/j.mri.2019.05.028

    Article  Google Scholar 

  17. Law MWK, Chung ACS (2007) Weighted local variance-based edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Trans Med Imaging 26:1224–1241. https://doi.org/10.1109/TMI.2007.903231

    Article  Google Scholar 

  18. Guo Z, Tan W, Wang L, Xu L, Wang X, Yang B et al (2019) Local motion intensity clustering (LMIC) model for segmentation of right ventricle in cardiac MRI images. IEEE J Biomed Heal Inform 23:723–730. https://doi.org/10.1109/JBHI.2018.2821709

    Article  Google Scholar 

  19. Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27:629–640. https://doi.org/10.1109/TMI.2007.912817

    Article  Google Scholar 

  20. Pazinato DV, Stein BV, de Almeida WR, de Rafael O, Werneck PR, Junior M, Penatti OAB, da Ricardo S, Torres FH, Menezes AR (2016) Pixel-level tissue classification for ultrasound images. IEEE J Biomed Heal Inform 20:256–267. https://doi.org/10.1109/JBHI.2014.2386796

    Article  Google Scholar 

  21. Schwier M (2016) Object-based image analysis for detection and segmentation tasks in biomedical imaging

  22. Younis M, Keedwell E, Savic D (2018) An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing. p. 449–54. https://doi.org/10.1109/ICOASE.2018.8548845.

  23. Svolos AE, Todd-Pokropek A (1998) Time and space results of dynamic texture feature extraction in MR and CT image analysis. IEEE Trans Inf Technol Biomed 2:48–54. https://doi.org/10.1109/4233.720522

    Article  Google Scholar 

  24. Yaqub M, Javaid MK, Cooper C, Noble JA (2014) Investigation of the role of feature selection and weighted voting in random forests for 3-D volumetric segmentation. IEEE Trans Med Imaging 33:258–271. https://doi.org/10.1109/TMI.2013.2284025

    Article  Google Scholar 

  25. Ahmmed R, Sen SA, Hossain MF, Rafiq MA (2017) Classification of tumors and it stages in brain MRI using support vector machine and artificial neural network. 2017Int Conf Electr Comput Commun Eng. https://doi.org/10.1109/ECACE.2017.7912909

    Article  Google Scholar 

  26. Müller H, Unay D (2017) Retrieval from and understanding of large-scale multi-modal medical datasets: a review. IEEE Trans Multimed 19:2093–2104

    Article  Google Scholar 

  27. Grathwohl W, Wang K-C, Jacobsen J-H, Duvenaud D, Norouzi M, Swersky K (2019) Your classifier is secretly an energy based model and you should treat it like one. 1–23. arXiv preprint arXiv:1912.03263.

  28. Muhammad K, Khan S, Del Ser J, De Albuquerque VHC (2020) Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans Neural Netw Learn Syst 32:507–522

    Article  Google Scholar 

  29. Nazir M, Shakil S, Khurshid K (2021) Role of deep learning in brain tumor detection and classification (2015 to 2020): a review. Comput Med Imaging Graph 91:101940

    Article  Google Scholar 

  30. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30:449–459

    Article  Google Scholar 

  31. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29:102–127

    Article  Google Scholar 

  32. Chaudhari AS, Sandino CM, Cole EK, Larson DB, Gold GE, Vasanawala SS et al (2021) Prospective deployment of deep learning in MRI: a framework for important considerations, challenges, and recommendations for best practices. J Magn Reson Imaging 54:357–371

    Article  Google Scholar 

  33. Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors 20:3243

    Article  Google Scholar 

  34. Juntu J, Sijbers J, Dyck D, Gielen J (2008) Bias Field Correction for MRI Images. 543–51. https://doi.org/10.1007/3-540-32390-2_64.

