Skip to main content
Log in

State of Art Review on Applications and Mechanism of Self-Healing Materials and Structure

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Self-healing materials (SHEM) have extensive characteristics that significantly influence structural and polymeric components’ damage detection and healing behaviour. The composite materials with self-healing capabilities can automatically repair themselves after damage and lessen the economic losses. The present work aims to explore the recent successes in these endeavours from numerous kinds of research published over the last few years and focuses on methodologies/mechanisms, material types, and the excellent abilities of SHEM in various fields. The three objectives of the current article are: (i) to deliberate the motivation behind materials that can either extrinsically or intrinsically heal. (ii) investigate research on self-healing composites, emphasizing several healing systems or mechanisms. (iii) to review the most recent developments and applications of self-healing materials in different sectors. Additionally, some of the classifications, computational methods, and healing efficiency specific to self-healing materials have been reviewed, and the individual comparisons of self-healing techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar MH, Moganapriya C, Kumar AM et al (2021) Self-healing materials in aerospace applications. Self-Healing Smart Mater Allied Appl. https://doi.org/10.1002/9781119710219.ch17

    Article  Google Scholar 

  2. Palin D, Wiktor V, Jonkers HM (2016) A bacteria-based bead for possible self-healing marine concrete applications. Smart Mater Struct 25:084008. https://doi.org/10.1088/0964-1726/25/8/084008

    Article  Google Scholar 

  3. Uman S, Dhand A, Burdick JA (2020) Recent advances in shear-thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci 137:48668. https://doi.org/10.1002/app.48668

    Article  Google Scholar 

  4. Scheiner M, Dickens TJ, Okoli O (2016) Progress towards self-healing polymers for composite structural applications. Polym (Guildf) 83:260–282. https://doi.org/10.1016/j.polymer.2015.11.008

    Article  Google Scholar 

  5. Idumah CI (2021) Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym Polym Compos 29:246–258. https://doi.org/10.1177/0967391120910882

    Article  Google Scholar 

  6. Guimard NK, Oehlenschlaeger KK, Zhou J et al (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143. https://doi.org/10.1002/macp.201100442

    Article  Google Scholar 

  7. Azizi S, Safaei B, Fattahi AM, Tekere M (2015) Nonlinear vibrational analysis of nanobeams embedded in an elastic medium including surface stress effects. Adv Mater Sci Eng 2015:1–7. https://doi.org/10.1155/2015/318539

    Article  Google Scholar 

  8. Safaei B, Naseradinmousavi P, Rahmani A (2016) Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression. J Mol Graph Model 65:43–60. https://doi.org/10.1016/j.jmgm.2016.02.001

    Article  Google Scholar 

  9. Fattahi AM, Safaei B, Qin Z, Chu F (2021) Experimental studies on elastic properties of high density polyethylene multi walled carbon nanotube nanocomposites the analysis of gear failure by molecular dynamics simulation view project special issue: composite structures reinforced by nano materials. Steel Compos Struct 38:177–187. https://doi.org/10.12989/scs.2021.38.2.177

    Article  Google Scholar 

  10. Alhijazi M, Zeeshan Q, Safaei B et al (2020) Recent developments in palm fibers composites: a review. J Polym Environ 28:3029–3054. https://doi.org/10.1007/s10924-020-01842-4

    Article  Google Scholar 

  11. Alhijazi M, Zeeshan Q, Qin Z et al (2020) Finite element analysis of natural fibers composites: a review. Nanotechnol Rev 9:853–875. https://doi.org/10.1515/ntrev-2020-0069

    Article  Google Scholar 

  12. Yuan Y, Zhao K, Sahmani S, Safaei B (2020) Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Appl Math Mech 41:587–604. https://doi.org/10.1007/s10483-020-2600-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan F, Cai X, Sahmani S, Safaei B (2021) Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos Struct 262:113604. https://doi.org/10.1016/j.compstruct.2021.113604

    Article  Google Scholar 

  14. Chen S-X, Sahmani S, Safaei B (2021) Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Eng Comput 37:1657–1678. https://doi.org/10.1007/s00366-021-01303-z

    Article  Google Scholar 

  15. Sahmani S, Safaei B (2021) Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach. Eur Phys J Plus 136:806. https://doi.org/10.1140/epjp/s13360-021-01706-3

    Article  Google Scholar 

  16. Li H, Wang D, Zhang H et al (2022) Optimal design of vibro-impact resistant fiber reinforced composite plates with polyurea coating. Compos Struct 292:115680. https://doi.org/10.1016/j.compstruct.2022.115680

    Article  Google Scholar 

  17. Zhang L, Zhang F, Qin Z et al (2022) Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy 238:121770. https://doi.org/10.1016/j.energy.2021.121770

    Article  Google Scholar 

  18. Xie B, Sahmani S, Safaei B, Xu B (2021) Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput 37:1611–1634. https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  19. Safaei B (2021) Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. Eur Phys J Plus 136:646. https://doi.org/10.1140/epjp/s13360-021-01632-4

