Skip to main content
Log in

Maximizing the exploitation of phosphogypsum wastes using soaking technique with citric acid, recovering rare-earth and residual phosphate contents

利用柠檬酸浸泡技术最大化利用磷石膏废弃物回收稀土和残留磷酸盐

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Phosphogypsum (PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements (REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO4 skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-to-liquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.

摘要

磷石膏(PG)是磷酸生产工业的主要副产物,被认为是稀土元素(REEs)最重要的二次来源之一。本研究重点是回收PG 中存在的REEs 和残留的磷酸盐的同时,保留CaSO 4 ,以用于其他各种应用。这些成果是采用柠檬酸浸出工艺实现的。研究了几个参数对柠檬酸浸出回收稀土的影响,包括浸泡时间、浸泡温度、柠檬酸浓度、固液比以及柠檬酸浸出溶液在进一步的稀土溶解实验中的循环利用。最佳操作条件为室温浸泡时间14 d,柠檬酸浓度为7.5%,固液比为1/5。优化条件下稀土的溶解效率为79.57%。将不同的新鲜PG 样品与相同的柠檬酸溶液依次混合浸泡4 个阶段,在最佳浸泡条件下,稀土的累积溶解效率为64.7%。采用Dowex 50X8 树脂从柠檬酸溶液中回收稀土,萃取效率为96%。溶解动力学证明了稀土的伪一级性质、溶解过程为可逆反应,存在两个活化能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JORJANI E, BAGHERIEH A H, CHELGANI S C. Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions [J]. Korean Journal of Chemical Engineering, 2011, 28(2): 557–562. DOI: https://doi.org/10.1007/s11814-010-0383-4.

    Article  Google Scholar 

  2. EL HADY S M. A novel procedure for processing of the xenotime mineral concentrate of southwestern Sinai [J]. Korean Journal of Chemical Engineering, 2017, 34(7): 2049–2055. DOI: https://doi.org/10.1007/s11814-017-0095-0.

    Article  Google Scholar 

  3. ROY S, BASU S, ANITHA M, et al. Synergistic extraction of Nd(III) with mixture of 8-hydroxyquinoline and its derivative with di-2-ethyl hexyl phosphoric acid in different diluents [J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1740–1747. DOI: https://doi.org/10.1007/s11814-017-0050-0.

    Article  Google Scholar 

  4. YOON H S, KIM C J, CHUNG K W, et al. Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore [J]. Korean Journal of Chemical Engineering, 2014, 31(10): 1766–1772. DOI: https://doi.org/10.1007/s11814-014-0078-3.

    Article  Google Scholar 

  5. ASADOLLAHZADEH M, TORKAMAN R. Extraction of dysprosium from waste neodymium magnet solution with ionic liquids and ultrasound irradiation procedure [J]. Korean Journal of Chemical Engineering, 2022, 39(1): 134–145. DOI: https://doi.org/10.1007/s11814-021-0970-6.

    Article  Google Scholar 

  6. JOHANSSON N, KROOK J, EKLUND M, et al. An integrated review of concepts and initiatives for mining the technosphere: Towards a new taxonomy [J]. Journal of Cleaner Production, 2013, 55: 35–44. DOI: https://doi.org/10.1016/j.jclepro.2012.04.007.

    Article  Google Scholar 

  7. KHAWASSEK Y M, ELIWA A A, HAGGAG E S A, et al. Adsorption of rare earth elements by strong acid cation exchange resin thermodynamics, characteristics and kinetics [J]. Applied Sciences, 2018, 1(1): 1–11. DOI: https://doi.org/10.1007/s42452-018-0051-6.

    Google Scholar 

  8. KHAWASSEK Y M, ELIWA A A, GAWAD E A, et al. Recovery of rare earth elements from El-Sela effluent solutions [J]. Journal of Radiation Research and Applied Sciences, 2015, 8(4): 583–589. DOI: https://doi.org/10.1016/j.jrras.2015.07.002.

    Article  Google Scholar 

  9. BINNEMANS K, JONES P T, BLANPAIN B, et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review [J]. Journal of Cleaner Production, 2015, 99: 17–38. DOI: https://doi.org/10.1016/j.jclepro.2015.02.089.