  35. Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B (2020) 3D deep learning on medical images: a review. Sensors 20:5097

    Article  Google Scholar 

  36. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32:582–596

    Article  Google Scholar 

  37. Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, et al (2017) Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks. Int Conf Med Image Comput Comput Interv. p. 728–36

  38. Zhou X, Takayama R, Wang S, Hara T, Fujita H (2017) Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 44:5221–5233

    Article  Google Scholar 

  39. Yudistira N, Daman D (2008) Issues and problems in brain magnetic resonance imaging: an overview. TELKOMNIKA 6:57

    Article  Google Scholar 

  40. Zhao J, Meng Z, Wei L, Sun C, Zou Q, Su R (2019) Supervised brain tumor segmentation based on gradient and context-sensitive features. Front Neurosci 13:1–11. https://doi.org/10.3389/fnins.2019.00144

    Article  Google Scholar 

  41. Pinaya WHL, Tudosiu P-D, Gray R, Rees G, Nachev P, Ourselin S et al (2022) Unsupervised brain imaging 3D anomaly detection and segmentation with transformers. Med Image Anal 79:102475. https://doi.org/10.1016/j.media.2022.102475

    Article  Google Scholar 

  42. Cui W, Liu Y, Li Y, Guo M, Li Y, Li X, et al (2019) Semi-supervised brain lesion segmentation with an adapted mean teacher model. Inf. Process. Med. Imaging 26th Int. Conf. IPMI 2019, Hong Kong, China, June 2--7, 2019, Proc. 26, p. 554–65

  43. Li Y, Yang H, Lei B, Liu J, Wee C-Y (2018) Novel effective connectivity inference using ultra-group constrained orthogonal forward regression and elastic multilayer perceptron classifier for MCI identification. IEEE Trans Med Imaging 38:1227–1239

    Article  Google Scholar 

  44. Amiri S, Movahedi MM, Kazemi K, Parsaei H (2013) An automated MR image segmentation system using multi-layer perceptron neural network. J Biomed Phys Eng 3:115

    Google Scholar 

  45. Bernal J, Kushibar K, Cabezas M, Valverde S, Oliver A, Llado X (2019) Quantitative analysis of patch-based fully convolutional neural networks for tissue segmentation on brain magnetic resonance imaging. IEEE Access 7:89986–90002. https://doi.org/10.1109/ACCESS.2019.2926697

    Article  Google Scholar 

  46. Ayadi W, Elhamzi W, Charfi I, Atri M (2021) Deep CNN for brain tumor classification. Neural Process Lett 53:671–700. https://doi.org/10.1007/s11063-020-10398-2

    Article  Google Scholar 

  47. Khalili N, Lessmann N, Turk E, Claessens N, de Heus R, Kolk T et al (2019) Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn Reson Imaging 64:77–89. https://doi.org/10.1016/j.mri.2019.05.020

    Article  Google Scholar 

  48. Mostapha M, Styner M (2019) Role of deep learning in infant brain MRI analysis. Magn Reson Imaging 64:171–189. https://doi.org/10.1016/j.mri.2019.06.009

    Article  Google Scholar 

  49. Sharifzadeh M, Benali H, Rivaz H (2022) Investigating shift variance of convolutional neural networks in ultrasound image segmentation. IEEE Trans Ultrason Ferroelectr Freq Control 69:1703–1713

    Article  Google Scholar 

  50. Khagi B, Lee CG, Kwon GR (2019) Alzheimer’s disease Classification from Brain MRI based on transfer learning from CNN. BMEiCON 2018 - 11th Biomed Eng Int Conf. 1–4. https://doi.org/10.1109/BMEiCON.2018.8609974.