    Article  Google Scholar 

  20. Safaei B, Davodian E, Fattahi AM, Asmael M (2021) Calcium carbonate nanoparticles effects on cement plast properties. Microsyst Technol 27:3059–3076. https://doi.org/10.1007/s00542-020-05136-6

    Article  Google Scholar 

  21. Yuan Y, Zhao X, Zhao Y et al (2021) Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct 159:107249. https://doi.org/10.1016/j.tws.2020.107249

    Article  Google Scholar 

  22. Safaei B, Onyibo EC, Hurdoganoglu D (2022) Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Univ Ser Mech Eng 20:279–306. https://doi.org/10.22190/FUME220201009S

    Article  Google Scholar 

  23. Rahmani A, Safaei B, Qin Z (2021) On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen’s theory. Eng Comput. https://doi.org/10.1007/s00366-021-01429-0

    Article  Google Scholar 

  24. Safaei B, Moradi-Dastjerdi R, Qin Z et al (2021) Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes. J Sandw Struct Mater 23:884–905. https://doi.org/10.1177/1099636219848282

    Article  Google Scholar 

  25. Song R, Sahmani S, Safaei B (2021) Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes. Appl Math Mech 42:771–786. https://doi.org/10.1007/s10483-021-2725-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Safaei B, Onyibo EC, Hurdoganoglu D (2022) Thermal buckling and bending analyses of carbon foam beams sandwiched by composite faces under axial compression. Facta Univ. https://doi.org/10.22190/FUME220404027S

    Article  Google Scholar 

  27. Yang Z, Lu H, Sahmani S, Safaei B (2021) Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng 21:114. https://doi.org/10.1007/s43452-021-00264-w

    Article  Google Scholar 

  28. Ghanati P, Safaei B (2019) Elastic buckling analysis of polygonal thin sheets under compression. Indian J Phys 93:47–52. https://doi.org/10.1007/s12648-018-1254-9

    Article  Google Scholar 

  29. Zhang D, Yuan J, Zhao Q et al (2020) Steel and composite structures. Steel Compos Struct 35:659. https://doi.org/10.12989/SCS.2020.35.5.659

    Article  Google Scholar 

  30. Zhu R, Zhang X, Zhang S et al (2022) Modeling and topology optimization of cylindrical shells with partial CLD treatment. Int J Mech Sci 220:107145. https://doi.org/10.1016/j.ijmecsci.2022.107145

    Article  Google Scholar 

  31. Priyadarsini M, Rekha Sahoo D, Biswal T (2021) A new generation self-healing composite materials. Mater Today Proc 47:1229–1233. https://doi.org/10.1016/j.matpr.2021.06.456

    Article  Google Scholar 

  32. Rahman MW, Shefa NR (2021) Minireview on self-healing polymers: versatility, application, and prospects. Adv Polym Technol. https://doi.org/10.1155/2021/7848088

    Article  Google Scholar 

  33. Wen N, Song T, Ji Z et al (2021) Recent advancements in self-healing materials: Mechanicals, performances and features. React Funct Polym 168:105041. https://doi.org/10.1016/j.reactfunctpolym.2021.105041

    Article  Google Scholar 

  34. Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42:372–379. https://doi.org/10.1007/BF02412141

    Article  Google Scholar 

  35. Kosarli M, Bekas DG, Tsirka K et al (2019) Microcapsule-based self-healing materials: healing efficiency and toughness reduction vs. capsule size. Compos Part B Eng 171:78–86. https://doi.org/10.1016/j.compositesb.2019.04.030

    Article  Google Scholar 

  36. Eslami-Farsani R, Khalili SMR, Khademoltoliati A, Saeedi A (2021) Tensile and creep behavior of microvascular based self-healing composites: experimental study. Mech Adv Mater Struct 28:384–390. https://doi.org/10.1080/15376494.2019.1567882

    Article  Google Scholar 

  37. White SR, Maiti S, Jones AS et al (2005) Fatigue of self-healing polymers: Multiscale analysis and experiments. 11th Int Conf Fract 2005, ICF11 5:3888–3891

  38. Baniasadi M, Yarali E, Foyouzat A, Baghani M (2021) Crack self-healing of thermo-responsive shape memory polymers with application to control valves, filtration, and drug delivery capsule. Eur J Mech - A/Solids 85:104093. https://doi.org/10.1016/j.euromechsol.2020.104093

    Article  MathSciNet  MATH  Google Scholar 

  39. Burton DS, Gao X, Brinson LC (2006) Finite element simulation of a self-healing shape memory alloy composite. Mech Mater 38:525–537. https://doi.org/10.1016/j.mechmat.2005.05.021

    Article  Google Scholar 

  40. Areias P, Rabczuk T, Camanho PP (2014) Finite strain fracture of 2D problems with injected anisotropic softening elements. Theor Appl Fract Mech 72:50–63. https://doi.org/10.1016/j.tafmec.2014.06.006