    Article  Google Scholar 

  10. RUTHERFORD P M, DUDAS M J, SAMEK R A. Environmental impacts of phosphogypsum [J]. Science of the Total Environment, 1994, 149(1–2): 1–38. DOI: https://doi.org/10.1016/0048-9697(94)90002-7.

    Article  Google Scholar 

  11. RICHARDSON S G, JOHNSON C D, PATEL S K. Establishing vegetation cover on phosphogypsum in Florida [R]. FIPR, Bartow, FL., 1995: Publication No. 01-086-116. u]https://fiprf.loridapolye.du/publications/establishing-vegetation-cover-on-phosphogypsum-in-florida.php.

  12. RUTHERFORD P M, DUDAS M J, AROCENA J M. Radioactivity and elemental composition of phosphogypsum produced from three phosphate rock sources [J]. Waste Management & Research, 1995, 13(5): 407–423. DOI: https://doi.org/10.1016/S0734-242X(05)80021-7.

    Article  Google Scholar 

  13. TAYIBI H, CHOURA M, LÓPEZ F A, et al. Environmental impact and management of phosphogypsum [J]. Journal of Environmental Management, 2009, 90(8): 2377–2386. DOI: https://doi.org/10.1016/j.jenvman.2009.03.007.

    Article  Google Scholar 

  14. ENAMORADO S, ABRIL J M, MAS J L, et al. Transfer of Cd, Pb, Ra and U from phosphogypsum amended soils to tomato plants [J]. Water, Air, and Soil Pollution, 2009, 203(1–4): 65–77. DOI: https://doi.org/10.1007/s11270-009-9992-0.

    Article  Google Scholar 

  15. PÅLSSON BI, MARTINSSON O, WANHAINEN C, et al. Unlocking rare earth elements from European apatite-iron ores [C]// ERES 2014, 1st European Rare Earth Resources Conference. Milos Island, Greece, 2014: 211–220.

  16. HABASHI F. The recovery of the lanthanides from phosphate rock [J]. Journal of Chemical Technology and Biotechnology Chemical Technology, 1985, 35(1): 5–14. DOI: https://doi.org/10.1002/jctb.5040350103.

    Article  Google Scholar 

  17. WALAWALKAR M, NICHOL C K, AZIMI G. Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4 [J]. Hydrometallurgy, 2016, 166: 195–204. DOI: https://doi.org/10.1016/j.hydromet.2016.06.008.

    Article  Google Scholar 

  18. JAROSIŃSKI A, KOWALCZYK J, MAZANEK C. Development of the Polish wasteless technology of apatite phosphogypsum utilization with recovery of rare earths [J]. Journal of Alloys and Compounds, 1993, 200(1–2): 147–150. DOI: https://doi.org/10.1016/0925-8388(93)90485-6.

    Article  Google Scholar 

  19. PRESTON J S, COLE P M, CRAIG W M, et al. The recovery of rare earth oxides from a phosphoric acid byproduct. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction [J]. Hydrometallurgy, 1996, 41(1): 1–19. DOI: https://doi.org/10.1016/0304-386X(95)00051-H.

    Article  Google Scholar 

  20. PRESTON J S, DU PREEZ A C. The recovery of a mixed rare-earth oxide and the preparation of cerium, europium and neodymium oxides from a South African phosphoric acid sludge by solvent extraction [J]. Mineral Processing and Extractive Metallurgy Review, 1998, 18(2): 175–200. DOI: https://doi.org/10.1080/08827509808914156.

    Article  Google Scholar 

  21. LOKSHIN E P, VERSHKOVA J A, KALINNIKOV V T, et al. Method of recovering rare-earth minerals from phosphogypsum: Patent No. RU2225892 (C1) [P]. 2004.

  22. LOKSHIN E P, KALINNIKOV V T, IVLEV K G, et al. Method of recovering rare-earth elements from phosphogypsum: Patent No. RU2293781 (C1) [P] 2007.

