Skip to main content
Log in

Microbial cells as biological factory for nanoparticle synthesis

  • Views & Comments
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Goodsell D S. Bionanotechnology: Lessons from Nature. John Wiley & Sons, Inc., 2004

  2. Taniguchi N. On the basic concept of nano-technology. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 1974, 18–23

  3. Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346

    Article  CAS  Google Scholar 

  4. Arakha M, Saleem M, Mallick B C, et al. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 2015, 5(1): 9578

    Article  CAS  Google Scholar 

  5. Behera N, Arakha M, Priyadarshinee M, et al. Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Advances, 2019, 9(43): 24888–24894

    Article  CAS  Google Scholar 

  6. Arakha M, Roy J, Nayak P S, et al. Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radical Biology & Medicine, 2017, 110: 42–53

    Article  CAS  Google Scholar 

  7. Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 2015, 5(1): 14813

    Article  CAS  Google Scholar 

  8. Dubchak S, Ogar A, Mietelski J W, et al. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research, 2010, 8(S1): S103–S108

    Article  Google Scholar 

  9. Griffin S, Masood M I, Nasim M J, et al. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 2018, 7(1): 3

    Article  Google Scholar 

  10. Mafuné F, Kohno J Y, Takeda Y, et al. Dissociation and aggregation of gold nanoparticles under laser irradiation. The Journal of Physical Chemistry B, 2001, 105(38): 9050–9056

    Article  Google Scholar 

  11. Chen T Y, Chen S F, Sheu H S, et al. Reactivity of laser-prepared copper nanoparticles: Oxidation of thiols to disulfides. The Journal of Physical Chemistry B, 2002, 106(38): 9717–9722

    Article  CAS  Google Scholar 

  12. Ershov B, Henglein A. Optical spectrum and some chemical properties of colloidal thallium in aqueous solution. The Journal of Physical Chemistry, 1993, 97(13): 3434–3436

    Article  CAS  Google Scholar 

  13. Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions. Langmuir, 1999, 15(20): 6738–6744

    Article  CAS  Google Scholar 

  14. Henglein A. Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2. The Journal of Physical Chemistry B, 2000, 104(6): 1206–1211

    Article  CAS  Google Scholar 

  15. Grieser F, Ashokkumar M. Sonochemical synthesis of inorganic and organic colloids. In: Caruso F, ed. Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles. John Wiley & Sons, Inc., 2004, 120–149

  16. Wegner K, Walker B, Tsantilis S, et al. Design of metal nanoparticle synthesis by vapor flow condensation. Chemical Engineering Science, 2002, 57(10): 1753–1762

    Article  CAS  Google Scholar 

  17. Mishra S, Kshatri D, Khare A, et al. SrS:Ce3+ thin films for electroluminescence device applications deposited by electron-beam evaporation deposition method. Materials Letters, 2016, 183: 191–196

    Article  CAS  Google Scholar 

  18. Mishra S, Kshatri D, Khare A, et al. Fabrication, characterization and electroluminescence studies of SrS:Ce3+ ACTFEL device. Materials Letters, 2017, 198: 101–105

    Article  CAS  Google Scholar 

  19. Swihart M T. Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 2003, 8(1): 127–133

    Article  CAS  Google Scholar 

  20. Rodríguez-Sánchez M L, Rodríguez M J, Blanco M C, et al. Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: A plasmon and cluster time-resolved spectroscopic study. The Journal of Physical Chemistry B, 2005, 109(3): 1183–1191

    Article  Google Scholar 

  21. Chen W, Cai W, Zhang L, et al. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. Journal of Colloid and Interface Science, 2001, 238(2): 291–295

    Article  CAS  Google Scholar 

  22. Eustis S, Hsu H Y, El-Sayed M A. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. The Journal of Physical Chemistry B, 2005, 109(11): 4811–4815

    Article  CAS  Google Scholar 

  23. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B, 2000, 104(41): 9683–9688

    Article  CAS  Google Scholar 

  24. Starowicz M, Stypuła B, Banaś J. Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 2006, 8(2): 227–230

    Article  CAS  Google Scholar 

  25. Frattini A, Pellegri N, Nicastro D, et al. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Materials Chemistry and Physics, 2005, 94(1): 148–152

    Article  CAS  Google Scholar 

  26. Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 2011, 6: 1117–1127

    CAS  Google Scholar 

  27. Nayak P S, Arakha M, Kumar A, et al. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Advances, 2016, 6(10): 8232–8242