    Article  Google Scholar 

  41. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833. https://doi.org/10.1016/S0013-7944(01)00128-X

    Article  Google Scholar 

  42. Gilabert FA, Garoz D, Paepegem W, Van (2017) Macro- and micro-modeling of crack propagation in encapsulation-based self-healing materials: application of XFEM and cohesive surface techniques. Mater Des 130:459–478. https://doi.org/10.1016/j.matdes.2017.05.050

    Article  Google Scholar 

  43. Areias P, Rabczuk T, Dias-da-Costa D (2013) Element-wise fracture algorithm based on rotation of edges. Eng Fract Mech 110:113–137. https://doi.org/10.1016/j.engfracmech.2013.06.006

    Article  Google Scholar 

  44. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343. https://doi.org/10.1002/nme.1151

    Article  MATH  Google Scholar 

  45. Amiri F, Anitescu C, Arroyo M et al (2014) XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput Mech 53:45–57. https://doi.org/10.1007/s00466-013-0891-2

    Article  MathSciNet  MATH  Google Scholar 

  46. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455. https://doi.org/10.1016/j.cma.2010.03.031

    Article  MATH  Google Scholar 

  47. Areias P, Msekh MA, Rabczuk T (2016) Damage and fracture algorithm using the screened poisson equation and local remeshing. Eng Fract Mech 158:116–143. https://doi.org/10.1016/j.engfracmech.2015.10.042

    Article  Google Scholar 

  48. Chen J, Wang L, Xu X et al (2022) Self-healing materials-based electronic skin: mechanism, development and applications. Gels 8:356. https://doi.org/10.3390/gels8060356

    Article  Google Scholar 

  49. Hassan MR, Mehrpouya M, Emamian S, Sheikholeslam MN (2013) Review of self-healing effect on shape memory alloy (SMA) structures. Adv Mater Res 701:87–92. https://doi.org/10.4028/www.scientific.net/AMR.701.87

    Article  Google Scholar 

  50. Kirkby EL, Rule JD, Michaud VJ et al (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18:2253–2260. https://doi.org/10.1002/adfm.200701208

    Article  Google Scholar 

  51. Kirkby EL, Michaud VJ, Månson J-AE et al (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polym (Guildf) 50:5533–5538. https://doi.org/10.1016/j.polymer.2009.05.014

    Article  Google Scholar 

  52. Neuser S, Michaud V, White SR (2012) Improving solvent-based self-healing materials through shape memory alloys. Polym (Guildf) 53:370–378. https://doi.org/10.1016/j.polymer.2011.12.020

    Article  Google Scholar 

  53. Xue C, Li W, Li J, Wang K (2019) Numerical investigation on interface crack initiation and propagation behaviour of self-healing cementitious materials. Cem Concr Res 122:1–16. https://doi.org/10.1016/j.cemconres.2019.04.012

    Article  Google Scholar 

  54. Chen W, Feng K, Wang Y et al (2021) Evaluation of self-healing performance of a smart composite material (SMA-ECC). Constr Build Mater 290:123216. https://doi.org/10.1016/j.conbuildmat.2021.123216

    Article  Google Scholar 

  55. Smojver I, Ivančević D, Brezetić D (2022) Modelling of micro-damage and intrinsic self-healing in unidirectional CFRP composite structures. Compos Struct 286:115266. https://doi.org/10.1016/j.compstruct.2022.115266

    Article  Google Scholar 

  56. Erukala KK, Mishra PK, Dewangan HC et al (2022) Damaged composite structural strength enhancement under elevated thermal environment using shape memory alloy fiber. Acta Mech 233:3133–3155. https://doi.org/10.1007/s00707-022-03272-w

    Article  MathSciNet  MATH  Google Scholar 

  57. Lee MW (2020) Prospects and future directions of self-healing fiber-reinforced composite materials. Polym (Basel) 12:379. https://doi.org/10.3390/polym12020379

    Article  Google Scholar 

  58. McDonald SA, Coban SB, Sottos NR, Withers PJ (2019) Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer. Sci Rep 9(1):1–8

    Article  Google Scholar 

  59. El Choufi N, Mustapha S, Tehrani BA, Grady BP (2022) An overview of self-healable polymers and recent advances in the field. Macromol Rapid Commun 2200164:1–24. https://doi.org/10.1002/marc.202200164

    Article  Google Scholar 

  60. White SR, Sottos NR, Geubelle PH et al (2001) Autonomic healing of polymer composites. Nature 409:794

    Article  Google Scholar 

  61. Olaitan Ayeleru O, Apata Olubambi P (2022) Concept of self-healing in polymeric materials. Mater Today Proc 62:S158–S162. https://doi.org/10.1016/j.matpr.2022.04.811