  51. Zhao Y, Li X, Huang H, Zhang W, Zhao S, Makkie M et al (2019) Four-dimensional modeling of fmri data via spatio–temporal convolutional neural networks (st-cnns). IEEE Trans Cogn Dev Syst 12:451–460

    Article  Google Scholar 

  52. Zhang L, Lu L, Wang X, Zhu RM, Bagheri M, Summers RM et al (2019) Spatio-temporal convolutional LSTMs for tumor growth prediction by learning 4D longitudinal patient data. IEEE Trans Med Imaging 39:1114–1126

    Article  Google Scholar 

  53. Swiderski B, Osowski S, Gwardys G, Kurek J, Slowinska M, Lugowska I (2022) Random CNN structure: tool to increase generalization ability in deep learning. EURASIP J Image Video Process 2022:3. https://doi.org/10.1186/s13640-022-00580-y

    Article  Google Scholar 

  54. Nazir A, Cheema MN, Sheng B, Li H, Li P, Yang P et al (2020) OFF-eNET: an optimally fused fully end-to-end network for automatic dense volumetric 3D intracranial blood vessels segmentation. IEEE Trans Image Process 29:7192–7202

    Article  MATH  Google Scholar 

  55. Rodriguez P, Velazquez D, Cucurull G, Gonfaus JM, Roca FX, Gonzalez J (2019) Pay attention to the activations: a modular attention mechanism for fine-grained image recognition. IEEE Trans Multimed 22:502–514

    Article  Google Scholar 

  56. Zhang J, Liu M, Shen D (2017) Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans Image Process 26:4753–4764

    Article  MathSciNet  Google Scholar 

  57. Kam T-E, Zhang H, Jiao Z, Shen D (2019) Deep learning of static and dynamic brain functional networks for early MCI detection. IEEE Trans Med Imaging 39:478–487

    Article  Google Scholar 

  58. Yuan L, Wei X, Shen H, Zeng L-L, Hu D (2018) Multi-center brain imaging classification using a novel 3D CNN approach. IEEE Access 6:49925–49934. https://doi.org/10.1109/ACCESS.2018.2868813

    Article  Google Scholar 

  59. Wang Z, Sun Y, Shen Q, Cao L (2019) Dilated 3D convolutional neural networks for brain MRI data classification. IEEE Access 7:134388–134398. https://doi.org/10.1109/ACCESS.2019.2941912

    Article  Google Scholar 

  60. Yao D, Sui J, Wang M, Yang E, Jiaerken Y, Luo N et al (2021) A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans Med Imaging 40:1279–1289. https://doi.org/10.1109/TMI.2021.3051604

    Article  Google Scholar 

  61. Ahmed MR, Zhang Y, Liu Y, Liao H (2020) Single volume image generator and deep learning-based ASD classification. IEEE J Biomed Heal Informatics 24:3044–3054. https://doi.org/10.1109/JBHI.2020.2998603

    Article  Google Scholar 

  62. Liu M, Zhang J, Adeli E, Shen D (2019) Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s Disease diagnosis. IEEE Trans Biomed Eng 66:1195–1206. https://doi.org/10.1109/TBME.2018.2869989

    Article  Google Scholar 

  63. Khagi B, Kwon G-R (2020) 3D CNN design for the classification of Alzheimer’s Disease using brain MRI and PET. IEEE Access 8:217830–217847. https://doi.org/10.1109/ACCESS.2020.3040486

    Article  Google Scholar 

  64. Huang Z, Du X, Chen L, Li Y, Liu M, Chou Y et al (2020) Convolutional neural network based on complex networks for brain tumor image classification with a modified activation function. IEEE Access 8:89281–89290. https://doi.org/10.1109/ACCESS.2020.2993618

    Article  Google Scholar 

  65. Ren F, Yang C, Qiu Q, Zeng N, Cai C, Hou C et al (2019) Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s Disease classification. IEEE Access 7:181423–181433. https://doi.org/10.1109/ACCESS.2019.2920241

    Article  Google Scholar 

  66. Artzi M, Redmard E, Tzemach O, Zeltser J, Gropper O, Roth J et al (2021) Classification of pediatric posterior fossa tumors using convolutional neural network and tabular data. IEEE Access 9:91966–91973. https://doi.org/10.1109/ACCESS.2021.3085771

