Skip to main content
Log in

Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Climate change and land use/cover change (LUCC) can both exert great impacts on the generation processes of precipitation and runoff. However, previous studies usually neglected considering the contribution component of future LUCC in evaluating changes in hydrological cycles. In this study, an integrated framework is developed to quantify and partition the impact of climate change and LUCC on future runoff evolution. First, a daily bias correction (DBC) method and the Cellular Automaton-Markov (CA-Markov) model are used to project future climate and LUCC scenarios, and then future runoff is simulated by the calibrated Soil and Water Assessment Tool (SWAT) model with different climate and LUCC scenarios. Finally, the uncertainty of future runoff and the contribution rate of the two driving factors are systematically quantified. The Han River basin in China was selected as a case study. Results indicate that: 1) both climate change and LUCC will contribute to future runoff intensification, the variation of future runoff under combined climate and LUCC is larger than these under climate change or LUCC alone; 2) the projected uncertainty of median value of multi-models under RCP4.5 (RCP8.5) will reach 18.14% (20.34%), 12.18% (14.71%), 11.01% (13.95%), and 11.41% (14.34%) at Baihe, Ankang, Danjiangkou, and Huangzhuang stations, respectively; 3) the contribution rate of climate change to runoff at Baihe, Ankang, Danjiangkou, and Huangzhuang stations under RCP4.5 (RCP8.5) are 91%–98% (84%–94%), while LUCC to runoff under RCP4.5 (RCP8.5) only accounts for 2%–9% (6%–16%) in the annual scale. This study may provide useful adaptive strategies for policymakers on future water resources planning and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour K C, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol (Amst), 333(2–4): 413–430

    Article  Google Scholar 

  • Ahmadalipour A, Moradkhani H, Rana A (2018). Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. Clim Dyn, 50(1–2): 717–733

    Article  Google Scholar 

  • Berihun M L, Tsunekawa A, Haregeweyn N, Meshesha D T, Adgo E, Tsubo M, Masunaga T, Fenta A A, Sultan D, Yibeltal M, Ebabu K (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci Total Environ, 689: 347–365

    Article  Google Scholar 

  • Block K, Mauritsen T (2013). Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J Adv Model Earth Syst, 5(4): 676–691

    Article  Google Scholar 

  • Changnon D, Gensini V A (2019). Changing spatiotemporal patterns of 5- and 10-Day Illinois heavy precipitation amounts, 1900–2018. J Appl Meteorol Climatol, 58(7): 1523–1533

    Article  Google Scholar 

  • Chauvin F, Douville H, Ribes A (2017). Atlantic tropical cyclones water budget in observations and CNRM-CM5 model. Clim Dyn, 49(11–12): 4009–4021

    Article  Google Scholar 

  • Chawla I, Mujumdar P P (2015). Isolating the impacts of land use and climate change on streamflow. Hydrol Earth Syst Sci, 19(8): 3633–3651

    Article  Google Scholar 

  • Chen H, Guo S L, Xu C Y, Singh V P (2007). Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol (Amst), 344(3–4): 171–184

    Article  Google Scholar 

  • Chen J, Brissette F P, Chaumont D, Braun M (2013). Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J Hydrol (Amst), 479: 200–214

    Article  Google Scholar 

  • Clerici N, Cote-Navarro F, Escobedo F J, Rubiano K, Villegas J C (2019). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci Total Environ, 685: 1181–1192

    Article  Google Scholar 

  • Costa M H, Botta A, Cardille J A (2003). Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol (Amst), 283(1–4): 206–217

    Article  Google Scholar 

  • da Silveira I, Zuidema P, Kirtman B P (2019). Fast SST error growth in the southeast Pacific Ocean: comparison between high and low-resolution CCSM4 retrospective forecasts. Clim Dyn, 53(9–10): 5237–5251

    Article  Google Scholar 

  • Frey L, Bender A M, Svensson G (2021). Processes controlling the vertical aerosol distribution in marine stratocumulus regions- a sensitivity study using the climate model NorESM1-M. Atmos Chem Phys, 21(1): 577–595

    Article  Google Scholar 

  • Gassman P W, Reyes M R, Green C H, Arnold J G (2007). The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE, 50(4): 1211–1250

    Article  Google Scholar 

  • Gu L, Chen J, Yin J B, Xu C-Y (2020). Responses of precipitation and runoff to climate warming and implications for future drought changes in China. Earth’s Future, 8(10): e2020EF001718.