    Article  Google Scholar 

  62. Wang Y, Pham DT, Ji C (2015) Self-healing composites: a review. Cogent Eng 2:1–28. https://doi.org/10.1080/23311916.2015.1075686

    Article  Google Scholar 

  63. Amabili M, Ferrari G, Ghayesh MH et al (2022) Nonlinear vibrations and viscoelasticity of a self-healing composite cantilever beam: theory and experiments. Compos Struct 294:115741. https://doi.org/10.1016/j.compstruct.2022.115741

    Article  Google Scholar 

  64. Rule JD, Brown EN, Sottos NR et al (2005) Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 17:205–208. https://doi.org/10.1002/adma.200400607

    Article  Google Scholar 

  65. Rodriguez R, Bekas DG, Flórez S et al (2020) Development of self-contained microcapsules for optimised catalyst position in self-healing materials. Polym (Guildf). https://doi.org/10.1016/j.polymer.2019.122084

    Article  Google Scholar 

  66. Feng H, Yu F, Zhou Y et al (2020) Fabrication of microcapsule-type composites with the capability of underwater self-healing and damage visualization. RSC Adv 10:33675–33682. https://doi.org/10.1039/d0ra03197f

    Article  Google Scholar 

  67. Ma Y, Zhang Y, Liu J et al (2020) GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating. Mater Des 189:108547. https://doi.org/10.1016/j.matdes.2020.108547

    Article  Google Scholar 

  68. Zhu DY, Wetzel B, Noll A et al (2013) Thermo-molded self-healing thermoplastics containing multilayer microreactors. J Mater Chem A 1:7191–7198. https://doi.org/10.1039/c3ta11008g

    Article  Google Scholar 

  69. Yi H, Yang Y, Gu X et al (2015) Multilayer composite microcapsules synthesized by Pickering emulsion templates and their application in self-healing coating. J Mater Chem A 3:13749–13757. https://doi.org/10.1039/c5ta02288f

    Article  Google Scholar 

  70. Zamal HH, Barba D, Aïssa B et al (2020) Recovery of electro-mechanical properties inside self-healing composites through microencapsulation of carbon nanotubes. Sci Rep 10:2973. https://doi.org/10.1038/s41598-020-59725-6

    Article  Google Scholar 

  71. Jhanji KP, Asokan R, Amit Kumar R, Sarkar S (2020) The flexural properties of self healing fiber reinforced polymer composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/912/5/052022

    Article  Google Scholar 

  72. Li Q, Siddaramaiah, Kim NH et al (2013) Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy. Compos Part B Eng 55:79–85. https://doi.org/10.1016/j.compositesb.2013.06.006

    Article  Google Scholar 

  73. Cho SH, Andersson HM, White SR et al (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000. https://doi.org/10.1002/adma.200501814

    Article  Google Scholar 

  74. Cho SH, Andersson HM, White SR et al (2006) Polydiniethylsiloxane-based self-healing materials. Adv Mater 18:997–1000. https://doi.org/10.1002/adma.200501814

    Article  Google Scholar 

  75. Cho SH, White SR, Braun PV (2009) Self-healing polymer coatings. Adv Mater 21:645–649. https://doi.org/10.1002/adma.200802008

    Article  Google Scholar 

  76. Moll JL, Jin H, Mangun CL et al (2013) Self-sealing of mechanical damage in a fully cured structural composite. Compos Sci Technol 79:15–20. https://doi.org/10.1016/j.compscitech.2013.02.006

    Article  Google Scholar 

  77. Yin T, Rong M, Zhang M, Yang G (2007) Self-healing epoxy composites – preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67:201–212. https://doi.org/10.1016/j.compscitech.2006.07.028

    Article  Google Scholar 

  78. Caruso MM, Blaiszik BJ, White SR et al (2008) Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Adv Funct Mater 18:1898–1904. https://doi.org/10.1002/adfm.200800300

    Article  Google Scholar 

  79. Liao LP, Zhang W, Xin Y et al (2011) Preparation and characterization of microcapsule containing epoxy resin and its self-healing performance of anticorrosion covering material. Chin Sci Bull 56:439–443. https://doi.org/10.1007/s11434-010-4133-0

    Article  Google Scholar 

  80. Bleay SM, Loader CB, Hawyes VJ et al (2001) A smart repair system for polymer matrix composites. Compos Part A Appl Sci Manuf 32:1767–1776. https://doi.org/10.1016/S1359-835X(01)00020-3

    Article  Google Scholar 

  81. Toohey KS, Sottos NR, Lewis JA et al (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585. https://doi.org/10.1038/nmat1934

    Article  Google Scholar 

  82. Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269. https://doi.org/10.1016/0263-8223(96)00033-5

    Article  Google Scholar 

  83. Motuku M, Janowski GM, Vaidya UK (1999) Self-repairing approaches for resin infused composites subjected to low velocity impact. ASME Int Mech Eng Congr Expo Proc 1999–X:287–299. https://doi.org/10.1115/IMECE1999-0209

