Skip to main content

Advertisement

Log in

Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

To tackle the crisis of global warming, it is imperative to control and mitigate the atmospheric carbon dioxide level. Photocatalytic reduction of carbon dioxide into solar fuels furnishes a gratifying solution to utilize and reduce carbon dioxide emission and simultaneously generate renewable energy to sustain the societies. So far, titanium oxide-based semiconductors have been the most prevalently adopted catalysts in carbon dioxide photoreduction. This mini-review provides a general summary of the recent progresses in titanium oxide-catalyzed photocatalytic reduction of carbon dioxide. It first illustrates the use of structural engineering as a strategy to adjust and improve the catalytic performances. Then, it describes the introduction of one/two exogenous elements to modify the photocatalytic activity and/or selectivity. Lastly, it discusses multi-component hybrid titanium oxide composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming. Nature, 2018, 560(7718): 360–364

    Article  Google Scholar 

  2. Dottori F, Szewczyk W, Ciscar J C, Zhao F, Alfieri L, Hirabayashi Y, Bianchi A, Mongelli I, Frieler K, Betts R A, Feyen L. Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 2018, 8(9): 781–786

    Article  Google Scholar 

  3. Peters G P, Andrew R M, Boden T, Canadell J G, Ciais P, Le Quéré C, Marland G, Raupach M R, Wilson C. The challenge to keep global warming below 2°C. Nature Climate Change, 2013, 3(1): 4–6

    Article  Google Scholar 

  4. Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide. Global Greenhouse Gas Reference Network, 2019

    Google Scholar 

  5. Buelens L C, Galvita V V, Poelman H, Detavernier C, Marin G B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science, 2016, 354(6311): 449–452

    Article  Google Scholar 

  6. Senftle T P, Carter E A. The Holy Grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy. Accounts of Chemical Research, 2017, 50(3): 472–475

    Article  Google Scholar 

  7. Meylan F D, Moreau V, Erkman S. CO2 utilization in the perspective of industrial ecology, an overview. Journal of CO2 Utilization, 2015, 12: 101–108

    Article  Google Scholar 

  8. Zhai H, Ou Y, Rubin E S. Opportunities for decarbonizing existing U. S. coal-fired power plants via CO2 capture, utilization and storage. Environmental Science & Technology, 2015, 49(13): 7571–7579

    Article  Google Scholar 

  9. Olajire A A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization, 2013, 3–4: 74–92

    Article  Google Scholar 

  10. Moret S, Dyson P J, Laurenczy G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 2014, 5(1): 4017

    Article  Google Scholar 

  11. Goeppert A, Czaun M, Jones J P, Surya Prakash G K, Olah G A. Recycling of carbon dioxide to methanol and derived products–closing the loop. Chemical Society Reviews, 2014, 43(23): 7995–8048

    Article  Google Scholar 

  12. Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 2014, 43(2): 631–675

    Article  Google Scholar 

  13. Lewis N S, Nocera D G. Powering the planet: chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729–15735

    Article  Google Scholar 

  14. Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277(5698): 637–638

    Article  Google Scholar 

  15. Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 2017, 392: 658–686

    Article  Google Scholar 

  16. White J L, Baruch M F, Pander J E III, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly A B. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews, 2015, 115(23): 12888–12935

    Article  Google Scholar 

  17. Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

    Article  Google Scholar 

  18. Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387

    Article  Google Scholar 

  19. Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011, 40(7): 3703–3727

    Article  Google Scholar 

  20. Roy S C, Varghese O K, Paulose M, Grimes C A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259–1278

    Article  Google Scholar 

  21. Kim W, McClure B A, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243

    Article  Google Scholar 

  22. Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition, 2017, 56(38): 11326–11353

    Article  Google Scholar 

  23. Ma K, Tian Y, Zhao Z J, Cheng Q, Ding T, Zhang J, Zheng L, Jiang Z, Abe T, Tsubaki N, Gong J, Li X. Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chemical Science (Cambridge), 2019, 10(9): 2578–2584

    Article  Google Scholar 

  24. Li Z, Qu Y, Wang J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. Joule, 2019, 3(2): 570–580

    Article  Google Scholar 

  25. Wang Y, Zhang Z, Zhang L, Luo Z, Shen J, Lin H, Long J, Wu J C S, Fu X, Wang X, Li C. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. Journal of the American Chemical Society, 2018, 140(44): 14595–14598

    Article  Google Scholar 

  26. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. A patterned TiO2 (anatase)/TiO2 (rRutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie, 2002, 114(15): 2935–2937

