Skip to main content

Advertisement

Log in

On the Modeling and Simulation of SLM and SLS for Metal and Polymer Powders: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Additive Manufacturing concentrates the attention, not only of the research and academic community, but of the industry as well. Selective Laser Melting (SLM) and Selective Laser Sintering (SLS) are among the broadest employed methods in AM, since they can treat almost all types of materials. Along with the extensive experimental research that is carried out regarding SLS and SLM, modeling and simulation are powerful tools allowing better and more in depth understanding of the processes. Nevertheless, there is no general framework in modeling, but mainly studies and proposed modeling approaches. The current paper reviews modeling methods and techniques that in literature are presented for the simulation of SLM and SLS. Besides the Finite Element Method, which is the most common method used, other numerical methods like Discrete Element Method, Smoothed Particles Hydrodynamics and Molecular Dynamics have been overviewed as well. The heat transfer and fluid dynamics models consist the main core of every simulation, while other sub-models are integrated to estimate parameters like residual stresses, part deformation, material microstructure, or crystallization. The main scope of the current paper is to provide a comprehensive and detailed review on the modeling and simulation of SLS/SLM and to inform the reader concerning the different modeling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bandyopadhyay A, Bose S (2015) Additive manufacturing. CRC Press, New York

    Book  Google Scholar 

  2. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Boston

    Book  Google Scholar 

  3. Milewski JO (2017) Additive manufacturing of metals from fundamental technology to rocket nozzles, medical implants, and custom jewelry, 1st edn. Springer, Berlin

    Google Scholar 

  4. Józwik J, Ostrowski D, Milczarczyk R, Krolczyk GM (2018) Analysis of relation between the 3D printer laser beam power and the surface morphology properties in Ti-6Al-4V titanium alloy parts. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1144-2

    Article  Google Scholar 

  5. Srivatsan TS, Sudarshan TS (2016) Additive manufacturing, innovations, advances, and applications. CRC Press, New York

    Google Scholar 

  6. Kruth JP (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Technol 40:603–614. https://doi.org/10.1016/S0007-8506(07)61136-6

    Article  Google Scholar 

  7. Mercelis P, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting binding mechanisms in selective laser sintering and selective laser melting. https://doi.org/10.1108/13552540510573365

  8. Gebhardt A (2012) Understanding additive manufacturing. Carl Hanser Verlag, Munich

    Google Scholar 

  9. Gupta MK, Singla AK, Ji H et al (2020) Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol 9:9506–9522. https://doi.org/10.1016/j.jmrt.2020.06.090

    Article  Google Scholar 

  10. Lee H, Lim CHJ, Low MJ et al (2017) Lasers in additive manufacturing: A review. Int J Precis Eng Manuf Technol 4:307–322. https://doi.org/10.1007/s40684-017-0037-7

    Article  Google Scholar 

  11. Yadroitsev I, Yadroitsau I, Yadroitsev I (2009) Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders. LAP LAMBERT Academic Publishing

  12. Kamath C, El-Dasher B, Gallegos GF et al (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74:65–78. https://doi.org/10.1007/s00170-014-5954-9

    Article  Google Scholar 

  13. Gouge M, Michaleris P (2017) Thermo-mechanical modeling of additive manufacturing. Elsevier Inc, First edit

    Google Scholar 

  14. Razavykia A, Brusa E, Delprete C, Yavari R (2020) An overview of additive manufacturing technologies–A review to technical synthesis in numerical study of selective laser melting. Materials 13(17):3895. https://doi.org/10.3390/ma13173895

    Article  Google Scholar 

  15. Chiumenti M, Neiva E, Salsi E et al (2017) Numerical modelling and experimental validation in Selective Laser Melting. Addit Manuf. https://doi.org/10.1016/j.addma.2017.09.002

    Article  Google Scholar 

  16. Luo Z, Zhao Y (2019) Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316L. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03947-0

    Article  Google Scholar 

  17. Zhang Y, Guillemot G, Bernacki M, Bellet M (2018) Macroscopic thermal finite element modeling of additive metal manufacturing by selective laser melting process. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2017.12.003

    Article  MathSciNet  MATH  Google Scholar 

  18. King WE, Anderson AT, Ferencz RM et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. https://doi.org/10.1063/1.4937809

    Article  Google Scholar 

  19. Song X, Feih S, Zhai W et al (2020) Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater Des. https://doi.org/10.1016/j.matdes.2020.108779

    Article  Google Scholar 

  20. Mede T, Kocjan A, Paulin I, Godec M (2020) Numerical mesoscale modelling of microstructure evolution during selective laser melting. Metals 10(6):800. https://doi.org/10.3390/met10060800

    Article  Google Scholar 

  21. Mozaffar M, Ndip-Agbor E, Lin S et al (2019) Acceleration strategies for explicit finite element analysis of metal powder-based additive manufacturing processes using graphical processing units. Comput Mech. https://doi.org/10.1007/s00466-019-01685-4