    Article  Google Scholar 

  67. Liu M, Zhang J, Lian C, Shen D (2020) Weakly supervised deep learning for brain disease prognosis using MRI and incomplete clinical scores. IEEE Trans Cybern 50:3381–3392. https://doi.org/10.1109/TCYB.2019.2904186

    Article  Google Scholar 

  68. Pereira S, Pinto A, Amorim J, Ribeiro A, Alves V, Silva CA (2019) Adaptive feature recombination and recalibration for semantic segmentation with fully convolutional networks. IEEE Trans Med Imaging 38:2914–2925. https://doi.org/10.1109/TMI.2019.2918096

    Article  Google Scholar 

  69. Huang Z-A, Zhu Z, Yau CH, Tan KC (2021) Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans Neural Networks Learn Syst 32:2847–2861. https://doi.org/10.1109/TNNLS.2020.3007943

    Article  Google Scholar 

  70. Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Išgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35:1252–1261. https://doi.org/10.1109/TMI.2016.2548501

    Article  Google Scholar 

  71. Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ben AI (2019) HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging 38:1116–1126. https://doi.org/10.1109/TMI.2018.2878669

    Article  Google Scholar 

  72. Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2017) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25:1006–1012. https://doi.org/10.1109/TFUZZ.2016.2574915

    Article  Google Scholar 

  73. Liu M, Zhang J, Nie D, Yap P-T, Shen D (2018) Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Heal Informatics 22:1476–1485. https://doi.org/10.1109/JBHI.2018.2791863

    Article  Google Scholar 

  74. Zhu W, Sun L, Huang J, Han L, Zhang D (2021) Dual attention multi-instance deep learning for Alzheimer’s Disease diagnosis with structural MRI. IEEE Trans Med Imaging 40:2354–2366. https://doi.org/10.1109/TMI.2021.3077079

    Article  Google Scholar 

  75. Zhao Y, Dong Q, Zhang S, Zhang W, Chen H, Jiang X et al (2018) Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks. IEEE Trans Biomed Eng 65:1975–1984. https://doi.org/10.1109/TBME.2017.2715281

    Article  Google Scholar 

  76. Lian C, Liu M, Zhang J, Shen D (2020) Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s Disease diagnosis using structural MRI. IEEE Trans Pattern Anal Mach Intell 42:880–893. https://doi.org/10.1109/TPAMI.2018.2889096

    Article  Google Scholar 

  77. Cui R, Liu M (2019) Hippocampus analysis by combination of 3-D densenet and shapes for Alzheimer’s Disease diagnosis. IEEE J Biomed Heal Informatics 23:2099–2107. https://doi.org/10.1109/JBHI.2018.2882392

    Article  Google Scholar 

  78. Xu H, Dong M, Lee M-H, O’Hara N, Asano E, Jeong J-W (2019) Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks. IEEE Trans Med Imaging 38:1910–1922. https://doi.org/10.1109/TMI.2019.2902073

    Article  Google Scholar 

  79. Nguyen LD, Gao R, Lin D, Lin Z (2019) Biomedical image classification based on a feature concatenation and ensemble of deep CNNs. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01276-4

    Article  Google Scholar 

  80. Pan X, Phan T-L, Adel M, Fossati C, Gaidon T, Wojak J et al (2020) Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging. IEEE Trans Med Imaging 40:81–92

    Article  Google Scholar 

  81. Ye R, Liu F, Zhang L (2019) 3D depthwise convolution: reducing model parameters in 3D vision tasks. Can Conf Artif Intell. p. 186–99

  82. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251

    Article  Google Scholar 

  83. Han Y, Sunwoo L, Ye JC (2019) $$\{$k$\}$ $-space deep learning for accelerated MRI. IEEE Trans Med Imaging 39:377–386

    Article  Google Scholar 

  84. Ma J, He J, Yang X (2020) Learning geodesic active contours for embedding object global information in segmentation CNNs. IEEE Trans Med Imaging 40:93–104

