Skip to main content

Advertisement

Log in

Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rõuge, South Estonia

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Quantitative pollen-based land-cover reconstruction covering the last 4,000 years was performed using transformation coefficients derived from a modern pollen land-cover database and a palynological record from an annually laminated sequence in Lake Rõuge Tõugjärv. Proportions of four land-cover classes characteristic of cultural landscape were reconstructed: habitation area, arable land, grassland and woodland. A land-use change model using CA_Markov analysis was applied for spatial reconstructions for seven periods: 600 b.c., a.d. 300, 800, 1200, 1700, 1870 and 1940. Historical maps from a.d. 1684, 1870–1899 and 1935 were used for calibration of quantitative estimates and to validate spatial reconstructions. The accuracy of the estimates depends on the availability of modern analogues and differs among land-cover classes, being highest for classes with directly connectable pollen indicator types (arable land, forest) and lowest for settlement areas. Spatial reconstructions produced by the CA_Markov land-cover change model show moderate accordance with historical data. However, the large uncertainties in land-cover input data must be considered in the evaluation of the KIA results of the spatial model. Permanent low intensity, rural land-use in the Rõuge area started at the beginning of the Bronze Age (c. 1800 b.c.). The major increase in the extent of rural land-use took place at the beginning of the 13th century and culminated during the 19th century when c. 90% of the RSAP of Rõuge Tõugjärv was open. During the last century, rural land-use decreased constantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245

    Google Scholar 

  • Berglund BE (ed) (1991) The cultural landscape during 6,000 years in southern Sweden—the Ystad project. Ecological Bulletins 41, Munksgaard, Copenhagen

  • Berglund BE, Ralska-Jasiewiczowa M (1986) Pollenanalysis and pollendiagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrolology. Wiley, Chichester, pp 455–484

    Google Scholar 

  • Broström A, Sugita S, Gaillard M-J (2004) Pollen productivity estimates for reconstruction of past vegetation cover in the cultural landscape of Southern Sweden. Holocene 14:371–384

    Article  Google Scholar 

  • Broström A, Sugita S, Gaillard M-J, Pilesjö P (2005) Estimating spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15:1–14

    Article  Google Scholar 

  • Bunting MJ (2003) Pollen-based reconstruction of cultural landscapes: an investigation of pollen source area for non-arboreal taxa. Rev Palaeobot Palynol 125:285–298

    Google Scholar 

  • Bunting MJ, Gaillard MJ, Sugita S, Middleton R, Broström A (2004) Vegetation structure and pollen source area. Holocene 14:651–660

    Article  Google Scholar 

  • Cousins SAO (2001) Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landsc Ecol 16:41–54

    Article  Google Scholar 

  • Davis MB (2000) Palynology after Y2K—understanding the source area of pollen in sediments. Ann Rev Earth Planet Sci 28:1–18

    Article  Google Scholar 

  • D’Souza VL (1970) Investigations concerning the suitability of wheat as pollen-donor for cross-pollination by wind compared to rye, Triticale, and Secalotricum. Z Pflanzenzücht. 63:246–269

    Google Scholar 

  • Foster DR, Hall B, Barry S, Clayden S, Parshall T (2002) Cultural, environmental and historical controls of vegetation patterns and the modern conservation setting on the island of Martha’s Vineyard, USA. J Biogeogr 29:1381–1400

    Article  Google Scholar 

  • Fuller JL, Foster DR, McLachlan JS, Drake N (1998) Impact of human activity on regional forest composition and dynamics in central New England. Ecosystems 1:76–95

    Article  Google Scholar 

  • Fyfe RM (2006) GIS and the application of a model of pollen deposition and dispersal: a new approach to testing landscape hypotheses using the POLLANDCAL models. J Archaeol Sci 33:483–493

    Article  Google Scholar 

  • Gaillard M-J, Birks HJB, Emanuelsson U, Berglund BE (1992) Modern pollen/land-use relationships as an aid in reconstruction of past land-uses and cultural landscapes: Example from south Sweden. Veget Hist Archaeobot 1:3–17