    Article  MATH  Google Scholar 

  22. Papazoglou EL, Karkalos NE, Markopoulos AP (2020) A comprehensive study on thermal modeling of SLM process under conduction mode using FEM. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-06294-7

    Article  Google Scholar 

  23. Loh LE, Chua CK, Yeong WY et al (2015) Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014

    Article  Google Scholar 

  24. Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit Manuf 5:9–19. https://doi.org/10.1016/j.addma.2014.10.003

    Article  Google Scholar 

  25. Yang Q, Zhang P, Cheng L et al (2016) Finite element modeling and validation of thermomechanical behavior of Ti–6Al–4V in directed energy deposition additive manufacturing. Addit Manuf 12:169–177. https://doi.org/10.1016/j.addma.2016.06.012

    Article  Google Scholar 

  26. Panda BK, Sahoo S (2019) Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results Phys 12:1372–1381. https://doi.org/10.1016/j.rinp.2019.01.002

    Article  Google Scholar 

  27. Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Tech 214:2627–2636. https://doi.org/10.1016/j.jmatprotec.2014.06.001

    Article  Google Scholar 

  28. Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process 16:345–355. https://doi.org/10.1016/j.jmapro.2014.04.001

    Article  Google Scholar 

  29. Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647. https://doi.org/10.1016/j.matdes.2013.05.070

    Article  Google Scholar 

  30. Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of Direct Laser Deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62. https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  31. Lee YS, Zhang W (2016) Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf 12:178–188. https://doi.org/10.1016/j.addma.2016.05.003

    Article  Google Scholar 

  32. Li C, Tsai T, Tseng C (2016) Numerical simulation for heat and mass transfer during selective laser melting of titanium alloys powder. Phys Procedia 83:1444–1449. https://doi.org/10.1016/j.phpro.2016.08.150

    Article  Google Scholar 

  33. Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Inst Mech Eng Part B J Eng Manuf 231:96–117. https://doi.org/10.1177/0954405414567522

    Article  Google Scholar 

  34. Ye Q, Chen S (2017) Numerical modeling of metal-based additive manufacturing using level set methods. J Manuf Sci Eng 139:071019. https://doi.org/10.1115/1.4036290

    Article  Google Scholar 

  35. Marla D, Bhandarkar UV, Joshi SS (2011) Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals. J Appl Phys. https://doi.org/10.1063/1.3537838

    Article  Google Scholar 

  36. Zhang Z, Huang Y, Kasinathan AR et al (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312. https://doi.org/10.1016/j.optlastec.2018.08.012

    Article  Google Scholar 

  37. Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi S (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263. https://doi.org/10.1016/j.matdes.2015.10.002

    Article  Google Scholar 

  38. Ladani L, Romano J, Brindley W, Burlatsky S (2016) Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology. Addit Manuf 14:13–23. https://doi.org/10.1016/j.addma.2016.12.004

    Article  Google Scholar 

  39. Liu S, Zhu H, Peng G et al (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328. https://doi.org/10.1016/j.matdes.2018.01.022

    Article  Google Scholar 

  40. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  41. Soylemez E (2018) Modelling the melt pool of the laser sintered Ti6Al4V layers with Goldak’s double-ellipsoidal heat source. Solid Freeform Fabrication 2018: Proceedings of the 29th Annual international solid freeform fabrication symposium – An additive manufacturing conference

  42. Zinovieva O, Zinoviev A, Ploshikhin V (2018) Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci 141:207–220. https://doi.org/10.1016/j.commatsci.2017.09.018

    Article  Google Scholar 

  43. Mirkoohi E, Seivers DE, Garmestani H, Liang SY (2019) Heat source modeling in selective laser melting. Materials (Basel). https://doi.org/10.3390/ma12132052

    Article  Google Scholar 

  44. Carslaw H, Jaeger J (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  45. Ning J, Sievers D, Garmestani H, Liang S (2019) Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials (Basel) 12:808. https://doi.org/10.3390/ma12050808

    Article  Google Scholar 

  46. Ning J, Praniewicz M, Wang W et al (2020) Analytical modeling of part distortion in metal additive manufacturing. Int J Adv Manuf Technol 107:49–57. https://doi.org/10.1007/s00170-020-05065-8

    Article  Google Scholar 

  47. Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349. https://doi.org/10.1016/j.apmt.2017.08.006

    Article  Google Scholar 

  48. Simonds BJ, Sowards J, Hadler J et al (2018) Time-resolved absorptance and melt pool dynamics during intense laser irradiation of a metal. Phys Rev Appl. https://doi.org/10.1103/PhysRevApplied.10.044061

    Article  Google Scholar 

  49. Qi T, Zhu H, Zhang H et al (2017) Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater Des Des 135:257–266. https://doi.org/10.1016/j.matdes.2017.09.014

