Skip to main content
Log in

Projected hydrologic regime changes in the Poyang Lake Basin due to climate change

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downscale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010‒2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aich V, Liersch S, Vetter T, Huang S, Tecklenburg J, Hoffmann P, Koch H, Fournet S, Krysanova V, Müller E N, Hattermann F F (2014). Comparing impacts of climate change on streamflow in four large African river basins. Hydrol Earth Syst Sci, 18(4): 1305–1321

    Article  Google Scholar 

  • Alkama R, Marchand L, Ribes A, Decharme B (2013). Detection of global runoff changes: results from observations and CMIP5 experiments. Hydrol Earth Syst Sci, 17(7): 2967–2979

    Article  Google Scholar 

  • Arnell NW (2003). Effects of IPCC SRES* emissions scenarios on river runoff: a global perspective. Hydrol Earth Syst Sci, 7(5): 619–641

    Article  Google Scholar 

  • Bates B C, Kundzewicz Z W, Wu S, Palutikof JP (eds) 2008. Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp 15–18

    Google Scholar 

  • Butts MB, Payne J T, Kristensen M, Madsen H (2004). An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol (Amst), 298(1-4): 242–266

    Article  Google Scholar 

  • Chen H, Guo S, Xu C, Singh V P (2007). Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol (Amst), 344(3-4): 171–184

    Article  Google Scholar 

  • Chen H, Xu C, Guo S (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J Hydrol (Amst), 434-435: 36–45

    Article  Google Scholar 

  • Christensen N S, Lettenmaier D P (2007). A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol Earth Syst Sci, 11(4): 1417–1434

    Article  Google Scholar 

  • Chu J T, Xia J, Xu C, Singh V P (2010). Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol, 99(1–2): 149–161

    Article  Google Scholar 

  • Dibike Y B, Coulibaly P (2005). Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol (Amst), 307(1–4): 145–163

    Article  Google Scholar 

  • Easterling D R, Evans J L, Groisman P Y, Karl T R, Kunkel K E, Ambenje P (2000). Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc, 81(3): 417–425

    Article  Google Scholar 

  • Fowler H J, Kilsby C G, Stunell J (2007). Modelling the impacts of projected future climate change on water resources in north-west England. Hydrol Earth Syst Sci, 11(3): 1115–1126

    Article  Google Scholar 

  • Frich P, Alexander L V, Della-Marta P, Gleason B, Haylock M, Klein Tank A M G, Peterson T (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res, 19(3): 193–212

    Article  Google Scholar 

  • Gosling S N, Taylor R G, Arnell NW, Todd M C (2011). A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol Earth Syst Sci, 15(1): 279–294

    Article  Google Scholar 

  • Guo J, Chen H, Xu C, Guo S, Guo J (2012). Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling. Stochastic Environ Res Risk Assess, 26(2): 157–176

    Article  Google Scholar 

  • Guo J, Guo S, Li Y, Chen H, Li Y (2013). Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China. Stochastic Environ Res Risk Assess, 27(2): 459–475

    Article  Google Scholar 

  • Guo S, Wang J, Xiong L, Ying A, Li D (2002). A macro-scale and semidistributed monthly water balance model to predict climate change impacts in China. J Hydrol (Amst), 268(1–4): 1–15

    Article  Google Scholar 

  • Hanssen-Bauer I, Achberger C, Benestad R E, Chen D, Forland E J (2005). Statistical downscaling of climate scenarios over Scandinavia. Clim Res, 29(3): 255–268

    Article  Google Scholar 

  • Harpham C, Wilby R L (2005). Multi-site downscaling of heavy daily precipitation occurrence and amounts. J Hydrol (Amst), 312(1–4): 235–255

    Article  Google Scholar 

  • Hellström C, Chen D, Achberger C, Raisanen J (2001). Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Clim Res, 19(1): 45–55

