Skip to main content

Advertisement

Log in

Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The melting process of industrial grade paraffin wax inside a shell-and-tube storage is analyzed by means of numerical simulation and experimental results. For this purpose, the enthalpy porosity method is extended by a continuous liquid fraction function. The extended method is tested using results gained from a gallium melt test inside a rectangular enclosure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LHTES:

Latent heat thermal energy storage

PCM:

Phase change material

HTF:

Heat transfer fluid

CFD:

Computational fluid dynamics

A :

Porosity function in Darcy type source term, kg/m³ s

b :

Small numerical constant in porosity function

C :

Large constant in Darcy type source term, kg/m³ s

c :

Heat capacity, J/kg K

Co :

Courant number

d :

Diameter, m

g :

Gravitational force, m²/s

h :

Specific enthalpy, J/kg

L :

Latent heat of fusion, J/kg

l :

Length, m

p :

Pressure, Pa

S h :

Source term in enthalpy equation, J/m³ s

S m :

Darcy type source term in x and y momentum equation, kg/m² s²

S b :

Buoyancy source term in y momentum equation, kg/m² s²

T :

Temperature, K or °C

t :

Time, s

u :

Velocity in x coordinate, m/s

v :

Velocity in y coordinate, m/s

x :

Horizontal coordinate

y :

Vertical coordinate

X :

Width of simulation domain

Y :

Height of simulation domain

β :

Volumetric thermal expansion coefficient

γ :

Liquid fraction

η :

Dynamic viscosity, kg/m s

λ :

Thermal conductivity, W/m K

ρ :

Density, kg/m³

erf :

Error function

hot :

Hot wall

ini :

Initial

l :

Liquid

m :

Melting

ref :

Reference

s :

Sensible, solid

References

  1. Zalba B, Marína JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  2. Cao Y, Faghri A, Chang WS (1998) A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model. Int J Heat Mass Transf 32:1289–1298

    Article  Google Scholar 

  3. Lacroix M (1993) Numerical simulation of a shell-and-tube latent heat thermal energy storage unit. Sol Energy 50:357–367

    Article  Google Scholar 

  4. Gong Z-X, Mujumdar AS (1997) Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger. Appl Therm Eng 17:583–591

    Article  Google Scholar 

  5. Trp A (2005) An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy 79:648–660

    Article  Google Scholar 

  6. Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf 30:1709–1719

    Article  Google Scholar 

  7. Ng KW, Gong ZX, Mujumdar AS (1998) Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus. Int Commun Heat Mass 25:631–640

    Article  Google Scholar 

  8. Khillarkar DB, Gong Z-X, Mujumdar AS (2000) Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Appl Therm Eng 20:893–912

    Article  Google Scholar 

  9. Sasaguchi K, Kusano K, Viskanta R (1997) A numerical analysis of solid-liquid phase change heat transfer around a single and two horizontal, vertically spaced cylinders in a rectangular cavity. Int J Heat Mass Transf 40:1343–1354

    Article  MATH  Google Scholar 

  10. Sugawara M, Beer H (2009) Numerical analysis for freezing/melting around vertically arranged four cylinders. Heat Mass Transf 45:1223–1231

    Article  Google Scholar 

  11. Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of pure metal. Numer Heat Transf 13:297–318

    Article  Google Scholar 

  12. Voller VR (1985) Implicit Finite—difference Solutions of the Enthalpy Formulation of Stefan Problems. IMA J Numer Anal 5:201–214

    Article  MathSciNet  MATH  Google Scholar 

  13. Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Methods Eng 24:271–284

    Article  MATH  Google Scholar 

  14. OpenCFD Ltd (2010) OpenFOAM 1.7.1. http://www.openfoam.com/

  15. Shmueli H, Ziskind G, Letan R (2010) Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf 53:4082–4091

    Article  MATH  Google Scholar 

  16. Gau C, Viskanta R (1986) Melting and solidification of a pure metal on a vertical wall. J Heat Transf 108:174–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Rösler.

Additional information

Dedicated to Prof. Dr.-Ing. Dr.-Ing. E.h. mult. Franz Mayinger on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösler, F., Brüggemann, D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments. Heat Mass Transfer 47, 1027–1033 (2011). https://doi.org/10.1007/s00231-011-0866-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0866-9

Keywords

Navigation