Skip to main content
Log in

Valuable metals substance flow analysis in high-pressure acid leaching process of laterites

红土高压酸浸过程中有价金属的物质流分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Substance flow analysis (SFA), an analytical tool, was applied to a high-pressure acid leaching (HPAL) process of laterites. The results show that although the HPAL process has become the mainstream process for the treatment of laterites, a large amount of solid waste discharge has caused great harm to the environment and restricted its large-scale development. The annual treatment capacity of laterites by HPAL process is 321×104 t, and 300×104 t of high-pressure leaching residue, 10×104 t of sulfate residue, 1.6×104 t of iron and aluminum residue, and 0.08×104 t of acid leaching residue are discharged every year. Nickel, cobalt, and manganese are used as the raw materials for the preparation of a precursor, and the masses finally flowing into the precursor preparation process are 2.70×104 t/a, 0.24×104 t/a, and 0.29×104 t/a, respectively, and the proportions are 77.14%, 75.00%, and 13.12%, respectively. Scandium finally flows into the scandium extraction process is 40.00 t/a, and the proportion is 37.70%. A total of 98.11% of iron and 99.86% of aluminum can be selectively removed by the high-pressure acid leaching. Some recommendations for improving emission control and resource recycling for the high-pressure acid leaching process of laterites are put forward in the conclusions of this study.

摘要

本研究将物质流分析方法(SFA)应用于某红土镍矿高压酸浸工艺。结果表明,虽然高压酸浸工艺已成为处理低品位红土镍矿的主流工艺,但大量固体废物的排放对环境造成极大危害,制约其规模化发展。该高压酸浸工艺年处理红土镍矿能力为321 万t,每年将排放300 万t 高压浸出渣、10 万t 硫酸盐渣、1.6 万t 铁铝渣、0.08 万t 酸浸渣。用镍、钴、锰作为前驱体制备原料,最终流入前驱体制备工艺的物质分别为2.70 万t/年、0.24 万t/年、0.29 万t/年,占比分别为77.14%、75.00%、13.12%。最终流入提钪工艺的超高附加值钪为40.00 t/年,占比为37.70%。高压酸浸工艺可选择性去除98.11% 的铁和99.86% 的铝。本研究结论对红土镍矿高压酸浸工艺的排放控制和资源循环利用提供了改进建议。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. SENANAYAKE G, CHILDS J, AKERSTROM B D, et al. Reductive acid leaching of laterite and metal oxides—A review with new data for Fe(Ni, Co)OOH and a limonitic ore [J]. Hydrometallurgy, 2011, 110(1–4): 13–32. DOI: https://doi.org/10.1016/j.hydromet.2011.07.011.

    Article  Google Scholar 

  2. MCDONALD R G, WHITTINGTON B I. Atmospheric acid leaching of nickel laterites review [J]. Hydrometallurgy, 2008, 91(1–4): 35–55. DOI: https://doi.org/10.1016/j.hydromet.2007.11.009.

    Article  Google Scholar 

  3. MESHRAM P, Abhilash, PANDEY B D. Advanced review on extraction of nickel from primary and secondary sources [J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40(3): 157–193. DOI: https://doi.org/10.1080/08827508.2018.1514300.

    Article  Google Scholar 

  4. KURSUNOGLU S, KAYA M. Atmospheric pressure acid leaching of Caldag lateritic nickel ore [J]. International Journal of Mineral Processing, 2016, 150: 1–8. DOI: https://doi.org/10.1016/j.minpro.2016.03.001.

    Article  Google Scholar 

  5. MACCARTHY J, NOSRATI A, SKINNER W, et al. Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore [J]. Hydrometallurgy, 2016, 160: 26–37. DOI: https://doi.org/10.1016/j.hydromet.2015.11.004.

    Article  Google Scholar 

  6. HOSSEINI NASAB M, NOAPARAST M, ABDOLLAHI H. Dissolution optimization and kinetics of nickel and cobalt from iron-rich laterite ore, using sulfuric acid at atmospheric pressure [J]. International Journal of Chemical Kinetics, 2020, 52(4): 283–298. DOI: https://doi.org/10.1002/kin.21349.