    Article  Google Scholar 

  • Guan D J, Li H F, Inohae T, Su W C, Nagaie T, Hokao K (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Modell, 222(20–22): 3761–3772

    Article  Google Scholar 

  • Guo Y, Fang G, Xu Y P, Tian X, Xie J (2020). Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Sci Total Environ, 710: 136275

    Article  Google Scholar 

  • Halmy M W A, Gessler P E, Hicke J A, Salem B B (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr, 63: 101–112

    Article  Google Scholar 

  • Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings Mathematical Physical & Engineering Conferences, 454: 903–995

    Article  Google Scholar 

  • Huang N E, Shen Z, Long S R (1999). A new view of nonlinear water waves: the Hilbert Spectrum 1. Annu Rev Fluid Mech, 31(1): 417–457

    Article  Google Scholar 

  • Hyandye C, Martz L W (2017). A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens, 38(1): 64–81

    Article  Google Scholar 

  • Ji D, Wang L, Feng J, Wu Q Z, Zhou M Z (2014). Description and basic evaluation of BNU-ESM version 1. Geoscientific Model Devel Discuss, 7(2): 1601–1647

    Google Scholar 

  • Khazaei M R, Zahabiyoun B, Saghafian B (2012). Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model. Int J Climatol, 32(13): 1997–2006

    Article  Google Scholar 

  • Kundu S, Khare D, Mondal A (2017). Individual and combined impacts of future climate and land use changes on the water balance. Ecol Eng, 105: 42–57

    Article  Google Scholar 

  • Kusangaya S, Warburton M L, van Garderen E A, Jewitt G P W (2014). Impacts of climate change on water resources in southern Africa: a review. Phys Chem Earth, 67–69: 47–54

    Article  Google Scholar 

  • Li S S, Zhang L, Du Y, Zhang Y H, Yan C C (2020). Anthropogenic impacts on streamflow-compensated climate change effect in the Hanjiang River basin, China. J Hydrol Eng, 25(1): 04019058

    Article  Google Scholar 

  • Li Y, Chang J, Wang Y, Guo A, Luo L, Ma F, Fan J (2019). Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol Res, 50(1): 244–261

    Article  Google Scholar 

  • Liang Z, Tang T, Li B, Liu T, Wang J, Hu Y (2018). Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: case study of Danjiangkou Reservoir. Hydrol Res, 49(5): 1513–1527

    Article  Google Scholar 

  • Lin B, Chen X, Yao H, Chen Y, Liu M, Gao L, James A (2015). Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol Indic, 58: 55–63

    Article  Google Scholar 

  • Luo G, Yin C, Chen X, Xu W, Lu L (2010). Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: a case study of Sangong watershed in Xinjiang, China. Ecol Complex, 7(2): 198–207

    Article  Google Scholar 

  • Memarian H, Kumar Balasundram S, Bin Talib J, Teh Boon Sung C, Mohd Sood A, Abbaspour K (2012). Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst, 04(06): 542–554

    Google Scholar 

  • Mishra S K, Pandey A, Singh V P (2012). Special issue on soil conservation service curve number (SCS-CN) methodology. J Hydrol Eng, 17(11): 1157

    Article  Google Scholar 

  • Mpelasoka F S, Chiew F H S (2009). Influence of rainfall scenario construction methods on runoff projections. J Hydrometeorol, 10(5): 1168–1183

    Article  Google Scholar 

  • Paymard P, Yaghoubi F, Nouri M, Bannayan M (2019). Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor Appl Climatol, 138(3–4): 1361–1373

    Article  Google Scholar 

  • Nouri J, Gharagozlou A, Arjmandi R, Faryadi S, Adl M (2014). Predicting urban land use changes using a CA-Markov Model. Arab J Sci Eng, 39(7): 5565–5573

    Article  Google Scholar 

  • Pan S H, Liu D D, Wang Z L, Zhao Q, Zou H, Hou Y K, Liu P, Xiong L H (2017). Runoff responses to climate and land use/cover changes under future scenarios. Water, 9(7): 475

    Article  Google Scholar 

  • Pontius R GJr, Neeti N (2010). Uncertainty in the difference between maps of future land change scenarios. Sustain Sci, 5(1): 39–50

    Article  Google Scholar 

  • Poska A, Sepp E, Veski S, Koppel K (2008). Using quantitative pollenbased land-cover estimations and a spatial CA-Markov model to reconstruct the development of cultural landscape at Ruge, South Estonia. Veg Hist Archaeobot, 17(5): 527–541

    Article  Google Scholar 

  • Richey A S, Thomas B F, Lo M H, Reager J T, Famiglietti J S, Voss K, Swenson S, Rodell M (2015). Quantifying renewable groundwater stress with GRACE. Water Resour Res, 51(7): 5217–5238

    Article  Google Scholar 

  • Schmidli J, Frei C, Vidale P L (2006). Downscaling from GC precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol, 26(5): 679–689

    Article  Google Scholar 

  • Schuol J, Abbaspour K C, Srinivasan R, Yang H (2008). Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J Hydrol (Amst), 352(1–2): 30–49

    Article  Google Scholar 

  • Senroy N, Suryanarayanan S, Ribeiro P F (2007). An improved Hilbert-Huang method for analysis of time-varying waveforms in power quality. IEEE Trans Power Syst, 22(4): 1843–1850

    Article  Google Scholar 

  • Shen M X, Chen J, Zhuan M J, Chen H, Xu C Y, Xiong L H (2018). Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J Hydrol (Amst), 556: 10–24

    Article  Google Scholar 

  • Shen J J, Yen W P, O’Fallon J (2003). Interpretation and application of Hilbert-Huang transformation for seismic performance analyses. In: 6th US Conference & Workshop on Lifeline Earthquake Engineering (TCLEE)