    Article  Google Scholar 

  84. Gergely RCR, Santa Cruz WA, Krull BP et al (2018) Restoration of impact damage in polymers via a hybrid microcapsule-microvascular self-healing system. Adv Funct Mater. https://doi.org/10.1002/adfm.201704197

    Article  Google Scholar 

  85. Wang Y, Pham DT, Ji C (2015) Self-healing composites: a review. Cogent Eng 2:1075686. https://doi.org/10.1080/23311916.2015.1075686

    Article  Google Scholar 

  86. Toohey KS, Hansen CJ, Lewis JA et al (2009) Delivery of two-part self-healing chemistry via microvascular networks. Adv Funct Mater 19:1399–1405. https://doi.org/10.1002/adfm.200801824

    Article  Google Scholar 

  87. Toohey KS, Sottos NR, White SR (2009) Characterization of microvascular-based self-healing coatings. Exp Mech 49:707–717. https://doi.org/10.1007/s11340-008-9176-7

    Article  Google Scholar 

  88. Guo Y-D, Xie X-M, Su J-F et al (2019) Mechanical experiment evaluation of the microvascular self-healing capability of bitumen using hollow fibers containing oily rejuvenator. Constr Build Mater 225:1026–1035. https://doi.org/10.1016/j.conbuildmat.2019.08.036

    Article  Google Scholar 

  89. Becker FG, Cleary M, Team RM et al (2008) Self healing materials: fundamentals design strategies and applications. Wiley, New Jersey

    Google Scholar 

  90. Pang JWC, Bond IP (2005) A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799. https://doi.org/10.1016/j.compscitech.2005.03.008

    Article  Google Scholar 

  91. Dry CM (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem Concr Res 30:1969–1977. https://doi.org/10.1016/S0008-8846(00)00415-4

    Article  Google Scholar 

  92. Dry C, Sottos NR (1993) Passive smart self-repair in polymer matrix composite materials — University of Illinois Urbana-Champaign. 438–444

  93. Trask R, Williams G, Bond I (2007) Bioinspired self-healing of advanced composite structures using hollow glass fibres. J R Soc Interface 4:363–371. https://doi.org/10.1098/rsif.2006.0194

    Article  Google Scholar 

  94. Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater Struct 15:704–710. https://doi.org/10.1088/0964-1726/15/3/005

    Article  Google Scholar 

  95. Kling S, Czigány T (2014) Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling. Compos Sci Technol 99:82–88. https://doi.org/10.1016/j.compscitech.2014.05.020

    Article  Google Scholar 

  96. Fifo O, Ryan K, Basu B (2014) Glass fibre polyester composite with in vivo vascular channel for use in self-healing. Smart Mater Struct. https://doi.org/10.1088/0964-1726/23/9/095017

    Article  Google Scholar 

  97. Aghamirzadeh GR, Khalili SMR, Eslami-Farsani R, Saeedi A (2019) Experimental investigation on the smart self-healing composites based on the short hollow glass fibers and shape memory alloy strips. Polym Compos 40:1883–1889. https://doi.org/10.1002/pc.24953

    Article  Google Scholar 

  98. Zhang F, Zhang L, Yaseen M, Huang K (2021) A review on the self-healing ability of epoxy polymers. J Appl Polym Sci 138:1–14. https://doi.org/10.1002/app.50260

    Article  Google Scholar 

  99. Radovic I, Stajcic A, Radisavljevic A et al (2020) Solvent effects on structural changes in self-healing epoxy composites. Mater Chem Phys 256:123761. https://doi.org/10.1016/j.matchemphys.2020.123761

    Article  Google Scholar 

  100. Adli A, Shelesh-Nezhad K, Khoshravan Azar M, Mohammadi-Aghdam M (2020) The effect of vascular self-healing pattern on mechanical behaviour and healing performance of epoxy/glass composite. Plast Rubber Compos 49:79–90. https://doi.org/10.1080/14658011.2019.1706278

    Article  Google Scholar 

  101. Xu S, Li J, Qiu H et al (2020) Repeated self-healing of composite coatings with core-shell fibres. Compos Commun 19:220–225. https://doi.org/10.1016/j.coco.2020.04.007

    Article  Google Scholar 

  102. Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418. https://doi.org/10.1039/b711716g

    Article  Google Scholar 

  103. Harrington MJ, Speck O, Speck T et al (2016) Biological archetypes for self-healing materials. Adv Polym Sci 273:307–344. https://doi.org/10.1007/12_2015_334

    Article  Google Scholar 

  104. Kahar NMdN, Osman NNF, Alosime AF et al (2021) The versatility of polymeric materials as self-healing agents for various types of applications: a review. Polym (Basel) 13:1194. https://doi.org/10.3390/polym13081194

    Article  Google Scholar 

  105. Madara SR, Sarath Raj NS, Selvan CP (2018) Review of research and developments in self healing composite materials. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/346/1/012011