    Article  Google Scholar 

  50. Doubenskaia MA, Smurov IY, Teleshevskiy VI et al (2015) Determination of true temperature in selective laser melting of metal powder using infrared camera. Mater Sci Forum 834:93–102. https://doi.org/10.4028/www.scientific.net/msf.834.93

    Article  Google Scholar 

  51. Arrizubieta JI, Lamikiz A, Klocke F et al (2017) Evaluation of the relevance of melt pool dynamics in Laser Material Deposition process modeling. Int J Heat Mass Transf 115:80–91. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.011

    Article  Google Scholar 

  52. Gunenthiram V, Peyre P, Schneider M et al (2017) Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel. J Laser Appl 29(2):022303. https://doi.org/10.2351/1.4983259

    Article  Google Scholar 

  53. Conti P, Cianetti F, Pilerci P (2018) Parametric finite elements model of SLM additive manufacturing process. Procedia Struct Integr 8:410–421. https://doi.org/10.1016/j.prostr.2017.12.041

    Article  Google Scholar 

  54. Chen ZW, Guraya T, Darvish K, Phan MAL (2019) Solidification during selective laser melting of Co-29Cr-6Mo alloy. JOM 71:691–696. https://doi.org/10.1007/s11837-018-3264-7

    Article  Google Scholar 

  55. Kundakcıoğlu E, Lazoglu I, Poyraz Ö et al (2018) Thermal and molten pool model in selective laser melting process of Inconel 625. Int J Adv Manuf Technol 95:3977–3984. https://doi.org/10.1007/s00170-017-1489-1

    Article  Google Scholar 

  56. Zhang T, Li H, Liu S et al (2019) Evolution of molten pool during selective laser melting of Ti-6Al-4V. J Phys D Appl Phys 52. https://doi.org/10.1088/1361-6463/aaee04

  57. Yang J, Han J, Yu H et al (2016) Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy. Mater Des 110:558–570. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  Google Scholar 

  58. Zhuang JR, Lee YT, Hsieh WH, Yang AS (2018) Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol 103:59–76. https://doi.org/10.1016/j.optlastec.2018.01.013

    Article  Google Scholar 

  59. Ansari MJ, Nguyen D-S, Park HS (2019) Investigation of SLM process in terms of temperature distribution and melting pool size: modeling and experimental approaches. Materials (Basel) 12:1272. https://doi.org/10.3390/ma12081272

    Article  Google Scholar 

  60. Panwisawas C, Qiu C, Anderson MJ et al (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490. https://doi.org/10.1016/j.commatsci.2016.10.011

    Article  Google Scholar 

  61. Wu YC, San CH, Chang CH et al (2018) Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation. J Mater Process Technol 254:72–78. https://doi.org/10.1016/j.jmatprotec.2017.11.032

    Article  Google Scholar 

  62. Bidare P, Bitharas I, Ward RM et al (2018) Fluid and particle dynamics in laser powder bed fusion. Acta Mater 142:107–120. https://doi.org/10.1016/j.actamat.2017.09.051

    Article  Google Scholar 

  63. Li X, Tan W (2016) Numerical investigation of laser absorption by metal powder bed in selective laser sintering processes. Proc 27th Solid Free Fabr Symp 219–235

  64. Born M, Wolf E (1999) Principles of optics Electromagnetic theory of propagation interference and diffraction of light, 7th edn. Cambridge University Press

    Book  Google Scholar 

  65. Boley CD, Khairallah SA, Rubenchik AM (2015) Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt 54(9):2477–2482. https://doi.org/10.1364/AO.54.002477

    Article  Google Scholar 

  66. Boley CD, Khairallah SA, Rubenchik AM (2017) Calculation of laser absorption by metal powders in additive manufacturing. Addit Manuf Handb Prod Dev Def Ind 54:507–517. https://doi.org/10.1201/9781315119106

    Article  Google Scholar 

  67. Yang Y, Gu D, Dai D, Ma C (2018) Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy. Mater Des 143:12–19. https://doi.org/10.1016/j.matdes.2018.01.043

    Article  Google Scholar 

  68. Zhang D, Wang W, Guo Y et al (2019) Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM. J Mater Process Technol 268:25–36. https://doi.org/10.1016/j.jmatprotec.2019.01.002

    Article  Google Scholar 

  69. Tran HC, Lo YL (2018) Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J Mater Process Technol 255:411–425. https://doi.org/10.1016/j.jmatprotec.2017.12.024

    Article  Google Scholar 

  70. Zhou J, Zhang Y, Chen JK (2009) Numerical simulation of laser irradiation to a randomly packed bimodal powder bed. Int J Heat Mass Transf 52:3137–3146. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.028

    Article  MATH  Google Scholar 

  71. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transfer 131:072101. https://doi.org/10.1115/1.3109245

    Article  Google Scholar 

  72. Hodge NE, Ferencz RM, Solberg JM (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54:33–51. https://doi.org/10.1007/s00466-014-1024-2