    Article  CAS  Google Scholar 

  28. Panda S, Yadav K K, Nayak P S, et al. Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle. Bulletin of Materials Science, 2016, 39(2): 397–404

    Article  CAS  Google Scholar 

  29. Anton P S, Silberglitt R, Schneider J. The Global Technology Revolution: Bio/Nano/Materials Trends and Their Synergies with Information Technology by 2015. RAND, 2001

  30. Arnall A H. Future Technologies, Today’s Choices — Nanotechnology, Artificial Intelligence and Robotics: A Technical, Political and Institutional Map of Emerging Technologies. London: Greenpeace Environmental Trust, 2003

    Google Scholar 

  31. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60 (11): 1289–1306

    Article  CAS  Google Scholar 

  32. Simkiss K, Wilbur K M. Biomineralization. Elsevier, 2012

  33. Abdelrahim S I, Almagboul A Z, Omer M E, et al. Antimicrobial activity of Psidium guajava L. Fitoterapia, 2002, 73(7–8): 713–715

    Article  CAS  Google Scholar 

  34. Feynman R P. There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science Magazine, 1960, 23(5): 22–36

    Google Scholar 

  35. Drexler K E. Engines of Creation: The Coming Era of Nanotechnology. Anchor Books, 1987

  36. Gangopadhyay U, Das S, Jana S, et al. State of art of nanotechnology. International Journal of Engineering Research and Development, 2012, 3(6): 95–112

    Google Scholar 

  37. Fedlheim D L, Foss C A. Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, 2001

  38. Sepeur S. Nanotechnology: Technical Basics and Applications. Germany: Vincentz Network GmbH & Co. KG, 2008

    Google Scholar 

  39. Shahverdi A R, Shakibaie M, Nazari P. Basic and practical procedures for microbial synthesis of nanoparticles. In: Rai M, Duran N, eds. Metal Nanoparticles in Microbiology. Springer Berlin Heidelberg, 2011, 177

  40. Singhal G, Bhavesh R, Kasariya K, et al. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 2011, 13(7): 2981–2988

    Article  CAS  Google Scholar 

  41. Marchiol L. Synthesis of metal nanoparticles in living plants. Italian Journal of Agronomy, 2012, 7(3): e37–e37

    Article  Google Scholar 

  42. Satyanarayana T, Reddy S S. A review on chemical and physical synthesis methods of nanomaterials. International Journal for Research in Applied Science and Engineering Technology, 2018, 6(1): 2885–2889

    Article  Google Scholar 

  43. Renganathan S, Geoprincy G P D, Kalainila P. Green synthesis of ecofriendly nanoparticles and their medical applications. In: Sivasubramanian V, ed. Environmental Sustainability Using Green Technologies. CRC Press, 2016

  44. Vishnukumar P, Sankaranarayanan S, Hariram M, et al. Carbon dots from renewable resources: A review on precursor choices and potential applications. Green Nanomaterials, 2020, 159–208

  45. Kim M, Osone S, Kim T, et al. Synthesis of nanoparticles by laser ablation: A review. Kona Powder and Particle Journal, 2017, (34): 80–90

  46. Yaqoob A A, Ahmad H, Parveen T, et al. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in Chemistry, 2020, 8: 341

    Article  CAS  Google Scholar 

  47. Nayak P S, Pradhan S, Arakha M, et al. Silver nanoparticles fabricated using medicinal plant extracts show enhanced antimicrobial and selective cytotoxic propensities. IET Nanobiotechnology, 2019, 13(2): 193–201

    Article  Google Scholar 

  48. Sharma M, Nayak P S, Asthana S, et al. Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnology, 2018, 12(5): 626–632

    Article  Google Scholar 

  49. Abdelghany T M, Al-Rajhi A M H, Al Abboud M A, et al. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. Bionanoscience, 2018, 8(1): 5–16

    Article  Google Scholar 

  50. Singh J, Dutta T, Kim K H, et al. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 2018, 16(1): 84 (24 pages)

    Article  CAS  Google Scholar 

  51. Albanese A, Tang P S, Chan W C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16

    Article  CAS  Google Scholar 

  52. Singh P, Kim Y J, Zhang D, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 2016, 34(7): 588–599

    Article  CAS  Google Scholar 

  53. Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 2012, 109(10): 2422–2436