    Article  Google Scholar 

  • Hong X, Guo S, Guo J, Hou Y, Wang L (2014). Projected changes of extreme precipitation characteristics in the Poyang Lake Basin based on statistical downscaling model. Journal of Water Resources Research, 3(6): 511–521 (in Chinese)

    Article  Google Scholar 

  • Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linen P J, Dai X (2001). Climate Change 2001: the Scientific Basis. Cambridge: Cambridge University Press, 1–944

  • Huang A, Zhou Y, Zhang Y, Huang D, Zhao Y, Wu H (2014). Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. J Clim, 27(17): 6627–6646

    Article  Google Scholar 

  • IPCC (2013). Climate Change 2013: the Physical Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. New York: Cambridge University Press

    Google Scholar 

  • Islam S A, Bari M A, Anwar A H M F (2014). Hydrologic impact of climate change on Murray-Hotham catchment ofWestern Australia: a projection of rainfall–runoff for future water resources planning. Hydrol Earth Syst Sci, 18(9): 3591–3614

    Article  Google Scholar 

  • Jie M, Chen H, Xu C Y, Zeng Q, Tao X (2016). A comparative study of different objective functions to improve the flood forecasting accuracy. Hydrology Research, 47(4): 718–735

    Google Scholar 

  • Kanai Y, Ueta M, Germogenov N, Nagendran M, Mita N, Higuchi H (2002). Migration routes and important resting areas of Siberian cranes (Grus leucogeranus) between northeastern Siberia and China as revealed by satellite tracking. Biol Conserv, 106(3): 339–346

    Article  Google Scholar 

  • Khan M S, Coulibaly P, Dibike Y (2006). Uncertainty analysis of statistical downscaling methods. J Hydrol (Amst), 319(1–4): 357–382

    Article  Google Scholar 

  • Kwadijk J C J (1993) The impact of climate change on the discharge of the River Rhine, Ph.D. Thesis, Department of Physical Geography, Utrecht University, Netherlands Geographical Studies, 171.

    Google Scholar 

  • Li J, Zhang Q, Chen Y D, Singh V P (2015). Future joint probability behaviors of precipitation extremes across China: spatiotemporal patterns and implications for flood and drought hazards. Global Planet Change, 124: 107–122

    Article  Google Scholar 

  • Li J, Zhang Q, Chen Y D, Xu C, Singh V P (2013). Changing spatiotemporal patterns of precipitation extremes in China during 2071–2100 based on Earth System Models. J Geophys Res, D, Atmospheres, 118(22): 12537–12555

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson A M, Chandler R E, Kendon E J, Widmann M, Brienen S, Rust H W, Sauter T, Themeß M, Venema V K C, Chun K P, Goodness C M, Jones R G, Onof C, Vrac M, Thiele-Eich I (2010). Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end users. Rev Geophys, 48(3): 1–38

    Article  Google Scholar 

  • Merritt W S, Alila Y, Barton M, Taylor B, Cohen S, Neilsen D (2006). Hydrologic response to scenarios of climate change in subwatersheds of the Okanagan basin, British Columbia. J Hydrol (Amst), 326(1–4): 79–108

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk J C J, Lang H, Parmet B W A H, Schädler B, Schulla J, Wilke K (2001). Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change, 49(1/2): 105–128

    Article  Google Scholar 

  • Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, van Vuuren D P, Carter T R, Emori S, Kainuma M, Kram T, Meehl G A, Mitchell J F B, Nakicenovic N, Riahi K, Smith S J, Stouffer R J, Thomson A M, Weyant J P, Wilbanks T J (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756

    Article  Google Scholar 

  • Penman H L (1948). Natural evaporation from open water, bare soil and grass. Proc R Soc Lond, 193(1032): 120–145

    Article  Google Scholar 

  • Peterson T C, Taylor M A, Demeritte R, Duncombe D L, Burton S, Thompson F, Porter A, Mercedes M, Villegas E, Fils R S, Tank A K, Martis A, Warner R, Joyette A, Mills W, Alexander L, Gleason B (2002). Recent changes in climate extremes in the Caribbean region. Journal of Geophysical Research: Atmospheres (1984–2012), 107 (D21): ACL 16-1–ACL 16–9