    Article  MathSciNet  Google Scholar 

  73. Chen Q, Guillemot G, Gandin CA, Bellet M (2016) Finite element modeling of deposition of ceramic material during SLM additive manufacturing. MATEC Web of Conferences. MATEC Web Conf. 80, 08001. https://doi.org/10.1051/matecconf/20168008001

  74. Siegel E (1976) Optical reflectivity of liquid metals at their melting temperatures. Phys Chem Liq 5:9–27. https://doi.org/10.1080/00319107608084103

    Article  Google Scholar 

  75. Ning J, Liang SY (2018) Analytical modeling of three-dimensional temperature distribution of selective laser melting of Ti–6Al–4V. Preprints 2018090101. https://doi.org/10.20944/preprints201809.0101.v1

  76. Yang J, Yu H, Yang H et al (2018) Prediction of microstructure in selective laser melted Ti–6Al–4V alloy by cellular automaton. J Alloys Compd 748:281–290. https://doi.org/10.1016/j.jallcom.2018.03.116

    Article  Google Scholar 

  77. Holman JP (2010) Heat transfer, 10th edn. McGraw-Hill

    Google Scholar 

  78. Gu D, Yuan P (2016) Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites Underlying role of reinforcement weight fraction. J Appl Phys 118:233109. https://doi.org/10.1063/1.4937905

    Article  Google Scholar 

  79. Goett G, Kozakov R, Uhrlandt D et al (2013) Emissivity and temperature determination on steel above the melting point. Weld World 57:595–602. https://doi.org/10.1007/s40194-013-0054-2

    Article  Google Scholar 

  80. Ishikawa T, Okada JT, Paradis PF, Watanabe Y (2017) Emissivity measurements of molten metals with an electrostatic levitator. Int J Microgravity Sci Appl 34:1–6. https://doi.org/10.15011//jasma.34.340305

    Article  Google Scholar 

  81. Zehner P, Schlünder EU (1970) Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen. Chemie Ing Tech 42:933–941. https://doi.org/10.1002/cite.330421408

    Article  Google Scholar 

  82. Sih SS, Barlow JW (2004) The prediction of the emissivity and thermal conductivity of powder beds. Part Sci Technol 22:427–440. https://doi.org/10.1080/02726350490501682

    Article  Google Scholar 

  83. Hirano K, Fabbro R, Muller M (2012) Study on temperature dependence of recoil pressure near the boiling temperature - Towards better modeling and simulation. ICALEO 2012 - 31st Int Congr Appl Lasers Electro-Optics. 678–684

  84. King WE, Barth HD, Castillo VM et al (2014) Journal of materials processing technology observation of Keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Tech 214:2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005

    Article  Google Scholar 

  85. Qiu C, Panwisawas C, Ward M et al (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79. https://doi.org/10.1016/j.actamat.2015.06.004

    Article  Google Scholar 

  86. Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125. https://doi.org/10.1016/j.addma.2017.02.003

    Article  Google Scholar 

  87. Bru D, Ro F (2011) Shell-and-tube type latent heat thermal energy storage:numerical analysis and comparison with experiments. Heat Mass Transf 47:1027. https://doi.org/10.1007/s00231-011-0866-9

    Article  Google Scholar 

  88. Kruth JP, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann - Manuf Technol 56:730–759. https://doi.org/10.1016/j.cirp.2007.10.004

    Article  Google Scholar 

  89. Mayi YA, Dal M, Peyre P et al (2018) Two-phase flow modelling of metal vaporisation under static laser shot using a double domain ALE Method-a feasibility study. Proceedings of the 2018 COMSOL Conference in Lausanne

  90. Zhang Y, Chen Q, Guillemot G et al (2018) Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: Continuum and level set formulation applied to track- and part-scale simulations. Comptes Rendus Mec. 346(11):1055–1071. https://doi.org/10.1016/j.crme.2018.08.008

    Article  Google Scholar 

  91. Chen Q, Guillemot G, Gandin C-A, Bellet M (2016) Finite element modeling of deposition of ceramic material during SLM additive manufacturing. MATEC Web Conf 80:08001. https://doi.org/10.1051/matecconf/20168008001

    Article  Google Scholar 

  92. Dong Z, Li W, Zhang Q et al (2020) Evaluation for multiple processing parameters in selective laser melting based on an integration of mesoscale simulation and experiment method. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ab651f

    Article  Google Scholar 

  93. Wang Z, Yan W, Liu WK, Liu M (2019) Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech. https://doi.org/10.1007/s00466-018-1614-5

    Article  MATH  Google Scholar 

  94. Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Oxford University Press

    MATH  Google Scholar 

  95. Thomson J (1855) XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Philos Mag J Sci. https://doi.org/10.1080/14786445508641982

  96. Won J, Lee W, Song S (2017) Estimation of the thermocapillary force and its applications to precise droplet control on a microfluidic chip. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-03028-w