    Article  CAS  Google Scholar 

  54. Mukherjee S, Sushma V, Patra S, et al. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45): 455103

    Article  Google Scholar 

  55. Baker S, Rakshith D, Kumar K, et al. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts, 2013, 3(3): 111–117

    CAS  Google Scholar 

  56. Sadowski Z, Maliszewska I H, Grochowalska B, et al. Synthesis of silver nanoparticles using microorganisms. Materials Science: Poland, 2008, 26(2): 419–424

    CAS  Google Scholar 

  57. Ahmad A, Senapati S, Khan M I, et al. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 2003, 19(8): 3550–3553

    Article  CAS  Google Scholar 

  58. Khandel P, Shahi S K. Microbes mediated synthesis of metal nanoparticles: Current status and future prospects. International Journal of Nanomaterials and Biostructures, 2016, 6(1): 1–24

    Google Scholar 

  59. Jain N, Bhargava A, Majumdar S, et al. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 2011, 3(2): 635–641

    Article  CAS  Google Scholar 

  60. Mandal D, Bolander M E, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 2006, 69(5): 485–492

    Article  CAS  Google Scholar 

  61. Thakkar K N, Mhatre S S, Parikh R Y. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6(2): 257–262

    Article  CAS  Google Scholar 

  62. Hulkoti N I, Taranath T C. Biosynthesis of nanoparticles using microbes — A review. Colloids and Surfaces B: Biointerfaces, 2014, 121: 474–483

    Article  CAS  Google Scholar 

  63. Ayesha A. Bacterial synthesis and applications of nanoparticles. Nano Science & Nano Technology: An Indian Journal, 2017, 11(2): 119

    Google Scholar 

  64. Faramarzi M A, Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Advances in Colloid and Interface Science, 2013, 189–190: 1–20

    Article  Google Scholar 

  65. Iravani S. Bacteria in nanoparticle synthesis: Current status and future prospects. International Scholarly Research Notices, 2014, 2014: 359316 (18 pages)

    Article  Google Scholar 

  66. Bandeira M, Giovanela M, Roesch-Ely M, et al. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 2020, 15: 100223

    Article  Google Scholar 

  67. Klaus-Joerger T, Joerger R, Olsson E, et al. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 2001, 19(1): 15–20

    Article  CAS  Google Scholar 

  68. Mullen M D, Wolf D C, Ferris F G, et al. Bacterial sorption of heavy metals. Applied and Environmental Microbiology, 1989, 55(12): 3143–3149

    Article  CAS  Google Scholar 

  69. He S, Guo Z, Zhang Y, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 2007, 61(18): 3984–3987

    Article  CAS  Google Scholar 

  70. Lengke M F, Fleet M E, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 2007, 23(5): 2694–2699

    Article  CAS  Google Scholar 

  71. Jubran A S, Al-Zamely O M, Al-Ammar M H. A study of iron oxide nanoparticles synthesis by using bacteria. International Journal of Pharmaceutical Quality Assurance, 2020, 11(1): 1–8

    Article  Google Scholar 

  72. Ameen F, AlYahya S, Govarthanan M, et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. Journal of Molecular Structure, 2020, 1202: 127233

    Article  CAS  Google Scholar 

  73. Pawar S, Bhosale A, Gaikwad S, et al. Extracellular biosynthesis of silver nanoparticles using bacterial isolate from saline soil. Journal of Nanoscience and Technology, 2020, 869–873

  74. De Silva C, Noor A A M, Abd Karim M M, et al. The green synthesis and characterisation of silver nanoparticles from Serratia spp. Revista Mexicana de Ingeniería Química, 2020, 19(3): 1327–1339

    Article  CAS  Google Scholar 

  75. Bharathi S, Kumaran S, Suresh G, et al. Extracellular synthesis of nanoselenium from fresh water bacteria Bacillus sp., and its validation of antibacterial and cytotoxic potential. Biocatalysis and Agricultural Biotechnology, 2020, 27: 101655

    Article  Google Scholar 

  76. Tugarova A V, Mamchenkova P V, Khanadeev V A, et al. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnology, 2020, 58: 17–24

    Article  CAS  Google Scholar 

  77. Busi S, Rajkumari J, Pattnaik S, et al. Extracellular synthesis of zinc oxide nanoparticles using Acinetobacter schindleri SIZ7 and its antimicrobial property against foodborne pathogens. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 5(5): 407–411

