Skip to main content
Log in

SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Tin dioxide nanotubes with N-doped carbon layer (SnO2/N-C NTs) were synthesized through a MoO3 nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO2/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g−1 at 0.1 A·g−1 and a high capacity of 1369.3 mAh·g−1 over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li+ and electrons, and alleviates the volume change of the anode to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Yang W, Liu H L, et al. Template-mediated strategy to regulate hierarchically nitrogen–o-doped porous carbon as superior anode material for lithium capacity. Frontiers of Materials Science, 2022, 16(1): 220584

    Article  Google Scholar 

  2. Yang X, Huang Y N, Wang M J, et al. Double hollow Zn2SnO4/SnO2@N-doped carbon nanocubes as anode material for high-performance Li-ion batteries. Chemical Physics Letters, 2023, 813: 140285

    Article  CAS  Google Scholar 

  3. Wu Z P, Wang Y L, Liu X B, et al. Carbon-nanomaterial-based flexible batteries for wearable electronics. Advanced Materials, 2019, 31(9): 1800716

    Article  Google Scholar 

  4. Wang J H, Zheng J D, Gao L P, et al. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage. Frontiers of Materials Science, 2023, 17(3): 230654

    Article  Google Scholar 

  5. Man J Z, Liu K, Du Y H, et al. Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries. Materials Chemistry and Physics, 2020, 256: 123669

    Article  CAS  Google Scholar 

  6. Liu R P, Zhang N, Wang X Y, et al. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries. Frontiers of Materials Science, 2019, 13(2): 186–192

    Article  Google Scholar 

  7. Zhao Y, Yang L A, Ma C L. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage. Frontiers of Materials Science, 2020, 14(2): 145–154

    Article  Google Scholar 

  8. Wang Z M, Zeng F M, Zhao S L, et al. In-situ fabricate highly ordered 3D Cervantite@TiO2 nanoarrays integrated electrode as additive-free anode for lithium/sodium-ion batteries. Journal of Power Sources, 2022, 548: 232054

    Article  CAS  Google Scholar 

  9. Varghese K, Baji D S, Nair S, et al. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications. Frontiers of Materials Science, 2022, 16(2): 220601

    Article  Google Scholar 

  10. Sun X L, Xie W H, Luo F. Nanoarchitectonics of multilayered NiO submicron flakes for ultrafast and stable lithium storage. Journal of Alloys and Compounds, 2023, 936: 168259

    Article  CAS  Google Scholar 

  11. Singh J, Lee S, Tomar A, et al. Surfactant-mediated synthesis of novel mesoporous hollow CuO nanotubes as an anode material for lithium-ion battery application. ChemistrySelect, 2023, 8(1): e202203755

    Article  CAS  Google Scholar 

  12. Man J Z, Liu K, Du Y H, et al. Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries. Materials Chemistry and Physics, 2020, 256: 123669

    Article  CAS  Google Scholar 

  13. Zhang F L, Teng X L, Shi W K, et al. SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries. Applied Surface Science, 2020, 527: 146910

    Article  CAS  Google Scholar 

  14. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Advanced Energy Materials, 2020, 10(1): 1902485

    Article  CAS  Google Scholar 

  15. Yao W Q, Wu S B, Zhan L, et al. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/ mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chemical Engineering Journal, 2019, 361: 329–341

    Article  CAS  Google Scholar 

  16. Li J W, Yao W L, Zhang F C, et al. Porous SnO2 microsphere and its carbon nanotube hybrids: controllable preparation, structures and electrochemical performances as anode materials. Electrochimica Acta, 2021, 388: 138582

    Article  CAS  Google Scholar 

  17. Xu S, Yu W, Li W, et al. High compact mechanical adhesion enables interfacial lithium-ion storage in cobalt phthalocyanine decorated tin oxide nanotubes. Journal of Electroanalytical Chemistry, 2022, 922: 116792

    Article  CAS  Google Scholar 

  18. Dai Q S, Gu C P, Xu Y Y, et al. Self-sacrificing template method to controllable synthesize hollow SnO2@C nanoboxes for lithium-ion battery anode. Journal of Electroanalytical Chemistry, 2021, 898: 115653