    Article  Google Scholar 

  106. Cseke A, Haines-Gadd M, Mativenga P, Charnley F (2020) A framework for assessing self-healing products. Procedia CIRP 90:473–476. https://doi.org/10.1016/j.procir.2020.01.061

    Article  Google Scholar 

  107. Khatib M, Zohar O, Saliba W, Haick H (2020) A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations. Adv Mater 32:1–7. https://doi.org/10.1002/adma.202000246

    Article  Google Scholar 

  108. Duy LT, Seo H (2020) Eco-friendly, self-healing, and stretchable graphene hydrogels functionalized with diol oligomer for wearable sensing applications. Sens Actuators B Chem 321:128507. https://doi.org/10.1016/j.snb.2020.128507

    Article  Google Scholar 

  109. Yue H, Wang Z, Zhen Y (2022) Recent advances of self-healing electronic materials applied in organic field-effect transistors. ACS Omega. https://doi.org/10.1021/acsomega.2c00580

    Article  Google Scholar 

  110. Cerdan K, Moya C, Van Puyvelde P (2022) Magnetic self-healing composites: synthesis and applications. Molecules 27:3796. https://doi.org/10.3390/molecules27123796

    Article  Google Scholar 

  111. Tan YJ, Susanto GJ, Anwar Ali HP, Tee BCK (2021) Progress and roadmap for intelligent self-healing materials in autonomous robotics. Adv Mater 33:1–38. https://doi.org/10.1002/adma.202002800

    Article  Google Scholar 

  112. Islam S, Bhat G (2021) Progress and challenges in self-healing composite materials. Mater Adv 2:1896–1926. https://doi.org/10.1039/d0ma00873g

    Article  Google Scholar 

  113. Taheri MN, Sabet SA, Kolahchi R (2020) Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core. Smart Struct Syst An Int J 25:337–343

    Google Scholar 

  114. Shariati M, Rafie S, Zandi Y et al (2019) Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete. Adv Concr Constr 8:225–237

    Google Scholar 

  115. Shaheen N, Khushnood RA, Musarat MA, Alaloul WS (2022) Self-healing nano-concrete for futuristic infrastructures: a review. Arab J Sci Eng 47:5365–5375. https://doi.org/10.1007/s13369-022-06562-6

    Article  Google Scholar 

  116. Shariati M, Rafie S, Zandi Y et al (2019) Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete. Adv Concr Constr 8:225–237

    Google Scholar 

  117. Amran M, Onaizi AM, Fediuk R et al (2022) Self-healing concrete as a prospective construction material: a review. Mater (Basel) 15:1–46. https://doi.org/10.3390/ma15093214

    Article  Google Scholar 

  118. Nowacka M, Kowalewska A (2022) Self-healing silsesquioxane-based materials. Polym (Basel) 14:1869. https://doi.org/10.3390/polym14091869

    Article  Google Scholar 

  119. Pernigoni L, Lafont U, Grande AM (2021) Self-healing materials for space applications: overview of present development and major limitations. CEAS Sp J 13:341–352. https://doi.org/10.1007/s12567-021-00365-5

    Article  Google Scholar 

  120. Uman S, Dhand A, Burdick JA (2020) Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J Appl Polym Sci 137:1–20. https://doi.org/10.1002/app.48668

    Article  Google Scholar 

  121. Shahriari MH, Hadjizadeh A, Abdouss M (2022) Advances in self-healing hydrogels to repair tissue defects. Polym Bull. https://doi.org/10.1007/s00289-022-04133-1

    Article  Google Scholar 

  122. Mahmood A, Patel D, Hickson B et al (2022) Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int J Mol Sci. https://doi.org/10.3390/ijms23031415

    Article  Google Scholar 

  123. Salowitz N, Misra S, Haider MI et al (2022) Investigation into the performance of NiTi shape memory alloy wire reinforced Sn–Bi self-healing metal matrix composite. Mater (Basel). https://doi.org/10.3390/ma15092970

    Article  Google Scholar 

  124. Ramesh S, Khan S, Park Y et al (2022) Self-healing and repair of fabrics: a comprehensive review of the application toolkit. Mater Today 54:90–109. https://doi.org/10.1016/j.mattod.2021.11.016

    Article  Google Scholar 

  125. Jilani A, Hussain SZ, Khan AAP et al (2019) Graphene-based material for self-healing: Mechanism, synthesis, characteristics, and applications. Elsevier Inc

  126. Sitnikov NN, Khabibullina IA, Mashchenko VI, Rizakhanov RN (2018) Prospects of application of self-healing materials and technologies based on them. Inorg Mater Appl Res 9:785–793. https://doi.org/10.1134/S207511331805026X

    Article  Google Scholar 

  127. Mphahlele K, Ray SS, Kolesnikov A (2017) Self-healing polymeric composite material design, failure analysis and future outlook: a review. Polym (Basel) 9:1–22. https://doi.org/10.3390/polym9100535