    Article  Google Scholar 

  • Goslar T, Ralska-Jasiewiczowa M, Geel B van, Łacka B, Szeroczynska K, Chrost L, Walanus A (1999) Anthropogenic changes in the sediment composition of Lake Gosciaz (central Poland), during the last 330 yrs. J Paleolimnol 22:171–185

    Article  Google Scholar 

  • Grimm EC (1991) TILIA and Tilia graph. Illinois State Museum, Springfield

    Google Scholar 

  • Irwin EG, Geoghegan J (2001) Theory, data, methods: developing spatially explicit economic models of land use change. Agric Ecosyst Environ 85:7–23

    Article  Google Scholar 

  • Iversen J (1941) Land occupation in Danmark’s Stone Age. Danmarks Geol Unders, Ser 2. 66:1–65

    Google Scholar 

  • Jaanits L, Laul S, Lõugas V, Tõnisson E (1982) Eesti esiajalugu (Estonian prehistory). Valgus, Tallinn

    Google Scholar 

  • Joosten JHJ (1985) A 130 year micro- and macrofossil record from regeneration peat in the Peel, The Netherlands: a palaeoecological study with agricultural and climatological implications. Palaeogeogr Palaeoclimatol Palaeoecol 49:277–312

    Article  Google Scholar 

  • Kask R (1996) Eesti mullad (Estonian soils). Mats, Tallinn

    Google Scholar 

  • Konsa M (1999) Geograafilise infosüsteemi kasutamine arheoloogias Rõuge kihelkonna näitel (The application of geographic information systems in archaeology on the example of Rõuge parish). Peaseminaritöö, Tartu University, Tartu

  • Koppel K (2005) Maakasutuse uurimise metoodika Kasaritsa uurimisala (Rõuge kihelkond) 17–19. sajandi külamaastike kujunemise näitel [The research methods of historical land use as exemplified by the formation of rural landscapes on Kasaritsa study area (Rõuge parish) in 17th–19th centuries. Msc thesis, Tartu University, Tartu

  • Lang V (1999) The introduction and early history of farming in Estonia, as revealed by archaeological material. In: Miller U, Hackens T, Lang V, Raukas A, Hicks S (eds) Environmental and cultural history of the Eastern Baltic Region, vol 57. PACT, Rixensart, pp 325–338

    Google Scholar 

  • Lang V, Kriiska A (2001) Eesti esiaja periodiseering ja kronoloogia (Periodisation and chronology of Estonian prehistory). Eesti Arheoloogia Ajakiri 5(2):83–109

    Google Scholar 

  • Lotter AF, Appleby PG, Bindler R, Dearing JA, Grytnes JA, Hofmann W, Kamenik C, Lami A, Livingstone DM, Ohlendorf C, Rose N, Sturm M (2002). The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 m a.s.l.). J Paleolimnol 28:111–127

    Article  Google Scholar 

  • Nielsen AB (2003) Pollen based quantitative estimation of land cover—relationships between pollen sedimentation in lakes and land cover as seen on historical maps in Denmark ad 1800. Ph.D. thesis, Univ Copenhagen and Geol Surv Denm Greenl. Danmarks og Grønlands geologiske undersøgelse rapport 57

  • Nielsen AB, Odgaard BV (2004) The use of historical analogues for interpreting fossil pollen records. Veget Hist Archaeobot 13:33–43

    Article  Google Scholar 

  • Niinemets E, Saarse L (2006) Holocene forest dynamics and human impact in southeastern Estonia. Veget Hist Archaeobot 16:1–13

    Article  Google Scholar 

  • Niinemets E, Saarse L (2007) Fine-resolution pollen-based evidences of farming and forest development, southeastern Estonia. Pol J Ecol (in press)

  • Odgaard BV, Rasmussen P (2000) Origin and temporal development of macro-scale vegetation patterns in the cultural landscape of Denmark. J Ecol 88:733–748