  23. ABRAMOV Y K, VESELOV M, ZALEVSKY V M, et al. Method for extracting rare earth elements from phosphogypsum: United States Patent No. 2012/0114538A1 [P]. 2012.

  24. AL-THYABAT S, ZHANG P. REE extraction from phosphoric acid, phosphoric acid sludge, and phosphogypsum [J]. Mineral Processing and Extractive Metallurgy, 2015, 124(3): 143–150. DOI: https://doi.org/10.1179/1743285515y.0000000002.

    Article  Google Scholar 

  25. EL-DIDAMONY H, ALI M M, AWWAD N S, et al. Treatment of phosphogypsum waste using suitable organic extractants [J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 291(3): 907–914. DOI: https://doi.org/10.1007/s10967-011-1547-3.

    Article  Google Scholar 

  26. EL-DIDAMONY H, GADO H S, AWWAD N S, et al. Treatment of phosphogypsum waste produced from phosphate ore processing [J]. Journal of Hazardous Materials, 2013, 244–245: 596–602. DOI: https://doi.org/10.1016/j.jhazmat.2012.10.053.

    Article  Google Scholar 

  27. PARK H, JUNG K, ALORRO R D, et al. Leaching behavior of copper, zinc and lead from contaminated soil with citric acid [J]. Materials Transactions, 2013, 54(7): 1220–1223. DOI: https://doi.org/10.2320/matertrans.m2013038.

    Article  Google Scholar 

  28. JOSSO P, ROBERTS S, TEAGLE D A H, et al. Extraction and separation of rare earth elements from hydrothermal metalliferous sediments [J]. Minerals Engineering, 2018, 118: 106–121. DOI: https://doi.org/10.1016/j.mineng.2017.12.014.

    Article  Google Scholar 

  29. ASTUTI W, HIRAJIMA T, SASAKI K, et al. Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores [J]. Hydrometallurgy, 2016, 161: 138–151. DOI: https://doi.org/10.1016/j.hydromet.2015.12.015.

    Article  Google Scholar 

  30. MCDONALD R G, WHITTINGTON B I. Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies [J]. Hydrometallurgy, 2008, 91(1–4): 35–55. DOI: https://doi.org/10.1016/j.hydromet.2007.11.009.

    Article  Google Scholar 

  31. Health Canada. Canadian guidelines for the management of naturally occurring radioactive materials (NORM) [M]. Government of Canada, 2000: 47.

  32. POTGIETER J H, POTGIETER S S, MCCRINDLE R I, et al. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement [J]. Cement and Concrete Research, 2003, 33(8): 1223–1227. DOI: https://doi.org/10.1016/S0008-8846(03)00036-X.

    Article  Google Scholar 

  33. ZENG Chu-xiong, GUAN Qing-jun, SUI Ying, et al. Kinetics of nitric acid leaching of low-grade rare earth elements from phosphogypsum [J]. Journal of Central South University, 2022, 29(6): 1869 1880. DOI: https://doi.org/10.1007/s11771-022-5049-y.

    Article  Google Scholar 

  34. LI Si-cheng, MALIK M, AZIMI G. Extraction of rare earth elements from phosphogypsum using mineral acids: Process development and mechanistic investigation [J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 102–114. DOI: https://doi.org/10.1021/acs.iecr.1c03576.

    Article  Google Scholar 

  35. YANG Xiao-sheng, SALVADOR D, MAKKONEN H T, et al. Phosphogypsum processing for rare earths recovery—A review [J]. Natural Resources, 2019, 10(9): 325–336. DOI: https://doi.org/10.4236/nr.2019.109021.

    Article  Google Scholar 

  36. CÁNOVAS C R, CHAPRON S, ARRACHART G, et al. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials [J]. Journal of Cleaner Production, 2019, 219: 225–235. DOI: https://doi.org/10.1016/j.jclepro.2019.02.104.

    Article  Google Scholar 

  37. SHAPIRO L, BRANNOCK W W. Rapid analysis of silicate, carbonate, and phosphate rocks [R]. US Geological Survey, 1962. DOI: https://doi.org/10.3133/b1144a.