    Article  CAS  Google Scholar 

  19. Wang J Y, Cui Y, Wang D. Design of hollow nanostructures for energy storage, conversion and production. Advanced Materials, 2019, 31(38): 1801993

    Article  Google Scholar 

  20. Luo J M, Sun Y G, Guo S J, et al. Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries. Materials Chemistry Frontiers, 2020, 4(8): 2283–2306

    Article  CAS  Google Scholar 

  21. Fan M N, Yang Z H, Lin Z H, et al. Facile synthesis of uniform N-doped carbon-coated TiO2 hollow spheres with enhanced lithium storage performance. Nanoscale, 2021, 13(4): 2368–2372

    Article  CAS  Google Scholar 

  22. Wei L, Yu Q T, Yang X Y, et al. A facile assembly of SnO2 nanoparticles and moderately exfoliated graphite for advanced lithium-ion battery anode. Electrochimica Acta, 2022, 432: 141210

    Article  CAS  Google Scholar 

  23. Wen Z Y, Gu C P, Yin Y J, et al. Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries. Applied Surface Science, 2021, 568: 150969

    Article  CAS  Google Scholar 

  24. Liu Y, Hu C, Chen L, et al. Confining ultrahigh oxygen vacancy SnO2 nanocrystals into nitrogen-doped carbon for enhanced Li-ion storage kinetics and reversibility. Journal of Energy Chemistry, 2022, 69: 450–455

    Article  CAS  Google Scholar 

  25. Wang S F, Wang S Y, Wang G, et al. Ion removal performance and enhanced cyclic stability of SnO2/CNT composite electrode in hybrid capacitive deionization. Materials Today. Communications, 2020, 23: 100904

    Article  CAS  Google Scholar 

  26. Henriques A, Baboukani A R, Jafarizadeh B, et al. Nano-confined tin oxide in carbon nanotube electrodes via electrostatic spray deposition for lithium-ion batteries. Materials, 2022, 15(24): 9086

    Article  CAS  Google Scholar 

  27. Zhao H W, Zeng X L, Zheng T, et al. Three-dimensional porous aerogel assembly from ultrathin rGO@SnO2 nanosheets for advanced lithium-ion batteries. Composites Part B: Engineering, 2022, 231: 109591

    Article  CAS  Google Scholar 

  28. Cheng Y Y, Xie H, Yu F L, et al. Facile fabrication of three-dimensional porous carbon embedded with SnO2 nanoparticles as a high-performance anode for lithium-ion battery. Ionics, 2021, 27(10): 4143–4151

    Article  CAS  Google Scholar 

  29. Xi Y B, Yang D J, Lou H M, et al. Designing the effective microstructure of lignin-based porous carbon substrate to inhibit the capacity decline for SnO2 anode. Industrial Crops and Products, 2021, 161: 113179

    Article  CAS  Google Scholar 

  30. Liu D D, Wei Z Y, Liu L M, et al. Ultrafine SnO2 anchored in ordered mesoporous carbon framework for lithium storage with high capacity and rate capability. Chemical Engineering Journal, 2021, 406: 126710

    Article  CAS  Google Scholar 

  31. Xu Z X, Yue W B, Yuan X, et al. Exceptional anodic performance of Sb-doped SnO2 nanoparticles on electrochemically exfoliated graphene for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 795: 168–176

    Article  CAS  Google Scholar 

  32. Zhang H Y, Li L Q, Li Z P, et al. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries. Applied Surface Science, 2018, 442: 65–70

    Article  CAS  Google Scholar 

  33. Brijesh K, Vinayraj S, Dhanush P C, et al. ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity lithium ion battery. Electrochimica Acta, 2020, 354: 136676

    Article  CAS  Google Scholar 

  34. Raza A, Ghani F, Lim J C, et al. Eco-friendly prepared mesoporous carbon encapsulated SnO2 nanoparticles for highreversible lithium-ion battery anodes. Microporous and Mesoporous Materials, 2021, 314: 110853

    Article  CAS  Google Scholar 

  35. Wang J, Fang F, Yuan T, et al. Three-dimensional graphene/single-walled carbon nanotube aerogel anchored with SnO2 nanoparticles for high performance lithium storage. ACS Applied Materials & Interfaces, 2017, 9(4): 3544–3553