    Article  Google Scholar 

  97. Atangana A (2018) Principle of groundwater flow. In: Fractional operators with constant and variable order with application to Geo-Hydrology. Comptes Rendus Mécanique, 346(11):1055–1071. https://doi.org/10.1016/j.crme.2018.08.008

  98. Hann DB, Iammi J, Folkes J (2011) A simple methodology for predicting laser-weld properties from material and laser parameters. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/44/44/445401

    Article  Google Scholar 

  99. Meier C, Penny RW, Zou Y et al (2018) Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentation. Annu Rev Heat Transf 20:241–316. https://doi.org/10.1615/annualrevheattransfer.2018019042

    Article  Google Scholar 

  100. Yilbas BS, Arif AFM (2001) Material response to thermal loading due to short pulse laser heating. Int J Heat Mass Transf 44:3787–3798. https://doi.org/10.1016/S0017-9310(01)00026-6

    Article  MATH  Google Scholar 

  101. Liu Y, Yang Y, Wang D (2017) Investigation into the shrinkage in Z-direction of components manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 90:2913–2923. https://doi.org/10.1007/s00170-016-9596-y

    Article  Google Scholar 

  102. Bian Q, Tang X, Dai R, Zeng M (2018) Evolution phenomena and surface shrink of the melt pool in an additive manufacturing process under magnetic field. Int J Heat Mass Transf 123:760–775. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.024

    Article  Google Scholar 

  103. Tan JHK, Sing SL, Yeong WY (2020) Microstructure modelling for metallic additive manufacturing: a review. Virtual Phys Prototyp 15:87–105. https://doi.org/10.1080/17452759.2019.1677345

    Article  Google Scholar 

  104. Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Sci 32(1):163–194

    Article  Google Scholar 

  105. Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89. https://doi.org/10.1016/j.commatsci.2017.03.053

    Article  Google Scholar 

  106. Ansari MJ, Nguyen DS, Park HS (2019) Investigation of SLM process in terms of temperature distribution and melting pool size: modeling and experimental approaches. Materials (Basel). https://doi.org/10.3390/ma12081272

    Article  Google Scholar 

  107. Lu L, Sridhar N, Zhang Y (2018) Phase field simulation of powder bed-based additive manufacturing. Acta Mater 144:801–809. https://doi.org/10.1016/j.actamat.2017.11.033

    Article  Google Scholar 

  108. Scipioni Bertoli U, Wolfer AJ, Matthews MJ et al (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  Google Scholar 

  109. Mirkoohi E, Ning J, Bocchini P et al (2018) Thermal modeling of temperature distribution in metal additive manufacturing considering effects of build layers, latent heat, and temperature-sensitivity of material properties. J Manuf Mater Process. https://doi.org/10.3390/jmmp2030063

    Article  Google Scholar 

  110. Dilip JJS, Zhang S, Pal D, Stucker B (2017) Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog Addit Manuf. https://doi.org/10.1007/s40964-017-0030-2

    Article  Google Scholar 

  111. Zhang D, Zhang P, Liu Z et al (2018) Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy. Addit Manuf 21:567–578. https://doi.org/10.1016/j.addma.2018.03.031

    Article  Google Scholar 

  112. Dai D, Gu D (2015) Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl Surf Sci 355:310–319. https://doi.org/10.1016/j.apsusc.2015.07.044

    Article  Google Scholar 

  113. Zhang T, Li H, Liu S et al (2019) Evolution of molten pool during selective laser melting of Ti–6Al–4V. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aaee04

    Article  Google Scholar 

  114. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Acta Materialia Laser powder-bed fusion additive manufacturing : Physics of complex melt fl ow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  115. Khairallah SA, Martin AA, Lee JRI et al (2020) Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368(6491):660–665. https://doi.org/10.1126/science.aay7830

    Article  Google Scholar 

  116. Le KQ, Tang C, Wong CH (2019) On the study of keyhole-mode melting in selective laser melting process. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2019.105992

    Article  Google Scholar 

  117. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5:16–40. https://doi.org/10.1186/s40192-016-0045-4

    Article  Google Scholar 

  118. Lu Y, Wu S, Gan Y et al (2015) Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol 75:197–206. https://doi.org/10.1016/j.optlastec.2015.07.009

    Article  Google Scholar 

  119. Li C, Fu CH, Guo YB, Fang FZ (2015) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712. https://doi.org/10.1016/j.jmatprotec.2015.10.022

    Article  Google Scholar 

  120. Li C, Liu JF, Guo YB (2016) Prediction of residual stress and part distortion in selective laser melting. Procedia CIRP 45:171–174. https://doi.org/10.1016/j.procir.2016.02.058

    Article  Google Scholar 

  121. Gu D, Ma C, Xia M et al (2017) A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing. Engineering 3:675–684. https://doi.org/10.1016/J.ENG.2017.05.011