    Article  Google Scholar 

  • Plummer N, Salinger M J, Nicholls N, Suppiah R, Hennessy K J, Leighton R M, Trewin B, Page C M, Lough J M (1999). Twentieth century trends in climate extremes over the Australian region and New Zealand. Clim Change, 42(1): 183–202

    Article  Google Scholar 

  • Priestley C H B, Taylor R J (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. MonWeather Rev, 100(2): 81–92

    Article  Google Scholar 

  • Qian W, Lin X (2005). Regional trends in recent precipitation indices in China. Meteorol Atmos Phys, 90(3–4): 193–207

    Article  Google Scholar 

  • Raje D, Krishnan R (2012). Bayesian parameter uncertainty modeling in a macro-scale hydrologic model and its impact on Indian river basin hydrology under climate change. Water Resour Res, 48(8): W08522

    Article  Google Scholar 

  • Refsgaard J C, Havnø K, Ammentorp H C, Verwey A (1988). Application of hydrological models for flood forecasting and flood control in India and Bangladesh. Adv Water Resour, 11(2): 101–105

    Article  Google Scholar 

  • Sen Roy S, Balling R C (2004). Trends in extreme daily precipitation indices in India. Int J Climatol, 24(4): 457–466

    Article  Google Scholar 

  • Shabalova M V, Van Deursen W P A, Buishand T A (2003). Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Clim Res, 23(3): 233–246

    Article  Google Scholar 

  • Shankman D, Keim B D, Song J (2006). Flood frequency in China’s Poyang Lake region: trends and teleconnections. Int J Climatol, 26(9): 1255–1266

    Article  Google Scholar 

  • Sillmann J, Kharin V V, Zwiers F W, Zhang X, Bronaugh D (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res, D, Atmospheres, 118(6): 2473–2493

    Article  Google Scholar 

  • Sun S, Chen H, Ju W, Yu M, Hua W, Yin Y (2014). On the attribution of the changing hydrological cycle in Poyang Lake Basin, China. J Hydrol (Amst), 514: 214–225

    Article  Google Scholar 

  • Tao H, Fraedrich K, Menz C, Zhai J (2014). Trends in extreme temperature indices in the Poyang Lake Basin, China. Stochastic Environ Res Risk Assess, 28(6): 1543–1553

    Article  Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A (2012). An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc, 93(4): 485–498

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2010). Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geogr Compass, 4(7): 834–860

    Article  Google Scholar 

  • Thibeault J M, Seth A (2014). Changing climate extremes in the Northeast United States: observations and projections from CMIP5. Clim Change, 127(2): 273–287

    Article  Google Scholar 

  • Thornthwaite C W (1948). An approach toward a rational classification of climate. Geogr Rev, 38(1): 55–94

    Article  Google Scholar 

  • Wang G, Zhang J, Li Y, Bao Z, Jin J, Yan X, Liu C (2014). Variation trend of future climate for the Hai River Basin based on multiple GCMs projections. Resources Science, 36(5): 1043–1050 (in Chinese with English abstract)

    Google Scholar 

  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu C (2006). Daily precipitation downscaling techniques in three Chinese regions.Water Resour Res, 42(11): W11423

  • Widén-Nilsson E, Halldin S, Xu C Y (2007). Global water-balance modelling with WASMOD-M: parameter estimation and regionalization. J Hydrol (Amst), 340(1–2): 105–118

    Article  Google Scholar 

  • Wilby R L, Dawson C W, Barrow E M (2002). SDSM-a decision support tool for the assessment of regional climate change impacts. Environ Model Softw, 17(2): 145–157

    Article  Google Scholar 

  • Wilby R L, Hay L E, Leavesley G H (1999). A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. J Hydrol (Amst), 225(1–2): 67–91

    Article  Google Scholar 

  • Wilby R L, Tomlinson O J, Dawson CW (2003). Multi-site simulation of precipitation by conditional resampling. Clim Res, 23(3): 183–194

