Skip to main content

Biological Archetypes for Self-Healing Materials

  • Chapter
  • First Online:
Self-healing Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 273))

Abstract

Damage and fatigue are ever-present facts of life. Given enough time, even the most robust material, whether man-made or natural, succumbs to the deleterious effects of cracks, fissures, and defects during normal use. Traditionally, materials engineers have approached this problem by creating damage-tolerant structures, intensive quality control before use, vigilant inspection during use, and designing materials to function well below their theoretical limit. Living organisms, on the other hand, routinely produce materials that function close to their theoretical limit as a result of their remarkable ability to self-heal a range of non-catastrophic damage events. For this reason, many researchers in the last 15 years have turned to nature for inspiration for the design and development of self-healing composites and polymeric materials. However, these efforts have so far only scratched the surface of the richness of natural self-repair processes. In the present review, we provide an overview of some paradigmatic and well-studied examples of self-repair in living systems. The core of this overview takes the form of a number of case studies that provide a detailed description of the structure–function relationships defining the healing mechanism. Case studies include a number of examples dependent on cellular action in both animals (e.g., limb regeneration, antler growth, bone healing, and wound healing) and plants (e.g., latex-based healing, plant grafting, and wound closure in woody vines and succulent plants). Additionally, we examine several examples of acellular self-repair in biopolymeric materials (e.g., mussel byssus, caddisfly silks, and whelk egg capsules) that are already inspiring the development of a number of self-healing polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hager MD et al (2010) Self-healing materials. Adv Mater 22(47):5424–5430

    Article  CAS  Google Scholar 

  2. Bond I et al (2008) Self healing fibre-reinforced polymer composites: an overview. In: Zwaag S (ed) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht, pp 115–138

    Google Scholar 

  3. Diesendruck CE et al (2015) Biomimetic self-healing. Angew Chem Int Ed. doi:10.1002/anie.201500484

    Google Scholar 

  4. Holten-Andersen N et al (2011) pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci USA 108(7):2651–2655

    Article  CAS  Google Scholar 

  5. Norris CJ et al (2011) Self-healing fibre reinforced composites via a bioinspired vasculature. Adv Funct Mater 21(19):3624–3633

    Article  CAS  Google Scholar 

  6. Rampf M et al (2013) Investigation of a fast mechanical self-repair mechanism for inflatable structures. Int J Eng Sci 63:61–70

    Article  CAS  Google Scholar 

  7. Schuessele AC et al (2012) Self-healing rubbers based on NBR blends with hyperbranched polyethylenimines. Macromol Mater Eng 297(5):411–419

    Article  CAS  Google Scholar 

  8. Toohey KS et al (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585

    Article  CAS  Google Scholar 

  9. Clark RAF (1988) Overview and general considerations of wound repair. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of wound repair. Springer, New York

    Google Scholar 

  10. Fratzl P, Weinkamer R (2007) Hierarchical structure and repair of bone: deformation, remodelling, healing. In: Self healing materials: an alternative approach to 20 centuries of materials science, vol 100. Springer, Dordrecht, pp 323–335

    Chapter  Google Scholar 

  11. Ashton NN, Stewart RJ (2015) Self-recovering caddisfly silk: energy dissipating, Ca2+-dependent, double dynamic network fibers. Soft Matter 11(9):1667–1676

    Article  CAS  Google Scholar 

  12. Harrington MJ et al (2009) Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J Struct Biol 167(1):47–54

    Article  CAS  Google Scholar 

  13. Miserez A et al (2009) Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nat Mater 8(11):910–916

    Article  CAS  Google Scholar 

  14. Speck T et al (2013) Bio-inspired self-healing materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture. Royal Society of Chemistry, Cambridge, pp 359–389

    Chapter  Google Scholar 

  15. Speck T, Muelhaupt R, Speck O (2013) Self-healing in plants as bio-inspiration for self-repairing polymers. In: Self-healing polymers: from principles to applications. Wiley, Weinheim, pp 61–89

    Chapter  Google Scholar 

  16. Speck O et al (2014) Selbstreparatur in Natur und Technik. Konstruktion 9:72–75

    Google Scholar 

  17. Bauer G, Speck T (2012) Restoration of tensile strength in bark samples of Ficus benjamina due to coagulation of latex during fast self-healing of fissures. Ann Bot 109(4):807–811

    Article  Google Scholar 

  18. Speck O, Speck T (2015) Selbstreparatur in Natur und Technik – Versiegeln, heilen, reparieren. Biologie in unserer Zeit 45:44–51