    Article  Google Scholar 

  85. Hassanzadeh T, Essam D, Sarker R (2020) 2D to 3D evolutionary deep convolutional neural networks for medical image segmentation. IEEE Trans Med Imaging 40:712–721

    Article  Google Scholar 

  86. Liu J, Li M, Lan W, Wu F-X, Pan Y, Wang J (2018) Classification of Alzheimer’s Disease using whole brain hierarchical network. IEEE/ACM Trans Comput Biol Bioinforma 15:624–632. https://doi.org/10.1109/TCBB.2016.2635144

    Article  Google Scholar 

  87. Lee M-H, O’Hara N, Sonoda M, Kuroda N, Juhasz C, Asano E et al (2020) Novel deep learning network analysis of electrical stimulation mapping-driven diffusion MRI tractography to improve preoperative evaluation of pediatric epilepsy. IEEE Trans Biomed Eng 67:3151–3162. https://doi.org/10.1109/TBME.2020.2977531

    Article  Google Scholar 

  88. Strumia M, Schmidt FR, Anastasopoulos C, Granziera C, Krueger G, Brox T (2016) White matter MS-lesion segmentation using a geometric brain model. IEEE Trans Med Imaging 35:1636–1646

    Article  Google Scholar 

  89. Zhou Y, Li Z, Zhu H, Chen C, Gao M, Xu K, et al (2018) Holistic brain tumor screening and classification based on densenet and recurrent neural network. Int. MICCAI Brainlesion Work. p. 208–17.

  90. Liu L, Hu X, Zhu L, Fu C-W, Qin J, Heng P-A (2020) $ψ$-net: Stacking densely convolutional lstms for sub-cortical brain structure segmentation. IEEE Trans Med Imaging 39:2806–2817

    Article  Google Scholar 

  91. Wang H, Zhao S, Dong Q, Cui Y, Chen Y, Han J et al (2018) Recognizing brain states using deep sparse recurrent neural network. IEEE Trans Med Imaging 38:1058–1068

    Article  Google Scholar 

  92. Kalaiselvi K, Karthikeyan C, Devi MS, Kalpana C (2020) Improved classification of brain tumor in MR images using RNN classification framework. Int J Innov Technol Explor Eng 9:1098–1101. https://doi.org/10.35940/ijitee.c7983.019320

    Article  Google Scholar 

  93. Ouyang J, Zhao Q, Sullivan EV, Pfefferbaum A, Tapert SF, Adeli E et al (2021) Longitudinal pooling & consistency regularization to model disease progression From MRIs. IEEE J Biomed Heal Informatics 25:2082–2092. https://doi.org/10.1109/JBHI.2020.3042447

    Article  Google Scholar 

  94. Yuan F-N, Zhang L, Shi JT, Xia X, Li G (2019) Theories and applications of auto-encoder neural networks: a literature survey. Chin J Comput 42:203–230

    Google Scholar 

  95. Han K, Wang Y, Zhang C, Li C, Xu C (2018) Autoencoder inspired unsupervised feature selection. 2018 IEEE Int Conf Acoust speech signal Process. p. 2941–5

  96. Liu S, Zhao L, Wang X, Xin Q, Zhao J, Guttery DS et al (2021) Deep spatio-temporal representation and ensemble classification for attention deficit/hyperactivity disorder. IEEE Trans Neural Syst Rehabil Eng 29:1–10. https://doi.org/10.1109/TNSRE.2020.3019063

    Article  Google Scholar 

  97. Sun L, Ma W, Ding X, Huang Y, Liang D, Paisley J (2020) A 3D spatially weighted network for segmentation of brain tissue from MRI. IEEE Trans Med Imaging 39:898–909. https://doi.org/10.1109/TMI.2019.2937271