    Article  Google Scholar 

  • Wilby R L, Wigley TML, Conway D, Jones P D, Hewitson B C, Main J, Wilks D S (1998). Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res, 34(11): 2995–3008

    Article  Google Scholar 

  • Wilks D S (1989). Conditioning stochastic daily precipitation models on total monthly precipitation. Water Resour Res, 25(6): 1429–1439

    Article  Google Scholar 

  • Xin X, Wu T, Li J, Wang Z, Li W, Wu F (2013). How well does BCC_CSM1. 1 reproduce the 20th century climate change over China? Atmospheric and Oceanic Science Letters, 6(1): 21–26

    Google Scholar 

  • Xiong L, Guo S (1999). A two-parameter monthly water balance model and its application. J Hydrol (Amst), 216(1–2): 111–123

    Article  Google Scholar 

  • Xu C-Y (1999). From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Prog Phys Geogr, 23(2): 229–249

    Article  Google Scholar 

  • Xu C-Y, Singh V P (2001). Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol Processes, 15(2): 305–319

    Article  Google Scholar 

  • Xu C-Y, Widén E, Halldin S (2005). Modelling hydrological consequences of climate change-progress and challenges. Adv Atmos Sci, 22(6): 789–797

    Article  Google Scholar 

  • Xu Y, Xu C, Gao X, Luo Y (2009). Projected changes in temperature and precipitation extremes over the Yangtze River basin of China in the 21st century. Quat Int, 208(1–2): 44–52

    Article  Google Scholar 

  • Ye X, Li Y, Li X, Xu C-Y, Zhang Q (2015). Investigation of the variability and implications of meteorological dry/wet conditions in the Poyang Lake catchment, China, during the period 1960-2010. Adv Meteorol, 2015: 1–11

    Article  Google Scholar 

  • Ye X, Liu J, Li X, Zhang Q (2013). Effects of climate variability and human activities on runoff variation of Ganjiang river basin. Journal of Hohai University (Natural Sciences), 41(3): 196–203 (in Chinese with English abstract)

    Google Scholar 

  • Ye X, Zhang Q, Bai L, Hu Q (2011). A modeling study of catchment discharge to Poyang Lake under future climate in China. Quat Int, 244(2): 221–229

    Article  Google Scholar 

  • Zhang Q, Liu Y, Yang G, Zhang Z (2011a). Precipitation and hydrological variations and related associations with large-scale circulation in the Poyang Lake Basin, China. Hydrol Processes, 25(5): 740–751

    Article  Google Scholar 

  • Zhang Q, Sun P, Chen X, Jiang T (2011b). Hydrological extremes in the Poyang Lake Basin, China: changing properties, causes and impacts. Hydrol Processes, 25(20): 3121–3130

    Article  Google Scholar 

  • Zhang Q, Xiao M, Li J, Singh V P, Wang Z (2014a). Topography-based spatial patterns of precipitation extremes in the Poyang Lake Basin, China: Changing properties and causes. J Hydrol (Amst), 512: 229–239

    Article  Google Scholar 

  • Zhang Q, Xiao M, Singh V P, Chen Y D (2014b). Max-stable based evaluation of impacts of climate indices on extreme precipitation processes across the Poyang Lake Basin, China. Global Planet Change, 122: 271–281

    Article  Google Scholar 

  • Zhang X, Yang F (2004). RClimDex (1.0) user manual. Climate Research Branch Environment, Canada, pp 22

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (Grant Nos. 51539009 and 51190094), and the National Key Research and Development Plan of China (2016YFC0402206). The authors thank the editor and anonymous reviewers for their comments and suggestions, and Prof. Chong-Yu Xu and Dr. David E. Rheinheimer whose comments and English language editing helped to clarify and improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglian Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Guo, S., Hong, X. et al. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change. Front. Earth Sci. 11, 95–113 (2017). https://doi.org/10.1007/s11707-016-0580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-016-0580-5

Keywords

Navigation