    Article  Google Scholar 

  19. Dunlop JWC, Weinkamer R, Fratzl P (2011) Artful interfaces within biological materials. Mater Today 14(3):70–78

    Article  Google Scholar 

  20. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  CAS  Google Scholar 

  21. Gould SJ, Lewontin RC (1979) Spandrels of San Marco and the Panglossian paradigm – a critique of the adaptationist program. Proc R Soc Lond B Biol Sci 205(1161):581–598

    Article  CAS  Google Scholar 

  22. Alvarado AS (2000) Regeneration in the metazoans: why does it happen? Bioessays 22(6):578–590

    Article  CAS  Google Scholar 

  23. Nacu E, Tanaka EM (2011) Limb regeneration: a new development? Annu Rev Cell Dev Biol 27:409–440

    Article  CAS  Google Scholar 

  24. Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310(5756):1919–1923

    Article  CAS  Google Scholar 

  25. Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276(5309):81–87

    Article  CAS  Google Scholar 

  26. Bryant SV, Endo T, Gardiner DM (2002) Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol 46(7):887–896

    Google Scholar 

  27. Butler EG (1955) Regeneration of the urodele forelimb following after reversal of its proximo-distal axis. J Morphol 96(4):265–281

    Article  Google Scholar 

  28. French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193(4257):969–981

    Article  CAS  Google Scholar 

  29. Maden M, Holder N (1984) Axial characteristics of nerve induced supernumerary limbs in the axolotl. Rouxs Arch Dev Biol 193(6):394–401

    Article  Google Scholar 

  30. Goss RJ (2012) Deer antlers: regeneration, function and evolution. Academic, New York

    Google Scholar 

  31. Kierdorf U, Kierdorf H (2011) Deer antlers - a model of mammalian appendage regeneration: an extensive review. Gerontology 57(1):53–65

    Article  Google Scholar 

  32. Price JS et al (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207(5):603–618

    Article  CAS  Google Scholar 

  33. Li CY, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol 204(5):375–388

    Article  CAS  Google Scholar 

  34. Li CY, Harris AJ, Suttie JM (2001) Tissue interactions and antlerogenesis: new findings revealed by a xenograft approach. J Exp Zool 290(1):18–30

    Article  CAS  Google Scholar 

  35. Goss RJ (1995) Future-directions in antler research. Anat Rec 241(3):291–302

    Article  CAS  Google Scholar 

  36. Li CY, Suttie JM, Clark DE (2005) Histological examination of antler regeneration in red deer (Cervus elaphus). Anat Rec A Discov Mol Cell Evol Biol 282A(2):163–174

    Article  Google Scholar 

  37. Krauss S et al (2011) Tubular frameworks guiding orderly bone formation in the antler of the red deer (Cervus elaphus). J Struct Biol 175(3):457–464

    Article  Google Scholar 

  38. Bubenik AB, Pavlansk R (1965) Trophic responses to trauma in growing antlers. J Exp Zool 159(3):289–302

    Article  CAS  Google Scholar 

  39. Bubenik GA (1990) The role of the nervous system in the growth of antlers. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns, and antlers. Springer, New York, pp 339–358

    Chapter  Google Scholar 

  40. Lobo D, Solano M, Bubenik GA, Levin M (2014) A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 11(92):20130918. doi:10.1098/rsif.2013.0918

  41. Currey JD et al (2009) The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 212(24):3985–3993

    Article  CAS  Google Scholar 

  42. Launey ME et al (2010) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater 6(4):1505–1514

    Article  CAS  Google Scholar 

  43. Gupta HS et al (2013) Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater 28:366–382

    Article  CAS  Google Scholar 

  44. Sfeir C et al (2005) Fracture repair. In: Bone regeneration and repair. Humana Press, Totowa, New Jersey, pp 21–44

    Chapter  Google Scholar 

  45. Betts DC, Muller R (2014) Mechanical regulation of bone regeneration: theories, models, and experiments. Front Endocrinol (Lausanne) 5:211