    Article  Google Scholar 

  27. Ohno T, Tokieda K, Higashida S, Matsumura M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A, General, 2003, 244(2): 383–391

    Article  Google Scholar 

  28. Kandiel T A, Dillert R, Feldhoff A, Bahnemann D W. Direct synthesis of photocatalytically active rutile TiO2 nanorods partly decorated with anatase nanoparticles. Journal of Physical Chemistry C, 2010, 114(11): 4909–4915

    Article  Google Scholar 

  29. Tan L L, Ong W J, Chai S P, Mohamed A R. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: importance of annealing temperature on the photoactivity toward reduction of carbon dioxide. Chemical Engineering Journal, 2016, 283: 1254–1263

    Article  Google Scholar 

  30. Reñones P, Moya A, Fresno F, Collado L, Vilatela J J, de la Peña O’Shea V A. Hierarchical TiO2 nanofibres as photocatalyst for CO2 reduction: influence of morphology and phase composition on catalytic activity. Journal of CO2 Utilization, 2016, 15: 24–31

    Article  Google Scholar 

  31. Han X, Kuang Q, Jin M, Xie Z, Zheng L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society, 2009, 131(9): 3152–3153

    Article  Google Scholar 

  32. Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng HM, Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641

    Article  Google Scholar 

  33. Selloni A. Anatase shows its reactive side. Nature Materials, 2008, 7(8): 613–615

    Article  Google Scholar 

  34. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. Journal of the American Chemical Society, 2014, 136(25): 8839–8842

    Article  Google Scholar 

  35. Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catalysis, 2016, 6(2): 1097–1108

    Article  Google Scholar 

  36. Wu N, Wang J, Tafen D N, Wang H, Zheng J G, Lewis J P, Liu X, Leonard S S, Manivannan A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society, 2010, 132(19): 6679–6685

    Article  Google Scholar 

  37. Liu S, Xia J, Yu J. Amine-functionalized titanate nanosheetassembled Yolk@Shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2015, 7(15): 8166–8175

    Article  Google Scholar 

  38. Chen X, Liu L, Yu P Y, Mao S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750

    Article  Google Scholar 

  39. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C L, Psaro R, Dal Santo V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(18): 7600–7603

    Article  Google Scholar 

  40. Hu Y H. A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angewandte Chemie International Edition, 2012, 51(50): 12410–12412

    Article  Google Scholar 

  41. Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F. Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(23): 8612–8616

    Article  Google Scholar 

  42. Leshuk T, Parviz R, Everett P, Krishnakumar H, Varin R A, Gu F. Photocatalytic activity of hydrogenated TiO2. ACS Applied Materials & Interfaces, 2013, 5(6): 1892–1895

    Article  Google Scholar 

  43. Han B, Wei W, Chang L, Cheng P, Hu Y H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catalysis, 2016, 6(2): 494–497

    Article  Google Scholar 

  44. Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J, Zou Z. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale, 2016, 8(23): 11870–11874

    Article  Google Scholar 

  45. Tahir M, Amin N S. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental, 2015, 162: 98–109

    Article  Google Scholar 

  46. Gonell F, Puga A V, Julián-López B, García H, Corma A. Copperdoped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental, 2016, 180: 263–270

    Article  Google Scholar 

  47. Fang B, Xing Y, Bonakdarpour A, Zhang S, Wilkinson D P. Hierarchical CuO–TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2381–2388

    Article  Google Scholar 

  48. Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y. Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper (I) oxide co-catalysts with a core–shell structure. Angewandte Chemie, 2013, 125(22): 5888–5891

    Article  Google Scholar 

  49. Xie S, Wang Y, Zhang Q, Deng W, Wang Y. MgO- and Pt-Promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catalysis, 2014, 4(10): 3644–3653

    Article  Google Scholar 

  50. Neaţu Ş, Maciá-Agulló J A, Concepción P, Garcia H. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. Journal of the American Chemical Society, 2014, 136(45): 15969–15976

    Article  Google Scholar 

  51. Lee S, Jeong S, Kim W D, Lee S, Lee K, Bae W K, Moon J H, Lee S, Lee D C. Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2. Nanoscale, 2016, 8(19): 10043–10048

    Article  Google Scholar 

  52. Xiong Z, Lei Z, Kuang C C, Chen X, Gong B, Zhao Y, Zhang J, Zheng C, Wu J C S. Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: the interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 2017, 202: 695–703