    Article  Google Scholar 

  122. Ganci M, Zhu W, Buffa G et al (2017) A macroscale FEM-based approach for selective laser sintering of thermoplastics. Int J Adv Manuf Technol 91:3169–3180. https://doi.org/10.1007/s00170-017-9998-5

    Article  Google Scholar 

  123. Dong L, Correia JPM, Barth N, Ahzi S (2017) Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering. Addit Manuf 13:37–48. https://doi.org/10.1016/j.addma.2016.11.002

    Article  Google Scholar 

  124. Zhou W, Wang X, Hu J, Zhu X (2013) Melting process and mechanics on laser sintering of single layer polyamide 6 powder. Int J Adv Manuf Technol 69:901–908. https://doi.org/10.1007/s00170-013-5113-8

    Article  Google Scholar 

  125. Patil RB, Yadava V (2007) Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering. Int J Mach Tools Manuf 47:1069–1080. https://doi.org/10.1016/j.ijmachtools.2006.09.025

    Article  Google Scholar 

  126. Tian X, Peng G, Yan M et al (2018) Process prediction of selective laser sintering based on heat transfer analysis for polyamide composite powders. Int J Heat Mass Transf 120:379–386. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.045

    Article  Google Scholar 

  127. Li M, Han Y, Zhou M et al (2020) Experimental investigating and numerical simulations of the thermal behavior and process optimization for selective laser sintering of PA6. J Manuf Process 56:271–279. https://doi.org/10.1016/j.jmapro.2020.04.080

    Article  Google Scholar 

  128. Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209:700–706. https://doi.org/10.1016/j.jmatprotec.2008.02.040

    Article  Google Scholar 

  129. Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51:1651–1662. https://doi.org/10.1016/S1359-6454(02)00567-0

    Article  Google Scholar 

  130. Dong L, Makradi A, Ahzi S, Remond Y (2007) Finite element analysis of temperature and density distributions in selective laser sintering process. Mater Sci Forum 553:75–80. https://doi.org/10.4028/www.scientific.net/msf.553.75

    Article  Google Scholar 

  131. Childs THC, Tontowi AE (2001) Selective laser sintering of a crystalline and a glass-filled crystalline polymer: experiments and simulations. Proc Inst Mech Eng Part B J Eng Manuf 215:1481–1495. https://doi.org/10.1243/0954405011519330

    Article  Google Scholar 

  132. Peyre P, Rouchausse Y, Defauchy D, Régnier G (2015) Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J Mater Process Technol 225:326–336. https://doi.org/10.1016/j.jmatprotec.2015.04.030

    Article  Google Scholar 

  133. Kolossov S, Boillat E, Glardon R et al (2004) 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tools Manuf 44:117–123. https://doi.org/10.1016/j.ijmachtools.2003.10.019

    Article  Google Scholar 

  134. Childs THC, Berzins M, Ryder GR, Tontowi A (1999) Selective laser sintering of an amorphous polymer—simulations and experiments. Proc Inst Mech Eng Part B J Eng Manuf 213:333–349. https://doi.org/10.1243/0954405991516822

    Article  Google Scholar 

  135. Xin L, Boutaous M, Xin S, Siginer DA (2017) Numerical modeling of the heating phase of the selective laser sintering process. Int J Therm Sci 120:50–62. https://doi.org/10.1016/j.ijthermalsci.2017.05.017

    Article  Google Scholar 

  136. Shen F, Yuan S, Chua CK, Zhou K (2018) Development of process efficiency maps for selective laser sintering of polymeric composite powders: modeling and experimental testing. J Mater Process Technol 254:52–59. https://doi.org/10.1016/j.jmatprotec.2017.11.027

    Article  Google Scholar 

  137. Mokrane A, Boutaous M, Xin S (2018) Process of selective laser sintering of polymer powders: modeling, simulation, and validation. Comptes Rendus - Mec 346:1087–1103. https://doi.org/10.1016/j.crme.2018.08.002

    Article  Google Scholar 

  138. Nakamura K, Watanabe T, KatayamaAMANO KT (1972) Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Schience 16:1077–1091

    Article  Google Scholar 

  139. Amado A, Schmid M, Wegener K (2015) Simulation of warpage induced by non-isothermal crystallization of co-polypropylene during the SLS proceb. AIP Conf Proc. https://doi.org/10.1063/1.4918509

    Article  Google Scholar 

  140. Drummer D, Rietzel D, Kühnlein F (2010) Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys Procedia 5:533–542. https://doi.org/10.1016/j.phpro.2010.08.081

    Article  Google Scholar 

  141. Ren J, Liu J, Yin J (2011) Simulation of transient temperature field in the selective laser sintering process of W/Ni powder mixture. IFIP Adv Inf Commun Technol 347 AICT:494–503. https://doi.org/10.1007/978-3-642-18369-0_59

  142. Roberts IA, Wang CJ, Esterlein R et al (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49:916–923. https://doi.org/10.1016/j.ijmachtools.2009.07.004