    Article  Google Scholar 

  98. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2020) UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39:1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  99. Zhou T, Canu S, Vera P, Ruan S (2021) Latent correlation representation learning for brain tumor segmentation with missing MRI modalities. IEEE Trans Image Process 30:4263–4274. https://doi.org/10.1109/TIP.2021.3070752

    Article  Google Scholar 

  100. Kumar Mallick P, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari P (2019) Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access 7:46278–46287. https://doi.org/10.1109/ACCESS.2019.2902252

    Article  Google Scholar 

  101. Martinez-Murcia FJ, Ortiz A, Gorriz J-M, Ramirez J, Castillo-Barnes D (2019) Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders. IEEE J Biomed Heal Inform 24:17–26

    Article  Google Scholar 

  102. Tomar D, Lortkipanidze M, Vray G, Bozorgtabar B, Thiran J-P (2021) Self-attentive spatial adaptive normalization for cross-modality domain adaptation. IEEE Trans Med Imaging 40:2926–2938. https://doi.org/10.1109/TMI.2021.3059265

    Article  Google Scholar 

  103. Zhu Q, Yang J, Wang S, Zhang D, Zhang Z (2022) Multi-modal non-euclidean brain network analysis with community detection and convolutional autoencoder. IEEE Trans Emerg Top Comput Intell. https://doi.org/10.1109/TETCI.2022.3171855

    Article  Google Scholar 

  104. Cheng J, Gao M, Liu J, Yue H, Kuang H, Liu J et al (2021) Multimodal disentangled variational autoencoder with game theoretic interpretability for glioma grading. IEEE J Biomed Heal Inform 26:673–684

    Article  Google Scholar 

  105. Ju R, Hu C, Li Q (2017) Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning. IEEE/ACM Trans Comput Biol Bioinforma 16:244–257

    Article  Google Scholar 

  106. Seo H, Yu L, Ren H, Li X, Shen L, Xing L (2021) Deep neural network with consistency regularization of multi-output channels for improved tumor detection and delineation. IEEE Trans Med Imaging 40:3369–3378

    Article  Google Scholar 

  107. Zhou Y, Huang W, Dong P, Xia Y, Wang S (2019) D-UNet: a dimension-fusion U shape network for chronic stroke lesion segmentation. IEEE/ACM Trans Comput Biol Bioinform 18:940–950

    Article  Google Scholar 

  108. Du J, Li W, Lu K, Xiao B (2016) An overview of multi-modal medical image fusion. Neurocomputing 215:3–20

    Article  Google Scholar 

  109. Gao X, Shi F, Shen D, Liu M (2022) Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimers disease. IEEE J Biomed Heal Inform. https://doi.org/10.1109/JBHI.2021.3097721

    Article  Google Scholar 

  110. Kim BN, Dolz J, Jodoin P-M, Desrosiers C (2021) Privacy-net: an adversarial approach for identity-obfuscated segmentation of medical images. IEEE Trans Med Imaging 40:1737–1749

    Article  Google Scholar 

  111. Matsubara T, Tashiro T, Uehara K (2019) Deep neural generative model of functional MRI images for psychiatric disorder diagnosis. IEEE Trans Biomed Eng 66:2768–2779. https://doi.org/10.1109/TBME.2019.2895663

    Article  Google Scholar 

  112. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G et al (2019) Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access 7:156966–156977. https://doi.org/10.1109/ACCESS.2019.2947606

    Article  Google Scholar 

  113. Ge C, Gu IY-H, Jakola AS, Yang J (2020) Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access 8:22560–22570. https://doi.org/10.1109/ACCESS.2020.2969805

    Article  Google Scholar 

  114. Pan Y, Liu M, Lian C, Xia Y, Shen D (2020) Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages. IEEE Trans Med Imaging 39:2965–2975. https://doi.org/10.1109/TMI.2020.2983085

    Article  Google Scholar 

  115. Yu W, Lei B, Ng M, Cheung A, Shen Y, Wang S-Q (2020) Tensorizing GAN with high-order pooling for alzheimer’s disease assessment. IEEE Trans Neural Netw Learn Syst, 33(9):4945–4959.