  38. MARCZENKO Z. Spectrophotometric determination of elements [J]. Analytica Chimica Acta, 1977, 91(2): 427–428. DOI: https://doi.org/10.1016/s0003-2670(01)93703-1.

    Article  Google Scholar 

  39. CAMPOS M P, COSTA L J P, NISTI M B, et al. Phosphogypsum recycling in the building materials industry: Assessment of the radon exhalation rate [J]. Journal of Environmental Radioactivity, 2017, 172: 232–236. DOI: https://doi.org/10.1016/j.jenvrad.2017.04.002.

    Article  Google Scholar 

  40. RASHAD A M. Phosphogypsum as a construction material [J]. Journal of Cleaner Production, 2017, 166: 732–743. DOI: https://doi.org/10.1016/j.jclepro.2017.08.049.

    Article  Google Scholar 

  41. HAGAG M S, MORSY A M A, ALI A H, et al. Adsorption of rare earth elements onto the phosphogypsum a waste byproduct [J]. Water, Air & Soil Pollution, 2019, 230(12): 1–14. DOI: https://doi.org/10.1007/s11270-019-4362-z.

    Article  Google Scholar 

  42. LEON S P, INOUE N, SHINANO H. Effect of acetic and citric acids on the growth and activity (VB-N) of pseudomonas sp. and moraxella sp [J]. Bull Fac Fish Hokkaido Univ, 1993, 44(2): 80–85. https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/24113/1/44(2)_P80-85.pdf.

    Google Scholar 

  43. SÁNCHEZ-CLEMENTE R, IGEÑO M I, POBLACIÓN A G, et al. Study of pH changes in media during bacterial growth of several environmental strains [C]// Environment, Green Technology, and Engineering International Conference. Basel, Switzerland: MDPI, 2018, 2: 1297. DOI: https://doi.org/10.3390/proceedings2201297.

    Google Scholar 

  44. ABBASILIASI S, TAN J S, TENGKU IBRAHIM T A, et al. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review [J]. RSC Advances, 2017, 7(47): 29395–29420. DOI: https://doi.org/10.1039/c6ra24579j.

    Article  Google Scholar 

  45. THABET O B D, GTARI M, SGHAIER H. Microbial diversity in phosphate rock and phosphogypsum [J]. Waste and Biomass Valorization, 2017, 8(7): 2473–2483. DOI: https://doi.org/10.1007/s12649-016-9772-1.

    Article  Google Scholar 

  46. TRIFI H. Characterization and bioremediation potential of phosphate solubilizing bacteria isolated from Tunisian phosphogypsum [R]. Biology, Faculty of Sciences and National Center for Nuclear Sciences and Technology. Tunis, 2011.

  47. MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nature Reviews Microbiology, 2008, 6(6): 441–454. DOI: https://doi.org/10.1038/nrmicro1892.

    Article  Google Scholar 

  48. CONNORS K. chemical kinetics, chemical kinetics: The study of reaction rates in solution [M]. VCH Publishers, 1990.

  49. ELIWA A A, GAWAD E A, MUBARK A E, et al. Intensive studies for modeling and thermodynamics of fusion digestion processes of Abu rusheid mylonite rocks [J]. JOM, 2021, 73(11): 3419–3429. DOI: https://doi.org/10.1007/s11837-021-04837-1.

    Article  Google Scholar 

  50. PERROT P. A to Z of thermodynamics [M]. Oxford University Press, 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Essam Mubark.

Additional information

Contributors

Ahmed Atef ELIWA and Amal Essam MUBARK provided the concept and edited the draft of manuscript. Nasr Abelaziz ABDELFATTAH conducted the literature review. Ebrahim Abd El GAWAD analyzed the calculated results using MATLAB program. Ahmed Atef ELIWA and Amal Essam MUBARK replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliwa, A.A., Mubark, A.E., Abdelfattah, N.A. et al. Maximizing the exploitation of phosphogypsum wastes using soaking technique with citric acid, recovering rare-earth and residual phosphate contents. J. Cent. South Univ. 29, 3896–3911 (2022). https://doi.org/10.1007/s11771-022-5209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5209-0

Key words

关键词

Navigation