    Article  Google Scholar 

  143. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  144. Cheng B, Li X, Tuffile C et al (2020) Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect. In: Solid freeform fabrication 2018: Proceedings of the 29th Annual international solid freeform fabrication symposium—an Additive Manufacturing Conference, SFF 2018

  145. Nan W, Pasha M, Ghadiri M (2020) Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing. Powder Technol. https://doi.org/10.1016/j.powtec.2019.12.023

    Article  Google Scholar 

  146. Gu D, Xia M, Dai D (2019) On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2018.10.006

    Article  Google Scholar 

  147. Michopoulos JG, Iliopoulos AP, Steuben JC et al (2018) On the multiphysics modeling challenges for metal additive manufacturing processes. Addit Manuf. https://doi.org/10.1016/j.addma.2018.06.019

    Article  Google Scholar 

  148. Steuben JC, Iliopoulos AP, Michopoulos JG (2017) Recent developments of the multiphysics discrete element method for additive manufacturing modeling and simulation. In: Proceedings of the ASME design engineering technical conference

  149. Ganeriwala R, Zohdi TI (2016) A coupled discrete element-finite difference model of selective laser sintering. Granul Matter. https://doi.org/10.1007/s10035-016-0626-0

    Article  Google Scholar 

  150. Lee WH, Zhang Y, Zhang J (2017) Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technol 315:300–308. https://doi.org/10.1016/j.powtec.2017.04.002

    Article  Google Scholar 

  151. Chen H, Chen Y, Liu Y et al (2020) Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2020.103553

    Article  Google Scholar 

  152. Meier C, Weissbach R, Weinberg J et al (2019) Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations. Powder Technol. https://doi.org/10.1016/j.powtec.2018.11.072

    Article  Google Scholar 

  153. Chen H, Wei Q, Wen S et al (2017) Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf 123:146–159. https://doi.org/10.1016/j.ijmachtools.2017.08.004

    Article  Google Scholar 

  154. Chen H, Wei Q, Zhang Y et al (2019) Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling. Acta Mater. https://doi.org/10.1016/j.actamat.2019.08.030

    Article  Google Scholar 

  155. Wei HL, Cao Y, Liao WH, Liu TT (2020) Mechanisms on inter-track void formation and phase transformation during laser Powder Bed Fusion of Ti–6Al–4V. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101221

    Article  Google Scholar 

  156. Wang L, Li EL, Shen H et al (2020) Adhesion effects on spreading of metal powders in selective laser melting. Powder Technol. https://doi.org/10.1016/j.powtec.2019.12.048

    Article  Google Scholar 

  157. Haeri S, Haeri S, Hanson J, Lotfian S (2020) Analysis of radiation pressure and aerodynamic forces acting on powder grains in powder-based additive manufacturing. Powder Technol 368:125–129. https://doi.org/10.1016/j.powtec.2020.04.031

    Article  Google Scholar 

  158. Cook PS, Murphy AB (2020) Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress. Addit Manuf 31:100909 https://doi.org/10.1016/j.addma.2019.100909

    Article  Google Scholar 

  159. Markl M, Körner C (2018) Powder layer deposition algorithm for additive manufacturing simulations. Powder Technol. https://doi.org/10.1016/j.powtec.2018.02.026

    Article  Google Scholar 

  160. Cao L (2019) Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.053

    Article  Google Scholar 

  161. Cao L (2020) Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2020.109686

    Article  Google Scholar 

  162. Han Q, Gu H, Setchi R (2019) Discrete element simulation of powder layer thickness in laser additive manufacturing. Powder Technol. https://doi.org/10.1016/j.powtec.2019.04.057

    Article  Google Scholar 

  163. Cao L (2019) Study on the numerical simulation of laying powder for the selective laser melting process. Int J Adv Manuf Technol 105:2253–2269. https://doi.org/10.1007/s00170-019-04440-4

    Article  Google Scholar 

  164. Haeri S (2017) Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations. Powder Technol. https://doi.org/10.1016/j.powtec.2017.08.011

    Article  Google Scholar 

  165. Aggarwal A, Kumar A (2019) Particle scale modelling of porosity formation during selective laser melting process using a coupled DEM—CFD approach. IOP Conference series: Mater Sci Eng 529:012001. https://doi.org/10.1088/1757-899X/529/1/012001

  166. Fouda YM, Bayly AE (2020) A DEM study of powder spreading in additive layer manufacturing. Granul Matter. https://doi.org/10.1007/s10035-019-0971-x

    Article  Google Scholar 

  167. Shaheen MY, Thornton AR, Luding S, Weinhart T (2019) Discrete particle simulation of the spreading process in additive manufacturing. 8th Int Conf Discret Elem Methods 1–12

  168. Markopoulos AP, Karkalos NE, Papazoglou EL (2020) Meshless methods for the simulation of machining and micro-machining: a review. Arch Comput Methods Eng 27:831–853. https://doi.org/10.1007/s11831-019-09333-z