    Article  Google Scholar 

  7. MAKUZA B, TIAN Qing-hua, GUO Xue-yi, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review [J]. Journal of Power Sources, 2021, 491: 229622. DOI: https://doi.org/10.1016/j.jpowsour.2021.229622.

    Article  Google Scholar 

  8. ELIWA A A, MUBARK A E, ABDELFATTAH N A, et al. Maximizing the exploitation of phosphogypsum wastes using soaking technique with citric acid, recovering rare-earth and residual phosphate contents [J]. Journal of Central South University, 2022, 29(12): 3896–3911. DOI: https://doi.org/10.1007/s11771-022-5209-0.

    Article  Google Scholar 

  9. GUO Xue-yi, ZHANG Chun-xi, TIAN Qing-hua, et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review [J]. Materials Today Communications, 2021, 26: 102007. DOI: https://doi.org/10.1016/j.mtcomm.2020.102007.

    Article  Google Scholar 

  10. de ALVARENGA OLIVEIRA V, de JESUS TAVEIRA LANA R, da SILVA COELHO H C, et al. Kinetic studies of the reduction of limonitic nickel ore by hydrogen [J]. Metallurgical and Materials Transactions B, 2020, 51(4): 1418–1431. DOI: https://doi.org/10.1007/s11663-020-01841-9.

    Article  Google Scholar 

  11. LI Jin-hui, LI De-shun, XU Zhi-feng, et al. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution [J]. Journal of Cleaner Production, 2018, 179: 24–30. DOI: https://doi.org/10.1016/j.jclepro.2018.01.085.

    Article  Google Scholar 

  12. DALVI A D, BACON W G, OSBORNE R C. The past and the future of nickel laterites [C]//PDAC 2004 International Convention, Trade Show & Investors Exchange. Toronto: The Prospectors and Developers Association of Canada, 2004: 1–27.

    Google Scholar 

  13. AGACAYAK T, ZEDEF V, ARAS A. Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution [J]. Journal of Central South University, 2016, 23(1): 39–43. DOI: https://doi.org/10.1007/s11771-016-3046-8.

    Article  Google Scholar 

  14. CHEN Sheng-li, GUO Xue-yi, SHI Wen-tang, et al. Extraction of valuable metals from low-grade nickeliferous laterite ore by reduction roasting-ammonia leaching method [J]. Journal of Central South University of Technology, 2010, 17(4): 765–769. DOI: https://doi.org/10.1007/s11771-010-0554-9.

    Article  Google Scholar 

  15. SHAO Shuang, MA Bao-zhong, WANG Xin, et al. Nitric acid pressure leaching of limonitic laterite ores: Regeneration of HNO3 and simultaneous synthesis of fibrous CaSO4-2H2O by-products [J]. Journal of Central South University, 2020, 27(11): 3249–3258. DOI: https://doi.org/10.1007/s11771-020-4463-2.

    Article  Google Scholar 

  16. WHITTINGTON B I, MUIR D. Pressure acid leaching of nickel laterites: A review [J]. Mineral Processing & Extractive Metallurgy Review, 2000, 21(6): 527–599. DOI: https://doi.org/10.1080/08827500008914177.

    Article  Google Scholar 

  17. RUBISOV D H, KROWINKEL J M, PAPANGELAKIS V G. Sulphuric acid pressure leaching of laterites—Universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends [J]. Hydrometallurgy, 2000, 58(1): 1–11. DOI: https://doi.org/10.1016/S0304-386X(00)00094-3.

    Article  Google Scholar 

  18. WHITTINGTON B I, JOHNSON J A, QUAN L P, et al. Pressure acid leaching of arid-region nickel laterite ore - Part II. Effect of ore type [J]. Hydrometallurgy, 2003, 70(1–3): 47–62. DOI: https://doi.org/10.1016/s0304-386x(03)00044-6.