    Article  CAS  Google Scholar 

  78. Liu Y, Perumalsamy H, Kang C H, et al. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 777–788

    Article  CAS  Google Scholar 

  79. Sidkey N M, Arafa R A, Moustafa Y M, et al. Biosynthesis of mg and mn intracellular nanoparticles via extremo-metallotolerant Pseudomonas stutzeri, B4 Mg/W and Fusarium nygamai, F4 Mn/S. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 9(4): 1181–1187

    Google Scholar 

  80. Ashengroph M, Khaledi A, Bolbanabad E M. Extracellular biosynthesis of cadmium sulphide quantum dot using cell-free extract of Pseudomonas chlororaphis CHR05 and its antibacterial activity. Process Biochemistry, 2020, 89: 63–70

    Article  CAS  Google Scholar 

  81. Abdel-Aziz S M, Prasad R, Hamed A A, et al. Fungal nanoparticles: A novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, eds. Fungal Nanobionics: Principles and Applications. Springer, 2018, 61–87

  82. Chen Y L, Tuan H Y, Tien C W, et al. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnology Progress, 2009, 25(5): 1260–1266

    Article  CAS  Google Scholar 

  83. Mohanpuria P, Rana N K, Yadav S K. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 2008, 10(3): 507–517

    Article  CAS  Google Scholar 

  84. Qin W, Wang C Y, Ma Y X, et al. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications. Advanced Materials, 2020, 32(22): 1907833

    Article  CAS  Google Scholar 

  85. El-Sayed E R, Abdelhakim H K, Zakaria Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Materials Science and Engineering C, 2020, 107: 110318

    Article  CAS  Google Scholar 

  86. Abu-Tahon M A, Ghareib M, Abdallah W E. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochemistry, 2020, 95: 1–11

    Article  CAS  Google Scholar 

  87. Priyanka B. Biosynthesis of silver nanoparticles from Aspergillus flavus. Journal of Pharmaceutical Sciences and Research, 2020, 12(4): 583–586

    CAS  Google Scholar 

  88. Kumari R M, Kumar V, Kumar M, et al. Extracellular biosynthesis of silver nanoparticles using Aspergillus terreus: Evaluation of its antibacterial and anticancer potential. Materials Today: Proceedings, 2020

  89. Rodríguez-Serrano C, Guzmán-Moreno J, Ángeles-Chávez C, et al. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One, 2020, 15(3): e0230275

    Article  Google Scholar 

  90. Feroze N, Arshad B, Younas M, et al. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique, 2020, 83(1): 72–80

    Article  CAS  Google Scholar 

  91. Tyagi S, Tyagi P K, Gola D, et al. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: Characterization and antibacterial potential. SN Applied Sciences, 2019, 1(12): 1545

    Article  CAS  Google Scholar 

  92. Noor S, Shah Z, Javed A, et al. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 2020, 174: 105966

    Article  CAS  Google Scholar 

  93. Chatterjee S, Mahanty S, Das P, et al. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 2020, 385: 123790

    Article  Google Scholar 

  94. Thajuddin N, Subramanian G. Survey of cyanobacterial flora of the southern east coast of India. Botanica Marina, 1992, 35(4): 305–314

    Article  Google Scholar 

  95. Thajuddin N, Subramanian G. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 2005, 89(1): 47–57

    CAS  Google Scholar 

  96. Oscar F L, Bakkiyaraj D, Nithya C, et al. Deciphering the diversity of microalgal bloom in wastewater — An attempt to construct potential consortia for bioremediation. Journal of Current Perspectives in Applied Microbiology, 2014, 2278: 92

    Google Scholar 

  97. Lee R E. Phycology. 4th ed. Cambridge: Cambridge University Press, 2008

    Book  Google Scholar 

  98. Johansen M N, ed. Microalgae: Biotechnology, Microbiology and Energy. New York: Nova Science Publishers, Inc., 2012

    Google Scholar 

  99. Borowitzka M A. High-value products from microalgae — their development and commercialisation. Journal of Applied Phycology, 2013, 25(3): 743–756

    Article  CAS  Google Scholar 

  100. Sing S F, Isdepsky A, Borowitzka M, et al. Production of biofuels from microalgae. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1): 47–72