    Google Scholar 

  46. Vetter A et al (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11(1–2):147–160

    Article  CAS  Google Scholar 

  47. Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884

    Article  CAS  Google Scholar 

  48. Liu Y et al (2010) Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep. J Bone Miner Res 25(9):2029–2038

    Article  Google Scholar 

  49. Huiskes R et al (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706

    Article  CAS  Google Scholar 

  50. Ruimerman R et al (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941

    Article  CAS  Google Scholar 

  51. Dunlop JWC et al (2009) New suggestions for the mechanical control of bone remodeling. Calcif Tissue Int 85(1):45–54

    Article  CAS  Google Scholar 

  52. Schulte FA et al (2013) Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One 8(4):e62172

    Article  CAS  Google Scholar 

  53. Razi H et al (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res. doi:10.1002/jbmr.2528

    Google Scholar 

  54. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  CAS  Google Scholar 

  55. Evans RK et al (2008) Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 40(11):S660–S670

    Article  CAS  Google Scholar 

  56. Fantner GE et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616

    Article  CAS  Google Scholar 

  57. Gupta HS et al (2007) Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J R Soc Interface 4(13):277–282

    Article  Google Scholar 

  58. Martin P (1997) Wound healing--aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  CAS  Google Scholar 

  59. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  Google Scholar 

  60. Murawala P, Tanaka EM, Currie JD (2012) Regeneration: the ultimate example of wound healing. Semin Cell Dev Biol 23(9):954–962

    Article  CAS  Google Scholar 

  61. Gurtner GC et al (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  Google Scholar 

  62. Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4(9), e234

    Article  Google Scholar 

  63. Harty M et al (2003) Regeneration or scarring: an immunologic perspective. Dev Dyn 226(2):268–279

    Article  Google Scholar 

  64. Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126(4):1172–1180

    Article  CAS  Google Scholar 

  65. Clark LD, Clark RK, Heber-Katz E (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol 88(1):35–45

    Article  CAS  Google Scholar 

  66. Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132(4):697–710

    Article  CAS  Google Scholar 

  67. Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68

    Article  Google Scholar 

  68. Metcalfe CR (1967) Distribution of latex in plant kingdom. Econ Bot 21(2):115–127

    Article  Google Scholar 

  69. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  70. Hunter JR (1994) Reconsidering the functions of latex. Trees Struct Funct 9(1):1–5

    Article  Google Scholar 

  71. Bauer G et al (2014) Comparative study on plant latex particles and latex coagulation in Ficus benjamina, Campanula glomerata and three Euphorbia species. PLoS One 9(11):e113336

    Article  CAS  Google Scholar 

  72. Bauer G, Nellesen A, Speck T (2010) Biological lattices in fast self-repair mechanisms in plants and the development of bio-inspired self-healing polymers. In: Brebbia C, Carpi A (eds) Design and nature V: comparing design in nature with science and engineering. WIT, Southampton, pp 453–459

    Chapter  Google Scholar 

  73. Bauer G, Freidrich C, Gillig C, Vollrath F, Speck T, Holland C (2014) Investigating the rheological properties of native plant latex. J R Soc Interface 11(90):20130847. doi:10.1098/rsif.2013.0847

  74. D’Auzac J, Prevot JC, Jacob JL (1995) What’s new about lutoids – a vacuolar system model from Hevea latex. Plant Physiol Biochem 33(6):765–777

    Google Scholar 

  75. Gidrol X et al (1994) Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem 269(12):9278–9283

    CAS  Google Scholar 

  76. Wititsuwannakul R et al (2008) Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry 69(3):656–662

    Article  CAS  Google Scholar 

  77. Nellesen A et al (2011) Self-healing in plants as a model for self-repairing elastomer materials. Int Polym Sci Technol 38:T/1–T/4

    Google Scholar 

  78. Binder W (2013) Self-healing polymers. Wiley, Weinheim

    Book  Google Scholar 

  79. Jin H et al (2013) Self-healing epoxies and their composites. In: Self-healing polymers: from principles to applications. Wiley, Weinheim, pp 361–380

    Chapter  Google Scholar 

  80. Rowe NP et al (2006) Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A, Speck T, Rowe NP (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC, Boca Raton, pp 35–59

    Chapter  Google Scholar 

  81. Rowe NP, Speck T (2004) Hydraulics and mechanics of plants: novelty, innovation and evolution. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Academic, London, pp 301–329

    Google Scholar 

  82. Rowe NP, Speck T (2015) Stem biomechanics, strength of attachment, and developmental plasticity of vines and lianas. In: Schnitzer S et al (eds) The ecology of lianas. Wiley-Blackwell, Chichester, pp 323–341

    Google Scholar 

  83. Busch S et al (2010) Morphological aspects of self-repair of lesions caused by internal growth stresses in stems of Aristolochia macrophylla and Aristolochia ringens. Proc R Soc B Biol Sci 277(1691):2113–2120

