Skip to main content
Log in

On a critical Schrödinger system involving Hardy terms

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

This paper concerns an elliptic system with critical exponents:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u_j-\frac{\lambda _j}{|x|^2}u_j=u_j^{2^*-1}+\sum \limits _{k\ne j}\beta _{jk}\alpha _{jk}u_j^{\alpha _{jk}-1}u_k^{\alpha _{kj}},\;\;x\in {{\mathbb {R}}}^N,\\ u_j\in D^{1,2}({{\mathbb {R}}}^N),\quad u_j>0 \;\; \hbox {in} \quad {{\mathbb {R}}}^N\setminus \{0\},\quad j=1, \ldots ,r,\end{array}\right. } \end{aligned}$$

where \(N\ge 3, r\ge 2, 2^*=\frac{2N}{N-2}, \lambda _j\in (0, \frac{(N-2)^2}{4})\) for all \( j=1, \ldots ,r \); \(\beta _{jk}=\beta _{kj}\); \(\alpha _{jk}>1, \alpha _{kj}>1,\) and \(\alpha _{jk}+\alpha _{kj}=2^* \) for all \(k\ne j\). Note that the nonlinearities \(u_j^{2^*-1}\) and the coupling terms are all critical in arbitrary dimension \(N\ge 3 \). The signs of the coupling constants \(\beta _{ij}\) are decisive for the existence of the ground-state solutions. We show that the critical system with \(r\ge 3\) has a positive ground-state solution for all \(\beta _{jk}>0\) with some constraint on \(\lambda _j\). However, there is no ground-state solution when all \(\beta _{jk}\) are negative. It is also proved that the positive solution of the system is radially symmetric. Furthermore, we obtain an uniqueness theorem for the case \(r\ge 3\) with \(N=4\) and an existence theorem for the case \(r=2\) with general coupling exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Peral, I., Felli, V.: Existence and multiplicity for perturbations of an equation involving a Hardy inequality and the critical Sobolev exponent in the whole of \({\mathbb{R}}^N\). Adv. Differ. Equ. 9(5–6), 481–508 (2004)

    MATH  Google Scholar 

  2. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1), 67–82 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of non- linear Schrödinger equations. Calc. Var. Partial Differ. Equ. 30, 85–112 (2007)

    Article  Google Scholar 

  4. Bartsch, T., Dancer, N., Wang, Z.Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Wang, Z.Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)

    MATH  Google Scholar 

  6. Bartsch, T., Wang, Z.Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  8. Byeon, J.: Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Equ. 54(2), 2287–2340 (2015)

    Article  Google Scholar 

  9. Chang, S., Lin, C.S., Lin, T.C., Lin, W.: Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Phys. D 196, 341–361 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Lin, C.S., Zou, W.: Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XV, 859–897 (2016)

  11. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205(2), 515–551 (2012)

  12. Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48, 695–711 (2013)

    Article  Google Scholar 

  13. Chen, Z., Zou, W.: A remark on doubly critical elliptic systems. Calc. Var. Partial Differ. Equ. 50, 939–965 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chen, Z., Zou, W.: Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans. Am. Math. Soc. 367(5), 3599–3646 (2015)

    Article  Google Scholar 

  15. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52(1–2), 423–467 (2015)

    Article  Google Scholar 

  16. Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 953–969 (2010)

    Article  MathSciNet  Google Scholar 

  17. Felli, V., Pistoia, A.: Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth. Commun. Partial Differ. Equ. 31(1–3), 21–56 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lin, T.C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({{ R}}^n\), \(n\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  Google Scholar 

  19. Lin, T.C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 403–439 (2005)

    Article  MathSciNet  Google Scholar 

  20. Lin, T.C., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229(2), 538–569 (2006)

  21. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1(1), 145–201 (1985)

  22. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121 (1985)

    Article  MathSciNet  Google Scholar 

  23. Liu, Z.L., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    Article  Google Scholar 

  24. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    Article  Google Scholar 

  25. Eugenio, P., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10(1), 47–71 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    Article  Google Scholar 

  27. Peng, S., Wang, Z.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208(1), 305–339 (2013)

    Article  MathSciNet  Google Scholar 

  28. Pomponio, A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 227(1), 258–281 (2006)

    Article  Google Scholar 

  29. Sato, Y., Wang, Z.: Multiple positive solutions for Schrödinger systems with mixed couplings. Calc. Var. Partial Differ. Equ. 54(2), 1373–1392 (2015)

    Article  Google Scholar 

  30. Sato, Y., Wang, Z.: Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings. Adv. Nonlinear Stud. 15, 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  31. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  Google Scholar 

  32. Soave, N.: On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. Partial Differ. Equ. (2014). https://doi.org/10.1007/s00526-014-0764-3

  33. Soave, N., Tavares, H.: New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms. J. Differ. Equ. 261(1), 505–537 (2016)

    Article  Google Scholar 

  34. Smets, D.: Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Am. Math. Soc. 357(7), 2909–2938 (2005). ((electronic))

    Article  Google Scholar 

  35. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4(110), 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  36. Terracini, S.: On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Adv. Differ. Equ. 1(2), 241–264 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Terracini, S., Verzini, G.: Multipulse phases in \(k\)-mixtures of Bose–Einstein condensates. Arch. Ration. Mech. Anal. 194, 717–741 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wang, Z., Willem, M.: Partial symmetry of vector solutions for elliptic systems. J. Anal. Math. 122, 69–85 (2014)

    Article  MathSciNet  Google Scholar 

  39. Wei, J., Weth, T.: Nonradial symmetric bound states for a system of coupled Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18(3), 279–293 (2007)

    Article  Google Scholar 

  40. Wei, J., Weth, T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21(2), 305–317 (2008)

    Article  MathSciNet  Google Scholar 

  41. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rat. Mech. Anal. 190, 83–106 (2008)

    Article  Google Scholar 

  42. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equa- tions. Commun. Pure Appl. Anal. 11, 1003–1011 (2012)

    Article  MathSciNet  Google Scholar 

  43. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston, Inc., Boston (1996)

    Google Scholar 

Download references

Acknowledgements

The research of Z. Guo is partially supported by NSFC (no. 11701248) and NFSLN (Research on Klein-Gordon-Maxwell Problem); The research of S. Luo is partially supported by double thousands plan of Jiangxi (no. jxsq2019101048) and NSFC (no. 12001253). The research of W. Zou is partially supported by NSF of China (11801581, 11025106, 11371212, 11271386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senping Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Luo, S. & Zou, W. On a critical Schrödinger system involving Hardy terms. J. Fixed Point Theory Appl. 23, 53 (2021). https://doi.org/10.1007/s11784-021-00891-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-021-00891-z

Mathematics Subject Classification

Navigation