    Article  Google Scholar 

  101. Sharma A, Sharma S, Sharma K, et al. Algae as crucial organisms in advancing nanotechnology: A systematic review. Journal of Applied Phycology, 2016, 28(3): 1759–1774

    Article  CAS  Google Scholar 

  102. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 2019, 12(8): 3576–3600

    Article  CAS  Google Scholar 

  103. Davis S A, Patel H M, Mayes E L, et al. Brittle bacteria: A biomimetic approach to the formation of fibrous composite materials. Chemistry of Materials, 1998, 10(9): 2516–2524

    Article  CAS  Google Scholar 

  104. Dahoumane S A, Djediat C, Yéprémian C, et al. Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnology and Bioengineering, 2012, 109(1): 284–288

    Article  CAS  Google Scholar 

  105. Dahoumane S A, Wijesekera K, Filipe C D, et al. Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. Journal of Colloid and Interface Science, 2014, 416: 67–72

    Article  CAS  Google Scholar 

  106. LewisOscar F, Vismaya S, Arunkumar M, et al. Algal nanoparticles: Synthesis and biotechnological potentials. Algae-Organisms for Imminent Biotechnology, 2016, 7: 157–182

    Google Scholar 

  107. Shankar P D, Shobana S, Karuppusamy I, et al. A review on the biosynthesis of metallic nanoparticles (gold and silver) using biocomponents of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 2016, 95: 28–44

    Article  CAS  Google Scholar 

  108. Öztürk B Y, Gürsu B Y, Dağ İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 2020, 89: 208–219

    Article  Google Scholar 

  109. Dağlıoğlu Y, Öztürk B Y. A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): Different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 2019, 30(3): 611–621

    Google Scholar 

  110. Govindaraju K, Kiruthiga V, Kumar V G, et al. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. Journal of Nanoscience and Nanotechnology, 2009, 9(9): 5497–5501

    Article  CAS  Google Scholar 

  111. Singaravelu G, Arockiamary J S, Kumar V G, et al. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 2007, 57(1): 97–101

    Article  CAS  Google Scholar 

  112. Senapati S, Syed A, Moeez S, et al. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 2012, 79: 116–118

    Article  CAS  Google Scholar 

  113. Rajasulochana P, Dhamotharan R, Murugakoothan P, et al. Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii. International Journal of Nanoscience, 2010, 9(5): 511–516

    Article  CAS  Google Scholar 

  114. Kalabegishvili T, Kirkesali E, Rcheulishvili A. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Journal of Applied Microbiology and Biotechnology, 2012

  115. Chung I M, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Research Letters, 2016, 11(1): 40

    Article  Google Scholar 

  116. Priyadharshini R I, Prasannaraj G, Geetha N, et al. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied Biochemistry and Biotechnology, 2014, 174(8): 2777–2790

    Article  CAS  Google Scholar 

  117. Abboud Y, Saffaj T, Chagraoui A, et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience, 2014, 4(5): 571–576

    Article  CAS  Google Scholar 

  118. Yong E. Yeast suggests speedy start for multicellular life. NATNews, 16-Jan-2012

  119. Frey C N. History and development of the modern yeast industry. Industrial & Engineering Chemistry, 1930, 22(11): 1154–1162

    Article  CAS  Google Scholar 

  120. Walker G M. Yeast Physiology and Biotechnology. John Wiley & Sons, Inc., 1998

  121. Anand P, Isar J, Saran S, et al. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 2006, 97(8): 1018–1025

    Article  CAS  Google Scholar 

  122. Kumar D, Karthik L, Kumar G, et al. Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline, 2011, 3: 1100–1111

    Google Scholar 

  123. Varshney R, Bhadauria S, Gaur M S. A review: Biological synthesis of silver and copper nanoparticles. Nano Biomedicine and Engineering, 2012, 4(2): 99–106

    Article  CAS  Google Scholar 

  124. Salvadori M R, Ando R A, Muraca D, et al. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Advances, 2016, 6(65): 60683–60692

    Article  CAS  Google Scholar 

  125. Salvadori M R, Ando R A, Nascimento C A O, et al. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(11): 1112–1120

    Article  CAS  Google Scholar 

  126. Olobayotan I, Akin-Osanaiye B. Biosynthesis of silver nanoparticles using Baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiology, 2019, 1(1A): 526