    Article  Google Scholar 

  84. Speck T et al (2004) The potential of plant biomechanics in functional biology and systematics. In: Stuessey T, Hörandl F, Mayer V (eds) Deep morphology: toward a renaissance of morphology in plant systematics. Koeltz, Königstein, pp 241–271

    Google Scholar 

  85. Luchsinger RH, Pedretti M, Reinhard A (2004) Pressure induced stability: from pneumatic structures to Tensairity. J Bionic Eng 1:141–148

    Google Scholar 

  86. Speck T et al (2006) Self-healing processes in nature and engineering: self-repairing biomimetic membranes for pneumatic structures. In: Brebbia CA (ed) Design and nature III: comparing design in nature with science and engineering. WIT, Southampton, pp 105–114

    Chapter  Google Scholar 

  87. Rampf M et al (2011) Self-repairing membranes for inflatable structures inspired by a rapid wound sealing process of climbing plants. J Bionic Eng 8(3):242–250

    Article  Google Scholar 

  88. Rampf M et al (2012) Structural and mechanical properties of flexible polyurethane foams cured under pressure. J Cell Plast 48(1):53–69

    Article  CAS  Google Scholar 

  89. Konrad W et al (2013) An analytic model of the self-sealing mechanism of the succulent plant Delosperma cooperi. J Theor Biol 336:96–109

    Article  Google Scholar 

  90. Caliaro M et al (2013) Novel method for measuring tissue pressure in herbaceous plants. Int J Plant Sci 174(2):161–170

    Article  Google Scholar 

  91. Beddie AD (1941) Natural root grafts in New Zealand trees. Trans R Soc New Zealand 71(3):199–203

    Google Scholar 

  92. Dallimore W (1917) Natural grafting of branches and roots. Bull Misc Inf (Royal Botanical Gardens Kew) 1917:303–306

    Article  Google Scholar 

  93. Küster E (1899) Über Stammverwachsungen. Jahrbücher für Wissenschaftliche Botanik 33:487–512

    Google Scholar 

  94. Millner ME (1932) Natural grafting in Hedera helix. New Phytol 31(1):2–25

    Article  Google Scholar 

  95. Seidel CF (1879) Über Verwachsungen von Stämmen und Zweigen von Holzgewächsen und ihren Einfluss auf das Dickenwachsthum der betreffenden Theile. Isis Sitzber, Dresden, pp 161–168

    Google Scholar 

  96. Hartmann HT et al (2002) Hartmann and Kesters’s plant propagation: principles and practices. Prentice-Hall, New Jersey

    Google Scholar 

  97. Yeoman MM, Brown R (1976) Implication of formation of graft union for organization in intact plant. Ann Bot 40(170):1265–1276

    Google Scholar 

  98. Graham BF, Bormann FH (1966) Natural root grafts. Bot Rev 32(3):255–292

    Article  Google Scholar 

  99. La Rue CD (1934) Root grafting in trees. Am J Bot 21(3):121–126

    Article  Google Scholar 

  100. Mudge K et al (2009) A history of grafting. Hortic Rev 35:437–493

    Google Scholar 

  101. Moore R (1982) Graft formation in Kalanchoe blossfeldiana. J Exp Bot 33(134):533–540

    Article  Google Scholar 

  102. Moore R (1983) Studies of vegetative compatibility-incompatibility in higher plants. IV. The development of tensile strength in a compatible and an incompatible graft. Am J Bot 70(2):226–231

    Article  Google Scholar 

  103. Moore R (1984) Graft formation in Solanum pennellii (Solanaceae). Plant Cell Rep 3(5):172–175

    Article  CAS  Google Scholar 

  104. Moore R, Walker DB (1983) Studies of vegetative compatibility-incompatibility in higher plants. VI. Grafting of Sedum and Solanum callus tissue in vitro. Protoplasma 115(2–3):114–121

    Article  Google Scholar 

  105. Pedersen BH (2005) Development of tensile strength in compatible and incompatible sweet cherry graftings. Can J Bot 83(2):202–210

    Article  Google Scholar 

  106. Pina A, Errea P (2005) A review of new advances in mechanism of graft compatibility-incompatibility. Sci Hortic 106(1):1–11