  • Tao F, Yokozawa M, Hayashi Y, Lin E (2003). Future climate change, the agricultural water cycle, and agricultural production in China. Agric Ecosyst Environ, 95(1): 203–215 2

    Article  Google Scholar 

  • Teng J, Vaze J, Chiew F H S, Wang B, Perraud J M (2012). Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. J Hydrometeorol, 13(1): 122–139

    Article  Google Scholar 

  • Trolle D, Nielsen A, Andersen H E, Thodsen H, Olesen J E, Børgesen C D, Refsgaard J C, Sonnenborg T O, Karlsson I B, Christensen J P, Markager S, Jeppesen E (2019). Effects of changes in land use and climate on aquatic ecosystems: coupling of models and decomposition of uncertainties. Sci Total Environ, 657: 627–633

    Article  Google Scholar 

  • Umair M, Kim D, Choi M (2019). Impacts of land use/land cover on runoff and energy budgets in an East Asia ecosystem from remotely sensed data in a community land model. Sci Total Environ, 684: 641–656

    Article  Google Scholar 

  • Wagner P D, Kumar S, Schneider K (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrol Earth Syst Sci, 17(6): 2233–2246

    Article  Google Scholar 

  • Wang L, Guo S L, Hong X J, Liu D D, Xiong L H (2017). Projected hydrologic regime changes in the Poyang Lake Basin due to climate change. Front Earth Sci, 11(1): 95–113

    Article  Google Scholar 

  • Woldesenbet T A, Elagib N A, Ribbe L, Heinrich J (2018). Catchment response to climate and land use changes in the Upper Blue Nile subbasins, Ethiopia. Sci Total Environ, 644: 193–206

    Article  Google Scholar 

  • Wu C H, Huang G R (2015). Changes in heavy precipitation and floods in the upstream of the Beijiang River basin, south China. Int J Climatol, 35(10): 2978–2992

    Article  Google Scholar 

  • Wu T (2012). A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations. Clim Dyn, 38(3–4): 725–744

    Article  Google Scholar 

  • Wu Z H, Huang N E (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc Royal Soc, Math Phys Eng Sci, 460(2046): 1597–1611

    Article  Google Scholar 

  • Yan L, Xiong L H, Liu D D, Hu T S, Xu C Y (2017). Frequency analysis of nonstationary annual maximum flood series using the time-varying two-component mixture distributions. Hydrol Processes, 31(1): 69–89

    Article  Google Scholar 

  • Yin J, He F, Xiong Y J, Qiu G Y (2017). Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol Earth Syst Sci, 21(1): 183–196

    Article  Google Scholar 

  • Yin J, Gentine P, Zhou S, Sullivan S C, Wang R, Zhang Y, Guo S (2018). Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun, 9(1): 4389

    Article  Google Scholar 

  • Yu B, Li G, Chen S, Lin H (2020). The role of internal variability in climate change projections of North American surface air temperature and temperature extremes in CanESM2 large ensemble simulations. Clim Dyn, 55(3–4): 869–885

    Article  Google Scholar 

  • Zhang D F, Han Z Y, Shi Y (2017). Comparison of climate projections between driving CSIRO-Mk3.6.0 and downscaling simulation of RegCM4.4 over China. Adv Clim Change Res, 8(4): 245–255

    Article  Google Scholar 

  • Zhang H, Huang G H, Wang D, Zhang X (2011). Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. J Hydrol (Amst), 396(1–2): 94–103

    Article  Google Scholar 

  • Zhang L, Nan Z, Yu W, Ge Y (2016a). Hydrological responses to land-use change scenarios under constant and changed climatic conditions. Environ Manage, 57(2): 412–431

    Article  Google Scholar 

  • Zhang L, Chen X L, Lu J Z, Fu X K, Zhang Y F, Liang D, Xu Q Q (2019). Precipitation projections using a spatiotemporally distributed method: a case study in the Poyang Lake watershed based on the MR1-CGCM3. Hydrol Earth Syst Sci, 23(3): 1649–1666

    Article  Google Scholar 

  • Zhang Q, Liu J Y, Singh V P, Gu X H, Chen X H (2016b). Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrol Processes, 30(14): 2562–2576

    Article  Google Scholar 

  • Zhao M M, He Z B, Du J, Chen L F, Lin P F, Fang S (2019). Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol Indic, 98: 29–38

    Article  Google Scholar 

  • Zhou F, Xu Y, Chen Y, Xu C Y, Gao Y, Du J (2013). Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J Hydrol (Amst), 485: 113–125

    Article  Google Scholar 

  • Zuo D, Xu Z, Yao W, Jin S, Xiao P, Ran D (2016). Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci Total Environ, 544: 238–250

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U20A20317 and 51539009). The authors would like to thank Mingxi Shen for his comments, and for the editor and anonymous reviewers that helped improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglian Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Guo, S., Yin, J. et al. Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China. Front. Earth Sci. 16, 711–733 (2022). https://doi.org/10.1007/s11707-021-0918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-021-0918-5

Keywords

Navigation