    Article  Google Scholar 

  19. ÖNAL M A R, TOPKAYA Y A. Pressure acid leaching of Çaldağ lateritic nickel ore: An alternative to heap leaching[J]. Hydrometallurgy, 2014, 142: 98–107. DOI: https://doi.org/10.1016/j.hydromet.2013.11.011.

    Article  Google Scholar 

  20. LIU Kui, CHEN Qi-yuan, HU Hui-ping, et al. Pressure acid leaching of a Chinese laterite ore containing mainly maghemite and magnetite [J]. Hydrometallurgy, 2010, 104(1): 32–38. DOI: https://doi.org/10.1016/j.hydromet.2010.04.008.

    Article  Google Scholar 

  21. GUO Xue-yi, SHI Wen-tang, LI Dong, et al. Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 191–195. DOI: https://doi.org/10.1016/S1003-6326(11)60698-5.

    Article  MathSciNet  Google Scholar 

  22. KAYA S, TOPKAYA Y A. Extraction behavior of Scandium from a refractory nickel laterite ore during the pressure acid leaching process [M]//Rare Earths Industry. Amsterdam: Elsevier, 2016: 171–182. DOI: https://doi.org/10.1016/b978-0-12-802328-0.00011-5.

    Chapter  Google Scholar 

  23. KING M G. Nickel laterite technology—Finally a new dawn? [J]. JOM, 2005, 57(7): 35–39. DOI: https://doi.org/10.1007/s11837-005-0250-7.

    Article  Google Scholar 

  24. YAN Kang, LIU Li-ping, ZHAO Hong-xing, et al. Study on extraction separation of thioarsenite acid in alkaline solution by CO 2−3 type tri-n-octylmethyl-ammonium chloride [J]. Frontiers in Chemistry, 2021, 8: 592837. DOI: https://doi.org/10.3389/fchem.2020.592837.

    Article  Google Scholar 

  25. JOHNSON J A, MCDONALD R G, MUIR D M, et al. Pressure acid leaching of arid-region nickel laterite ore [J]. Hydrometallurgy, 2005, 78(3–4): 264–270. DOI: https://doi.org/10.1016/j.hydromet.2005.04.002.

    Article  Google Scholar 

  26. WHITTINGTON B I, JOHNSON J A. Pressure acid leaching of arid-region nickel laterite ore. Part III: Effect of process water on nickel losses in the residue [J]. Hydrometallurgy, 2005, 78(3–4): 256–263. DOI: https://doi.org/10.1016/j.hydromet.2005.04.003.

    Article  Google Scholar 

  27. YU Chen-jian, LI Hui-quan, JIA Xiao-ping, et al. Heavy metal flows in multi-resource utilization of high-alumina coal fly ash: A substance flow analysis [J]. Clean Technologies and Environmental Policy, 2015, 17(3): 757–766. DOI: https://doi.org/10.1007/s10098-014-0832-6.

    Article  Google Scholar 

  28. STANISAVLJEVIC N, BRUNNER P H. Combination of material flow analysis and substance flow analysis: A powerful approach for decision support in waste management [J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2014, 32(8): 733–744. DOI: https://doi.org/10.1177/0734242X14543552.

    Article  Google Scholar 

  29. EL-BAZ A A, SHOUMAN M A, et al. Material flow analysis and integration of watersheds and drain systems: II. Integration and solution strategies with application to ammonium management in Bahr El-Baqar drain system [J]. Clean Technologies and Environmental Policy, 2005, 7(2): 78–86. DOI: https://doi.org/10.1007/s10098-004-0259-6.

    Article  Google Scholar 

  30. MA Dun-chao, HU Shan-ying, ZHU Bing, et al. Carbon substance flow analysis and CO2 emission scenario analysis for China [J]. Clean Technologies and Environmental Policy, 2012, 14(5): 815–825. DOI: https://doi.org/10.1007/s10098-012-0452-y.