    Article  CAS  Google Scholar 

  36. Meng J K, Wang W W, Wang Q C, et al. Graphene supported ultrafine tin oxide nanoparticles enable conversion reaction dominated mechanism for sodium-ion batteries. Electrochimica Acta, 2019, 303: 32–39

    Article  CAS  Google Scholar 

  37. Yang D X, Ren H Y, Wu D P, et al. Bi-functional nitrogen-doped carbon protective layer on three-dimensional RGO/SnO2 composites with enhanced electron transport and structural stability for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 542: 81–90

    Article  CAS  Google Scholar 

  38. Zhang J, Ren H, Wang J Y, et al. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(45): 17673–17677

    Article  CAS  Google Scholar 

  39. Liang B R, Wang J J, Zhang S Y, et al. Hybrid of Co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties. Applied Surface Science, 2020, 533: 147447

    Article  CAS  Google Scholar 

  40. Tian F H, Cheng Y Q, Zhang Y J, et al. SnO2@C nanowires as high-performance anodic materials for lithium-ion batteries. Materials Letters, 2021, 284: 129019

    Article  CAS  Google Scholar 

  41. Li R, Miao C, Yu L M, et al. Novel self-assembled SnO2@SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries. Materials Letters, 2020, 272: 127851

    Article  CAS  Google Scholar 

  42. Zhao Z P, Su H, Li S H, et al. Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries. Journal of Alloys and Compounds, 2020, 838: 155394

    Article  CAS  Google Scholar 

  43. Liu X Q, Zhu S L, Liang Y Q, et al. 3D N-doped mesoporous carbon/SnO2 with polypyrrole coating layer as high-performance anode material for Li-ion batteries. Journal of Alloys and Compounds, 2022, 892: 162083

    Article  CAS  Google Scholar 

  44. Li W R, Deng X Q, Feng Y F, et al. Synthesis of SnO2@MnO2@graphite nanosheet with high reversibility and stable structure as a high-performance anode material for lithium-ion batteries. Ceramics International, 2021, 47(23): 33405–33412

    Article  CAS  Google Scholar 

  45. Hong Y, Mao W F, Hu Q Q, et al. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes. Journal of Power Sources, 2019, 428: 44–52

    Article  CAS  Google Scholar 

  46. Liu X G, Guo J M, Liu T, et al. Mechanical simulation informed rational design of a soft-and-hard double-jacketed SnO2 flexible electrode for high performance lithium-ion battery. Energy Storage Materials, 2021, 35: 520–529

    Article  Google Scholar 

  47. Wei W L, Du P C, Liu D, et al. Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries. Journal of Colloid and Interface Science, 2017, 503: 205–213

    Article  CAS  Google Scholar 

  48. Hu Z Q, Xu X F, Wang X F, et al. SnO2@rice husk cellulose composite as an anode for superior lithium ion batteries. New Journal of Chemistry, 2019, 43(22): 8755–8760

    Article  CAS  Google Scholar 

  49. Wang Y, Guo W B, Yang Y Q, et al. Rational design of SnO2@C@MnO2 hierarchical hollow hybrid nanospheres for a Li-ion battery anode with enhanced performances. Electrochimica Acta, 2018, 262: 1–8

    Article  CAS  Google Scholar 

  50. Seok D, Shin W H, Kang S W, et al. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility. Journal of Alloys and Compounds, 2021, 870: 159267

    Article  CAS  Google Scholar 

  51. Yang Z J, Qin X Y, Lin K, et al. Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion. Carbon, 2022, 187: 321–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Research Foundation of Korea (NRF-2019R1A5A8080290) and the University Synergy Innovation Program of Anhui Province (GXXT-2020-073 and GXXT-2020-074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiandong Zheng, Jiarui Huang or Sang Woo Joo.

Ethics declarations

Declaration of competing interests The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zheng, J., Gao, L. et al. SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes. Front. Mater. Sci. 17, 230663 (2023). https://doi.org/10.1007/s11706-023-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0663-7

Keywords

Navigation