    Article  Google Scholar 

  128. Sharma S, Nandan G, Rohatgi PK, Prakash R (2019) Recent advances in self-healing materials. Mater Today Proc 18:4729–4737. https://doi.org/10.1016/j.matpr.2019.07.460

    Article  Google Scholar 

  129. An S, Yoon SS, Lee MW (2021) Self-healing structural materials. Polym (Basel) 13:2297. https://doi.org/10.3390/polym13142297

    Article  Google Scholar 

  130. Reddy S (2022) Smart Materials for 4D Printing: a review on developments. Challenges and Applications, Springer. In:Senthil kumar N, Rajiv P, Sankaranarayanasamy K (eds) Lecture Notes in Mechanical Engineering, Singapore

  131. Mahapatra S, Das, Mohapatra PC, Aria AI et al (2021) Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci 8:2100864. https://doi.org/10.1002/advs.202100864

    Article  Google Scholar 

  132. Yuca N, Kalafat I, Guney E et al (2022) Self-healing systems in silicon anodes for Li-Ion batteries. Mater (Basel). https://doi.org/10.3390/ma15072392

    Article  Google Scholar 

  133. Chang T, Panhwar F, Zhao G (2020) Flourishing self-healing surface materials: recent progresses and challenges. Adv Mater Interfaces 7:1–37. https://doi.org/10.1002/admi.201901959

    Article  Google Scholar 

  134. Williams HR, Trask RS, Bond IP (2007) Self-healing composite sandwich structures. Smart Mater Struct 16:1198–1207. https://doi.org/10.1088/0964-1726/16/4/031

    Article  Google Scholar 

  135. Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A Appl Sci Manuf 38:1525–1532. https://doi.org/10.1016/j.compositesa.2007.01.013

    Article  Google Scholar 

  136. Patel AJ, Sottos NR, Wetzel ED, White SR (2010) Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos Part A Appl Sci Manuf 41:360–368. https://doi.org/10.1016/j.compositesa.2009.11.002

    Article  Google Scholar 

  137. Paolillo S, Bose RK, Santana MH, Grande AM (2021) Intrinsic self-healing epoxies in polymer matrix composites (Pmcs) for aerospace applications. Polym (Basel) 13:1–32

    Google Scholar 

  138. Chaudhary K, Kandasubramanian B (2022) Self-healing nanofibers for engineering applications. Ind Eng Chem Res 61:3789–3816. https://doi.org/10.1021/acs.iecr.1c04602

    Article  Google Scholar 

  139. Liang B, Lan F, Shi K et al (2021) Review on the self-healing of asphalt materials: mechanism, affecting factors, assessments and improvements. Constr Build Mater 266:120453. https://doi.org/10.1016/j.conbuildmat.2020.120453

    Article  Google Scholar 

  140. Wu M, Johannesson B, Geiker M (2012) A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater 28:571–583. https://doi.org/10.1016/j.conbuildmat.2011.08.086

    Article  Google Scholar 

  141. Guadagno L, Raimondo M, Naddeo C et al (2014) Self-healing materials for structural applications. Polym Eng Sci 54:777–784. https://doi.org/10.1002/pen.23621

    Article  Google Scholar 

  142. Khitab A, Anwar W, Ul-Abdin Z et al (2019) Applications of self healing nano concretes. Elsevier Inc

  143. Litina C, Al-Tabbaa A (2020) First generation microcapsule-based self-healing cementitious construction repair materials. Constr Build Mater 255:119389. https://doi.org/10.1016/j.conbuildmat.2020.119389

    Article  Google Scholar 

  144. Inozemtcev S, Korolev E (2020) Review of road materials self-healing: problems and perspective. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/855/1/012010

    Article  Google Scholar 

  145. Jakubovskis R, Jankutė A, Urbonavičius J, Gribniak V (2020) Analysis of mechanical performance and durability of self-healing biological concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119822

    Article  Google Scholar 

  146. Jayabalakrishnan D, Naga Muruga DB, Bhaskar K et al (2020) Self-healing materials–a review. Mater Today Proc 45:7195–7199. https://doi.org/10.1016/j.matpr.2021.02.415

    Article  Google Scholar 

  147. Jiang S, Lin Z, Tang C, Hao W (2021) Preparation and mechanical properties of microcapsule-based self-healing cementitious composites. Mater (Basel). https://doi.org/10.3390/ma14174866

    Article  Google Scholar 

  148. Xue C, Tapas MJ, Sirivivatnanon V (2022) Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review. J Sustain Cem Mater 0:1–23. https://doi.org/10.1080/21650373.2022.2031334

    Article  Google Scholar 

  149. Nair PS, Gupta R, Agrawal V (2022) Self-healing concrete: a promising innovation for sustainability- a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.04.393