    Article  Google Scholar 

  127. Kowshik M, Ashtaputre S, Kharrazi S, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 2003, 14(1): 95–100

    Article  CAS  Google Scholar 

  128. Lian S, Diko C S, Yan Y, et al. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 2019, 9(6): 221

    Article  Google Scholar 

  129. Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83(1–4): 132–140

    Article  CAS  Google Scholar 

  130. Kowshik M, Deshmukh N, Vogel W, et al. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 2002, 78(5): 583–588

    Article  CAS  Google Scholar 

  131. Dameron C, Reese R, Mehra R, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989, 338 (6216): 596–597

    Article  CAS  Google Scholar 

  132. Salvadori M R, Ando R A, Oller do Nascimento C A, et al. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 2014, 9(1): e87968

    Article  Google Scholar 

  133. Golhani D K, Khare A, Burra G K, et al. Microbes induced biofabrication of nanoparticles: A review. Inorganic and Nano-Metal Chemistry, 2020, 50(10): 983–999

    Article  CAS  Google Scholar 

  134. Lodish H, Berk A, Zipursky S L, et al. Molecular mechanisms of eukaryotic transcriptional control. In: Lodish H, ed. Molecular Cell Biology. 4th ed. New York: WH Freeman Co., 2000

    Google Scholar 

  135. Lee L A, Niu Z, Wang Q. Viruses and virus-like protein assemblies — Chemically programmable nanoscale building blocks. Nano Research, 2009, 2(5): 349–364

    Article  CAS  Google Scholar 

  136. Brumfield S, Willits D, Tang L, et al. Heterologous expression of the modified coat protein of cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. The Journal of General Virology, 2004, 85(4): 1049–1053

    Article  CAS  Google Scholar 

  137. Klem M T, Willits D, Young M, et al. 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. Journal of the American Chemical Society, 2003, 125(36): 10806–10807

    Article  CAS  Google Scholar 

  138. Singh P, Gonzalez M J, Manchester M. Viruses and their uses in nanotechnology. Drug Development Research, 2006, 67(1): 23–41

    Article  CAS  Google Scholar 

  139. Pokorski J K, Steinmetz N F. The art of engineering viral nanoparticles. Molecular Pharmaceutics, 2011, 8(1): 29–43

    Article  CAS  Google Scholar 

  140. Mao C, Flynn C E, Hayhurst A, et al. Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951

    Article  CAS  Google Scholar 

  141. Shenton W, Douglas T, Young M, et al. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Advanced Materials, 1999, 11(3): 253–256

    Article  CAS  Google Scholar 

  142. Ahiwale S S, Bankar A V, Tagunde S, et al. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian Journal of Microbiology, 2017, 57(2): 188–194

    Article  CAS  Google Scholar 

  143. Aljabali A A, Barclay J E, Lomonossoff G P, et al. Virus templated metallic nanoparticles. Nanoscale, 2010, 2(12): 2596–2600

    Article  CAS  Google Scholar 

  144. Bansal A, Yang H, Li C, et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Materials, 2005, 4(9): 693–698

    Article  CAS  Google Scholar 

  145. Gade A, Bonde P, Ingle A, et al. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2008, 2(3): 243–247

    Article  Google Scholar 

  146. Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 2012, 94(2): 287–293

    Article  CAS  Google Scholar 

  147. Cunningham D P, Lundie L L. Precipitation of cadmium by Clostridium thermoaceticum. Applied and Environmental Microbiology, 1993, 59(1): 7–14

    Article  CAS  Google Scholar 

  148. Gajbhiye M, Kesharwani J, Ingle A, et al. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5(4): 382–386

    Article  CAS  Google Scholar 

  149. Punjabi K, Choudhary P, Samant L, et al. Biosynthesis of nanoparticles: A review. International Journal of Pharmaceutical Sciences Review and Research, 2015, 30(1): 219–226

    Google Scholar 

  150. Thostenson E T, Li C, Chou T W. Nanocomposites in context. Composites Science and Technology, 2005, 65(3–4): 491–516

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors intend to show a deep sense of gratitude to the Honourable President Dr. Manoj Ranjan Nayak, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar for encouraging us to publish scientific literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Arakha.

Additional information

Disclosure of potential conflicts of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B.S., Das, A., Mishra, A. et al. Microbial cells as biological factory for nanoparticle synthesis. Front. Mater. Sci. 15, 177–191 (2021). https://doi.org/10.1007/s11706-021-0546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0546-8

Navigation