    Article  Google Scholar 

  53. Kang Q, Wang T, Li P, Liu L, Chang K, Li M, Ye J. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angewandte Chemie, 2015, 127(3): 855–859

    Article  Google Scholar 

  54. Farsinezhad S, Sharma H, Shankar K. Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Physical Chemistry Chemical Physics, 2015, 17(44): 29723–29733

    Article  Google Scholar 

  55. Kar P, Farsinezhad S, Mahdi N, Zhang Y, Obuekwe U, Sharma H, Shen J, Semagina N, Shankar K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Research, 2016, 9(11): 3478–3493

    Article  Google Scholar 

  56. Tan D, Zhang J, Shi J, Li S, Zhang B, Tan X, Zhang F, Liu L, Shao D, Han B. Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on N-Doped TiO2 nanosheet. ACS Applied Materials & Interfaces, 2018, 10(29): 24516–24522

    Article  Google Scholar 

  57. Tahir B, Tahir M, Amin N S. Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor. Applied Surface Science, 2015, 338: 1–14

    Article  Google Scholar 

  58. Tahir M, Amin N S. Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Applied Catalysis A, General, 2015, 493: 90–102

    Article  Google Scholar 

  59. Tahir M, Amin N S. Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chemical Engineering Journal, 2016, 285: 635–649

    Article  Google Scholar 

  60. Tahir M, Tahir B, Saidina Amin N A, Alias H. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Applied Surface Science, 2016, 389: 46–55

    Article  Google Scholar 

  61. Pham T D, Lee B K. Novel photocatalytic activity of Cu@V codoped TiO2/PU for CO2 reduction with H2O vapor to produce solar fuels under visible light. Journal of Catalysis, 2017, 345: 87–95

    Article  Google Scholar 

  62. Asahi R, Morikawa T, Irie H, Ohwaki T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852

    Article  Google Scholar 

  63. Akple M S, Low J, Qin Z, Wageh S, Al-Ghamdi A A, Yu J, Liu S. Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chinese Journal of Catalysis, 2015, 36(12): 2127–2134

    Article  Google Scholar 

  64. Zhang Z, Huang Z, Cheng X, Wang Q, Chen Y, Dong P, Zhang X. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogensources. Applied Surface Science, 2015, 355: 45–51

    Article  Google Scholar 

  65. Wang K, Yu J, Liu L, Hou L, Jin F. Hierarchical P-doped TiO2 nanotubes array@Ti plate: towards advanced CO2 photocatalytic reduction catalysts. Ceramics International, 2016, 42(14): 16405–16411

    Article  Google Scholar 

  66. Olowoyo J O, Kumar M, Jain S L, Shen S, Zhou Z, Mao S S, Vorontsov A V, Kumar U. Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping. International Journal of Hydrogen Energy, 2018, 43(37): 17682–17695

    Article  Google Scholar 

  67. He Z, Yu Y, Wang D, Tang J, Chen J, Song S. Photocatalytic reduction of carbon dioxide using iodine-doped titanium dioxide with high exposed {001} facets under visible light. RSC Advances, 2016, 6(28): 23134–23140

    Article  Google Scholar 

  68. Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphenepromoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Advanced Functional Materials, 2013, 23(14): 1743–1749

    Article  Google Scholar 

  69. Wada K, Ranasinghe C S K, Kuriki R, Yamakata A, Ishitani O, Maeda K. Interfacialmanipulation by rutile TiO2 nanoparticles to boost CO2 reduction into CO on a metal-complex/semiconductor hybrid photocatalyst. ACS Applied Materials & Interfaces, 2017, 9(28): 23869–23877

    Article  Google Scholar 

  70. Jin B, Yao G, Jin F, Hu Y H. Photocatalytic conversion of CO2 over C3N4-based catalysts. Catalysis Today, 2018, 316: 149–154

    Article  Google Scholar 

  71. Li H, Gao Y, Wu X, Lee P H, Shih K. Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO2 under simulated sunlight irradiation. Applied Surface Science, 2017, 402: 198–207

    Article  Google Scholar 

  72. Dong C, Xing M, Zhang J. Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters. Materials Horizons, 2016, 3(6): 608–612

    Article  Google Scholar 

  73. Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angewandte Chemie International Edition, 2014, 53(43): 11478–11482

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Program of the National Natural Science Foundation of China (Grant Nos. 21436007 and 51472159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangming Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jin, F. Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels. Front. Energy 13, 207–220 (2019). https://doi.org/10.1007/s11708-019-0628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-019-0628-9

Keywords

Navigation