    Article  Google Scholar 

  107. Yin H et al (2012) Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J Exp Bot 63(11):4219–4232

    Article  CAS  Google Scholar 

  108. Esau K, Evert RF, Eichhorn SE (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Google Scholar 

  109. Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin

    Book  Google Scholar 

  110. Dormling I (1963) Anatomical and histological examination of the union of scion and stock in grafts of scots pine (Pinus silvestris L.) and Norway spruce (Picea abies (L.) Karit). Stud For Suec 13:1–136

    Google Scholar 

  111. McCulley ME (1983) In: Moore R (ed) Vegetative compatibility responses in plants. Baylor University Press, Waco, pp 71–88

    Google Scholar 

  112. Moore R (1983) In: Moore R (ed) Vegetative compatibility responses in plants. Baylor University Press, Waco, pp 89–105

    Google Scholar 

  113. Pina A, Errea P, Martens HJ (2012) Graft union formation and cell-to-cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. Sci Hortic 143:144–150

    Article  Google Scholar 

  114. Aloni B et al (2010) Hormonal signaling in rootstock-scion interactions. Sci Hortic 127(2):119–126

    Article  CAS  Google Scholar 

  115. Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol Plant Mol Biol 38:179–204

    Article  Google Scholar 

  116. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131(3):1327–1339

    Article  CAS  Google Scholar 

  117. Fuentes I et al (2014) Horizontal genome transfer as an asexual path to the formation of new species. Nature 511(7508):232–235

    Article  CAS  Google Scholar 

  118. Molnar A et al (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328(5980):872–875

    Article  CAS  Google Scholar 

  119. Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324(5927):649–651

    Article  CAS  Google Scholar 

  120. Stegemann S et al (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA 109(7):2434–2438

    Article  CAS  Google Scholar 

  121. Denny MW, Gaylord B (2010) Marine ecomechanics. Ann Rev Mar Sci 2(1):89–114

    Article  Google Scholar 

  122. Carrington E, Gosline JM (2004) Mechanical design of mussel byssus: load cycle and strain rate dependence. Am Malacol Bull 18(1/2):135–142

    Google Scholar 

  123. Waite JH, Qin X-X, Coyne KJ (1998) The peculiar collagens of mussel byssus. Matrix Biol 17(2):93–106

    Article  CAS  Google Scholar 

  124. Krauss S et al (2013) Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 14(5):1520–1528

    Article  CAS  Google Scholar 

  125. Arnold AA et al (2013) Solid-state NMR structure determination of whole anchoring threads from the blue mussel Mytilus edulis. Biomacromolecules 14(1):132–141

    Article  CAS  Google Scholar 

  126. Hagenau A et al (2011) Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. J Struct Biol 175(3):339–347

    Article  CAS  Google Scholar 

  127. Schmidt S et al (2014) Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 15(5):1644–1652

    Article  CAS  Google Scholar 

  128. Schmitt CNZ, Politi Y, Reinecke A, Harrington MJ (2015) The role of sacrificial protein-metal bond exchange in mussel byssal thread self-healing. Biomacromolecules 16(9):2852–2861. doi:10.1021/acs.biomac.5b00803

  129. Harrington MJ, Waite JH (2007) Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J Exp Biol 210(24):4307–4318

    Article  CAS  Google Scholar 

  130. Vaccaro E, Waite JH (2001) Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. Biomacromolecules 2(3):906–911

    Article  CAS  Google Scholar 

  131. Harrington MJ et al (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975):216–220

    Article  CAS  Google Scholar 

  132. Schmitt CNZ, Winter A, Bertinetti L, Masic A, Strauch P, Harrington MJ (2015) Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. J R Soc Interface 12(110):20150466. doi:10.1098/rsif.2015.0466

  133. Taylor SW et al (1996) Ferric ion complexes of a DOPA-containing adhesive protein from Mytilus edulis. Inorg Chem 35(26):7572–7577

    Article  CAS  Google Scholar 

  134. Holten-Andersen N et al (2007) Protective coatings on extensible biofibres. Nat Mater 6(9):669–672

    Article  CAS  Google Scholar 

  135. Ashton NN et al (2013) Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis. Biomacromolecules 14(10):3668–3681

    Article  CAS  Google Scholar 

  136. Yonemura N et al (2009) Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 68(6):641–653

    Article  CAS  Google Scholar 

  137. Wang C-S et al (2014) Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis. Insect Biochem Mol Biol 54:69–79

    Article  CAS  Google Scholar 

  138. Addison JB et al (2013) Beta-sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid state NMR and XRD study. Biomacromolecules 14(4):1140–1148