    Article  MathSciNet  Google Scholar 

  169. Liu GR, Liu MB (2003) Smoothed particle Hydrodynamics a meshfree particle method. World Scientific Publishing, Singapore

    Book  Google Scholar 

  170. Russell MA, Souto-Iglesias A, Zohdi TI (2018) Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187. https://doi.org/10.1016/j.cma.2018.06.033

    Article  MathSciNet  MATH  Google Scholar 

  171. Shah D, Volkov AN (2017) Numerical simulations of thermal transport in random porous materials and powder systems using the Smoothed Particle Hydrodynamics method. ASME Int Mech Eng Congr Expo Proc. https://doi.org/10.1115/IMECE2017-72055

    Article  Google Scholar 

  172. Weirather J, Rozov V, Wille M et al (2019) A smoothed particle hydrodynamics model for laser beam melting of Ni-based Alloy 718. Comput Math with Appl 78:2377–2394. https://doi.org/10.1016/j.camwa.2018.10.020

    Article  MathSciNet  Google Scholar 

  173. Fürstenau JP, Wessels H, Weißenfels C, Wriggers P (2020) Generating virtual process maps of SLM using powder-scale SPH simulations. Comput Part Mech 7:655–677. https://doi.org/10.1007/s40571-019-00296-3

    Article  Google Scholar 

  174. Liu S, Liu J, Qi L, Chen J (2019) Simulation of the temperature distribution and solidified bead in single-pass selective laser melting using a mesh-free method. J Appl Phys. https://doi.org/10.1063/1.5096041

    Article  Google Scholar 

  175. Liu S, Liu J, Chen J, Liu X (2019) Influence of surface tension on the molten pool morphology in laser melting. Int J Therm Sci 146:106075. https://doi.org/10.1016/j.ijthermalsci.2019.106075

    Article  Google Scholar 

  176. Bierwisch C (2019) DEM powder spreading and sph powder melting models for additive manufacturing process simulations. In: VI international conference on particle-based methods–fundamentals and applications. pp 434–443

  177. Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng. https://doi.org/10.1002/nme.2869

    Article  MathSciNet  MATH  Google Scholar 

  178. Wessels H, Weißenfels C, Wriggers P (2018) Metal particle fusion analysis for additive manufacturing using the stabilized optimal transportation meshfree method. Comput Methods Appl Mech Eng 339:91–114. https://doi.org/10.1016/j.cma.2018.04.042

    Article  MathSciNet  MATH  Google Scholar 

  179. Wessels H, Bode T, Weißenfels C et al (2019) Investigation of heat source modeling for selective laser melting. Comput Mech 63:949–970. https://doi.org/10.1007/s00466-018-1631-4

    Article  MathSciNet  MATH  Google Scholar 

  180. Fan Z, Li B (2019) Meshfree Simulations for Additive Manufacturing Process of Metals. Integr Mater Manuf Innov 8:144–153. https://doi.org/10.1007/s40192-019-00131-w

    Article  Google Scholar 

  181. Kurian S, Mirzaeifar R (2020) Selective laser melting of aluminum nano-powder particles, a molecular dynamics study. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101272

    Article  Google Scholar 

  182. Pan H, Ko SH, Grigoropoulos CP (2008) The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a Molecular dynamics simulation study. J Heat Transfer doi 10(1115/1):2943303

    Google Scholar 

  183. Nandy J, Yedla N, Gupta P et al (2019) Sintering of AlSi10Mg particles in direct metal laser sintering process: a molecular dynamics simulation study. Mater Chem Phys 236:121803. https://doi.org/10.1016/j.matchemphys.2019.121803

    Article  Google Scholar 

  184. Nandy J, Sahoo S, Yedla N, Sarangi H (2020) Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles. J Mol Model. https://doi.org/10.1007/s00894-020-04395-4

    Article  Google Scholar 

  185. Sorkin A, Tan JL, Wong CH (2017) Multi-material modelling for selective laser melting. Proc Eng 216:51–57. https://doi.org/10.1016/j.proeng.2018.02.088

    Article  Google Scholar 

  186. Jiang Q, Liu H, Li J et al (2020) Atomic-level understanding of crystallization in the selective laser melting of Fe50Ni50 amorphous alloy. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101369

    Article  Google Scholar 

  187. Guo S, Wang M, Zhao Z et al (2017) Molecular dynamics simulation on the micro-structural evolution in heat-affected zone during the preparation of bulk metallic glasses with selective laser melting. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.11.393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos P. Markopoulos.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papazoglou, E.L., Karkalos, N.E., Karmiris-Obratański, P. et al. On the Modeling and Simulation of SLM and SLS for Metal and Polymer Powders: A Review. Arch Computat Methods Eng 29, 941–973 (2022). https://doi.org/10.1007/s11831-021-09601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09601-x

Navigation