  116. Amin SB, Anderson KJ, Boudreau CE, Martinez-Ledesma E, Kocakavuk E, Johnson KC et al (2020) Comparative molecular life history of spontaneous canine and human gliomas. Cancer Cell 37:243–257

    Article  Google Scholar 

  117. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024

    Article  Google Scholar 

  118. Rohlfing T (2012) Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used but unreliable. IEEE Trans Med Imaging 31:153–163. https://doi.org/10.1109/TMI.2011.2163944

    Article  Google Scholar 

  119. Bezmaternykh DD, Melnikov MY, Savelov AA, Kozlova LI, Petrovskiy ED, Natarova KA et al (2021) Brain networks connectivity in mild to moderate depression: resting state fmri study with implications to nonpharmacological treatment. Neural Plast 2021:1

    Article  Google Scholar 

  120. Liew S-L, Anglin JM, Banks NW, Sondag M, Ito KL, Kim H et al (2018) A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci Data 5:1–11

    Article  Google Scholar 

  121. Liu Y, Huo Y, Dewey B, Wei Y, Lyu I, Landman BA (2022) Generalizing deep learning brain segmentation for skull removal and intracranial measurements. Magn Reson Imaging 88:44–52. https://doi.org/10.1016/j.mri.2022.01.004

    Article  Google Scholar 

  122. Puccio B, Pooley JP, Pellman JS, Taverna EC, Craddock RC (2016) The preprocessed connectomes project repository of manually corrected skull-stripped t1-weighted anatomical mri data. Gigascience 5:1–7. https://doi.org/10.1186/s13742-016-0150-5

    Article  Google Scholar 

  123. Koyejo OO, Natarajan N, Ravikumar PK, Dhillon IS (2014) Consistent binary classification with generalized performance metrics. Adv Neural Inf Process Syst. 27:1–9.

  124. Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P et al (2018) Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-07619-7

    Article  Google Scholar 

  125. Steinley D (2006) K-means clustering: a half-century synthesis. Br J Math Stat Psychol 59:1–34

    Article  MathSciNet  Google Scholar 

  126. Zheng X, Lei Q, Yao R, Gong Y, Yin Q (2018) Image segmentation based on adaptive K -means algorithm. J Image Video Proc. https://doi.org/10.1186/s13640-018-0309-3

    Article  Google Scholar 

  127. Goh TY, Basah SN, Yazid H, Juhairi M, Safar A (2018) Performance analysis of image thresholding : Otsu technique. Measurement 114:298–307. https://doi.org/10.1016/j.measurement.2017.09.052

    Article  Google Scholar 

  128. Kaku A, Hegde CV, Huang J, Chung S, Wang X, Young M et al (2019) DARTS: DenseUnet-based Automatic Rapid Tool for brain Segmentation 2019.

  129. Thyreau B, Sato K, Fukuda H, Taki Y (2018) Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing. Med Image Anal 43:214–228. https://doi.org/10.1016/j.media.2017.11.004

    Article  Google Scholar 

  130. Farhan S, Fahiem MA, Tauseef H (2014) An ensemble-of-classifiers based approach for early diagnosis of Alzheimer‘s Disease: classification using structural features of brain images. Comput Math Methods Med 2014:1

    Article  Google Scholar 

  131. Vaidyanathan M, Clarke LP, Heidtman C, Velthuizen RP, Hall LO (1997) Normal brain volume measurements using multispectral MRI segmentation. Magn Reson Imaging 15:87–97. https://doi.org/10.1016/S0730-725X(96)00244-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.R., Bhandari, A.K. Role of Deep Learning in Classification of Brain MRI Images for Prediction of Disorders: A Survey of Emerging Trends. Arch Computat Methods Eng 30, 4931–4957 (2023). https://doi.org/10.1007/s11831-023-09967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09967-0

Navigation