    Article  Google Scholar 

  31. MEGLIN R, KYTZIA S, HABERT G. Regional circular economy of building materials: Environmental and economic assessment combining material flow analysis, input-output analyses, and life cycle assessment [J]. Journal of Industrial Ecology, 2022, 26(2): 562–576. DOI: https://doi.org/10.1111/jiec.13205.

    Article  Google Scholar 

  32. KWONPONGSAGOON S, WAITE D T, MOORE S J, et al. A substance flow analysis in the southern hemisphere: Cadmium in the Australian economy [J]. Clean Technologies and Environmental Policy, 2007, 9(3): 175–187. DOI: https://doi.org/10.1007/s10098-006-0078-z.

    Article  Google Scholar 

  33. GARCIA-HERRERO I, MARGALLO M, ONANDÍA R, et al. Connecting wastes to resources for clean technologies in the chlor-alkali industry: A life cycle approach [J]. Clean Technologies and Environmental Policy, 2018, 20(2): 229–242. DOI: https://doi.org/10.1007/s10098-017-1397-y.

    Article  Google Scholar 

  34. GUO Xue-yi, ZHANG Jing-xi, TIAN Qing-hua. Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110461. DOI: https://doi.org/10.1016/j.rser.2020.110461.

    Article  Google Scholar 

  35. KWONPONGSAGOON S, BADER H P, SCHEIDEGGER R. Modelling cadmium flows in Australia on the basis of a substance flow analysis [J]. Clean Technologies and Environmental Policy, 2007, 9(4): 313–323. DOI: https://doi.org/10.1007/s10098-007-0095-6.

    Article  Google Scholar 

  36. SADENOVA M A, UTEGENOVA M E, KLEMEŠ J J. Synthesis of new materials based on metallurgical slags as a contribution to the circular economy [J]. Clean Technologies and Environmental Policy, 2019, 21(10): 2047–2059. DOI: https://doi.org/10.1007/s10098-019-01761-6.

    Article  Google Scholar 

  37. GHIRARDINI A, ZOBOLI O, ZESSNER M, et al. Most relevant sources and emission pathways of pollution for selected pharmaceuticals in a catchment area based on substance flow analysis [J]. The Science of the Total Environment, 2021, 751: 142328. DOI: https://doi.org/10.1016/j.scitotenv.2020.142328.

    Article  Google Scholar 

  38. SHAFIQUE M, RAFIQ M, AZAM A, et al. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China [J]. Resources, Conservation and Recycling, 2022, 178: 106061. DOI: https://doi.org/10.1016/j.resconrec.2021.106061.

    Article  Google Scholar 

  39. WANG Dan, TANG Yu-ting, SUN Yong, et al. Assessing the transition of municipal solid waste management by combining material flow analysis and life cycle assessment [J]. Resources, Conservation and Recycling, 2022, 177: 105966. DOI: https://doi.org/10.1016/j.resconrec.2021.105966.

    Article  Google Scholar 

  40. TIMMERMANS V, van HOLDERBEKE M. Practical experiences on applying substance flow analysis in Flanders: Bookkeeping and static modelling of chromium [J]. Journal of Cleaner Production, 2004, 12(8–10): 935–945. DOI: https://doi.org/10.1016/j.jclepro.2004.02.035.

    Article  Google Scholar 

  41. ZHONG Wei-qiong, DAI Tao, WANG Gao-shang, et al. Structure of international iron flow: Based on substance flow analysis and complex network [J]. Resources, Conservation and Recycling, 2018, 136: 345–354. DOI: https://doi.org/10.1016/j.resconrec.2018.05.006.

    Article  Google Scholar 

  42. NORGATE T, JAHANSHAHI S. Assessing the energy and greenhouse gas footprints of nickel laterite processing [J]. Minerals Engineering, 2011, 24(7): 698–707. DOI: https://doi.org/10.1016/j.mineng.2010.10.002.

    Article  Google Scholar 

  43. KHOO J Z, HAQUE N, WOODBRIDGE G, et al. A life cycle assessment of a new laterite processing technology [J]. Journal of Cleaner Production, 2017, 142: 1765–1777. DOI: https://doi.org/10.1016/j.jclepro.2016.11.111.