    Article  CAS  Google Scholar 

  139. Addison JB et al (2014) Reversible assembly of beta-sheet nanocrystals within caddisfly silk. Biomacromolecules 15(4):1269–1275

    Article  CAS  Google Scholar 

  140. Rapoport HS, Shadwick RE (2002) Mechanical characterization of an unusual elastic biomaterial from the egg capsules of marine snails (Busycon spp.). Biomacromolecules 3(1):42–50

    Article  CAS  Google Scholar 

  141. Harrington MJ et al (2012) Pseudoelastic behaviour of a natural material is achieved via reversible changes in protein backbone conformation. J R Soc Interface 9(76):2911–2922

    Article  CAS  Google Scholar 

  142. Wasko SS et al (2014) Structural proteins from whelk egg capsule with long range elasticity associated with a solid-state phase transition. Biomacromolecules 15(1):30–42

    Article  CAS  Google Scholar 

  143. Fischer FD, Harrington MJ, Fratzl P (2013) Thermodynamic modeling of a phase transformation in protein filaments with mechanical function. New J Phys 15(6):065004

    Google Scholar 

  144. Degtyar E et al (2015) Recombinant engineering of reversible cross-links into a resilient biopolymer. Polymer 69:255–263

    Article  CAS  Google Scholar 

  145. Fu T et al (2015) Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. J Mater Chem B 3(13):2671–2684

    Article  CAS  Google Scholar 

  146. Fullenkamp DE et al (2013) Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 46(3):1167–1174

    Article  CAS  Google Scholar 

  147. Krogsgaard M et al (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14(2):297–301

    Article  CAS  Google Scholar 

  148. Li L, Smitthipong W, Zeng H (2015) Mussel-inspired hydrogels for biomedical and environmental applications. Polym Chem 6(3):353–358

    Article  CAS  Google Scholar 

  149. Enke M et al (2015) Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69:274–282

    Article  CAS  Google Scholar 

  150. Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26(21):3415–3419

    Article  CAS  Google Scholar 

  151. Lane DD et al (2015) Toughened hydrogels inspired by aquatic caddisworm silk. Soft Matter. doi:10.1039/C5SM01297J

    Google Scholar 

  152. van der Zwaag S et al (2009) Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos Trans R Soc A Math Phys Eng Sci 367(1894):1689–1704

    Article  Google Scholar 

  153. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  Google Scholar 

  154. Kollmannsberger P et al (2011) The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter 7(20):9549–9560

    Article  CAS  Google Scholar 

  155. White SR et al (2014) Restoration of large damage volumes in polymers. Science 344(6184):620–623

    Article  CAS  Google Scholar 

  156. Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10(1):14–27

    Article  CAS  Google Scholar 

  157. Ying H, Zhang Y, Cheng J (2014) Dynamic urea bond for the design of reversible and self-healing polymers. Nat Commun 5:3218. doi: 10.1038/ncomms4218

  158. Cordier P et al (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980

    Article  CAS  Google Scholar 

  159. Vetter A et al (2013) Healing of a mechano-responsive material. Europhys Lett 104(6):68005

    Article  CAS  Google Scholar 

  160. Brown CL, Craig SL (2015) Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem Sci 6(4):2158–2165

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank A. Miserez and R. Stewart for providing images for figures, and C. Neinhuis for helpful input. Part of the work on mussel byssal thread healing was funded by the DFG priority program 1568 on “Design and Generic Principles of Self-Healing Materials” (HA6369/1-1 and HA6369/1-2). Financial support from the DFG for research within the Cluster of Excellence: “Image Knowledge Gestaltung: An Interdisciplinary Laboratory” is acknowledged. Several of the projects on self-repair mechanisms in plants were funded by the German Federal Ministry of Education and Research in the frameworks of the funding programme BIONA (project ‘Self-healing polymers “OSIRIS”’) and of the Ideenwettbewerb “Bionik – Innovationen aus der Natur” (FKZ0313778A, together with Empa Dübendorf). Two other projects on self-repair mechanisms in plants are part of the European Marie Curie Initial Training Network “Self-Healing Materials: from Concepts to Market” (SHeMat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Harrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harrington, M.J., Speck, O., Speck, T., Wagner, S., Weinkamer, R. (2015). Biological Archetypes for Self-Healing Materials. In: Hager, M., van der Zwaag, S., Schubert, U. (eds) Self-healing Materials. Advances in Polymer Science, vol 273. Springer, Cham. https://doi.org/10.1007/12_2015_334

Download citation

Publish with us

Policies and ethics