    Article  Google Scholar 

  • Petit CC, Lambin EF (2002) Impact of data integration technique on historical land-use/land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc Ecol 17:117–132

    Article  Google Scholar 

  • Pontius GR, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19:243–265

    Article  Google Scholar 

  • Poska A (2001) Human impact on vegetation of Coastal Estonia during the Stone Age. Acta Universitatis Upsaliensis, Uppsala, pp 1–48

    Google Scholar 

  • Poska A, Saarse L (1999) Holocene vegetation and land-use history in the environs of Lake Kahala, northern Estonia. Veget Hist Archaeobot 8:185–197

    Article  Google Scholar 

  • Poska A, Saarse L, Veski S (2004) Reflections of pre- and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeogr Palaeoclimatol Palaeoecol 209:37–50

    Article  Google Scholar 

  • Rebane H (1941) Liivimaa 1638. a. maarevisjon Eesti asustusalaI. Kaguosa [Land revision of Livland in 1638]. ENSV Riigi Keskarhiivi Tartu osakonna toimetused 1:195–200

    Google Scholar 

  • Remm K (1999) Reeglipärasusi Otepää kõrgustiku maastikumustris Eesti põhikaardi lehe 5434 näitel [Regular patterns in landscape of Otepää Heights, example from page 5434 of the Estonian cadastrial map. Msc thesis, Tartu University, Tartu

  • Roslavlev O (1965) Das Dorpater Land 1624/27. Hefte zur Landeskunde Estlands. Wolfratshausen-Waldram, München

    Google Scholar 

  • Rumma J, Tammekann A, Veski JV (1926) Võrumaa. Maateaduslik, tulunduslik ja ajalooline kirjeldus, Eesti 2. Eesti Kirjanduse Selts, Tartu

    Google Scholar 

  • Saaty TL (2003) Decision-making with AHP: Why is the principal eigenvector necessary. Eur J Oper Res 145:85–91

    Article  Google Scholar 

  • Sarmaja-Korjonen K (1992) Fine-interval pollen and charcoal analyses as tracers of early clearance periods in S Finland. Acta Bot Fenn 146:1–75

    Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

  • Veski S, Lang V (1996) Prehistoric human impact in the vicinity of Lake Maardu, Northern Estona. A synthesis of pollen analytical and archaeological results. In: Hackens T, Hicks S, Lang V, Miller U, Saarse L (eds) Coastal Estonia. Recent advances in environmental and cultural history, vol 51. PACT, Rixensart, pp 189–204

  • Veski S, Koppel K, Poska A (2005) Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, S Estonia. J Biogeogr 32:1473–1488

    Article  Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana, IL

  • Zillén L, Snowball I, Sandgren P, Stanton T (2003) Occurrence of varved lake sediment sequences in Värmland, west central Sweden: lake characteristics, varve chronology and AMS radiocarbon dating. Boreas 32:612–626

    Article  Google Scholar 

Download references

Acknowledgments

We thank the POLLANDCAL group for informative discussions. We are grateful to Raivo Aunap and Agu Vissel for vectorisation of the topographic model of the area and to Dr. Ralph Fyfe and Dr. Robert Szava-Kovats for linguistic revision. Prof. B. Berglund and an anonymous referee are thanked for their constructive and useful comments. Financial support was provided by Estonian target funding projects 0182530s03, 0331758s01 and 0332626s03 and the Estonian Science Foundation (grants 6736, 6995 and 5923).

This is a contribution to the NordForsk funded network POLLANDCAL (http://www.geog.ucl.ac.uk/ecrc/pollandcal/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneli Poska.

Additional information

Communicated by M.-J. Gaillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poska, A., Sepp, E., Veski, S. et al. Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rõuge, South Estonia. Veget Hist Archaeobot 17, 527–541 (2008). https://doi.org/10.1007/s00334-007-0124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-007-0124-8

Keywords

Navigation