    Article  Google Scholar 

  44. LIU Man-zhi, WEN Ji-xin, FENG Ying, et al. A benefit evaluation for recycling medical plastic waste in China based on material flow analysis and life cycle assessment [J]. Journal of Cleaner Production, 2022, 368: 133033. DOI: https://doi.org/10.1016/j.jclepro.2022.133033.

    Article  Google Scholar 

  45. GONG Hai-qing, MENG Fan-lei, WANG Guo-hao, et al. Toward the sustainable use of mineral phosphorus fertilizers for crop production in China: From primary resource demand to final agricultural use [J]. Science of the Total Environment, 2022, 804: 150183. DOI: https://doi.org/10.1016/j.scitotenv.2021.150183.

    Article  Google Scholar 

  46. BAI Lu, QIAO Qi, LI Yan-ping, et al. Substance flow analysis of production process: A case study of a lead smelting process [J]. Journal of Cleaner Production, 2015, 104: 502–512. DOI: https://doi.org/10.1016/j.jclepro.2015.05.020.

    Article  Google Scholar 

  47. WANG Xing-xing, WANG An-jian, ZHONG Wei-qiong, et al. Analysis of international nickel flow based on the industrial chain [J]. Resources Policy, 2022, 77: 102729. DOI: https://doi.org/10.1016/j.resourpol.2022.102729.

    Article  Google Scholar 

  48. LIU Kui, CHEN Qi-yuan, HU Hui-ping. Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore [J]. Hydrometallurgy, 2009, 98(3–4): 281–286. DOI: https://doi.org/10.1016/j.hydromet.2009.05.015.

    Article  Google Scholar 

  49. LUO Jun, LI Guang-hui, RAO Ming-jun, et al. Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite [J]. Minerals Engineering, 2015, 78: 38–44. DOI: https://doi.org/10.1016/j.mineng.2015.03.030.

    Article  Google Scholar 

  50. SU Chang, GENG Yong, ZENG Xian-lai, et al. Uncovering the features of nickel flows in China [J]. Resources, Conservation and Recycling, 2023, 188: 106702. DOI: https://doi.org/10.1016/j.resconrec.2022.106702.

    Article  Google Scholar 

  51. FARIS N, WHITE J, MAGAZOWSKI F, et al. An investigation into potential pathways for nickel and cobalt loss during impurity removal from synthetic nickel laterite pressure acid leach solutions via partial neutralisation [J]. Hydrometallurgy, 2021, 202: 105595. DOI: https://doi.org/10.1016/j.hydromet.2021.105595.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by TIAN Qing-hua and GUO Xue-yi. DONG Bo performed the experiments and collected the data. WANG Qing-ao and XU Zhi-peng analyzed the measured data and the calculated results. The research activity planning and execution were managed by LI Dong. The initial draft of the manuscript was written by TIAN Qing-hua and DONG Bo. GUO Xue-yi and XU Zhi-peng reviewed and edited the manuscript.

Corresponding authors

Correspondence to Xue-yi Guo  (郭学益) or Zhi-peng Xu  (许志鹏).

Additional information

Conflict of interest

TIAN Qing-hua, DONG Bo, GUO Xue-yi, WANG Qing-ao, XU Zhi-peng, LI Dong declare that they have no conflict of interest.

Foundation item: Project(2019YFC1907402) supported by the National Key R&D Program of China; Projects(51922108, 52074363) supported by the National Natural Science Foundation of China; Project(2019JJ20031) supported by the Hunan Natural Science Foundation, China; Project(2019SK2061) supported by the Hunan Key Research and Development Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Qh., Dong, B., Guo, Xy. et al. Valuable metals substance flow analysis in high-pressure acid leaching process of laterites. J. Cent. South Univ. 30, 1776–1786 (2023). https://doi.org/10.1007/s11771-023-5356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5356-y

Key words

关键词

Navigation