    Article  Google Scholar 

  150. Nodehi M, Ozbakkaloglu T, Gholampour A (2022) A systematic review of bacteria-based self-healing concrete: biomineralization, mechanical, and durability properties. J Build Eng 49:104038. https://doi.org/10.1016/j.jobe.2022.104038

    Article  Google Scholar 

  151. Hamzah N, Saman HM, Baghban MH et al (2022) A review on the use of self-curing agents and its mechanism in high-performance cementitious materials. Buildings 12:1–27. https://doi.org/10.3390/buildings12020152

    Article  Google Scholar 

  152. Hossain MR, Sultana R, Patwary MM et al (2022) Self-healing concrete for sustainable buildings. a review. Environ Chem Lett 20:1265–1273. https://doi.org/10.1007/s10311-021-01375-9

    Article  Google Scholar 

  153. Aïssa B, Therriault D, Haddad E, Jamroz W (2012) Self-healing materials systems: overview of major approaches and recent developed technologies. Adv Mater Sci Eng 2012:1–17. https://doi.org/10.1155/2012/854203

    Article  Google Scholar 

  154. Abuchenari A, Ghazanfari H, Siavashi M et al (2020) A review on development and application of self-healing thermal barrier composite coatings. J Compos Compd 2:147–154. https://doi.org/10.29252/jcc.2.3.6

    Article  Google Scholar 

  155. Anjum MJ, Zhao J, Ali H et al (2020) A review on self-healing coatings applied to Mg alloys and their electrochemical evaluation techniques. Int J Electrochem Sci. https://doi.org/10.20964/2020.04.36

    Article  Google Scholar 

  156. Ikura R, Park J, Osaki M et al (2022) Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater 14:1–17. https://doi.org/10.1038/s41427-021-00349-1

    Article  Google Scholar 

  157. Cheng Y, Xiao X, Pan K, Pang H (2020) Development and application of self-healing materials in smart batteries and supercapacitors. Chem Eng J 380:122565. https://doi.org/10.1016/j.cej.2019.122565

    Article  Google Scholar 

  158. Su G, Yin S, Guo Y et al (2021) Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater Horizons 8:1795–1804. https://doi.org/10.1039/d1mh00085c

    Article  Google Scholar 

  159. Mohd Sani NF, Yee HJ, Othman N et al (2022) Intrinsic self-healing rubber: a review and perspective of material and reinforcement. Polym Test 111:107598. https://doi.org/10.1016/j.polymertesting.2022.107598

    Article  Google Scholar 

  160. Chen J, Wang L, Xu X et al (2022) Self-healing materials-based electronic skin: mechanism, development and applications. Gels 8:356. https://doi.org/10.3390/gels8060356

    Article  Google Scholar 

  161. Mashkoor F, Lee SJ, Yi H et al (2022) Self-healing materials for electronics applications. Int J Mol Sci 23:1–40. https://doi.org/10.3390/ijms23020622

    Article  Google Scholar 

  162. Narayan R, Laberty-Robert C, Pelta J et al (2022) Self-healing: an emerging technology for next-generation smart batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.202102652

    Article  Google Scholar 

  163. Kamand FZ, Mehmood B, Ghunem R et al (2022) Self-healing silicones for outdoor high voltage insulation: mechanism, applications and measurements. Energies 15:1–17. https://doi.org/10.3390/en15051677

    Article  Google Scholar 

  164. Chen J, Huang Y, Ma X, Lei Y (2018) Functional self-healing materials and their potential applications in biomedical engineering. Adv Compos Hybrid Mater 1:94–113. https://doi.org/10.1007/s42114-017-0009-y

    Article  Google Scholar 

  165. Mobaraki M, Ghaffari M, Mozafari M (2020) Self-healing polymers for composite structural applications. Self-Healing Composite Materials. Elsevier, Amsterdam, pp 33–51

    Google Scholar 

  166. Menikheim SD, Lavik EB (2020) Self-healing biomaterials: the next generation is nano. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 12:1–15. https://doi.org/10.1002/wnan.1641

    Article  Google Scholar 

  167. Jiang C, Zhang L, Yang Q et al (2021) Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-24680-x

    Article  Google Scholar 

  168. Utrera-Barrios S, Verdejo R, López-Manchado M, Santana MH (2022) The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers. Int J Mol Sci 23. https://doi.org/10.3390/ijms23094757

  169. Bei Y, Ma Y, Song F et al (2022) Recent progress of biomass based self-healing polymers. J Appl Polym Sci 139:14–16. https://doi.org/10.1002/app.51977

    Article  Google Scholar 

  170. Xie J, Yu P, Wang Z, Li J (2022) Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications. Biomacromolecules 23:641–660. https://doi.org/10.1021/acs.biomac.1c01647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, E.K., Patel, S.S., Kumar, V. et al. State of Art Review on Applications and Mechanism of Self-Healing Materials and Structure. Arch Computat Methods Eng 30, 1041–1055 (2023). https://doi.org/10.1007/s11831-022-09827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09827-3

Keywords

Navigation