Skip to main content
Log in

Comparing early and mid-term outcomes between robotic-arm assisted and manual total hip arthroplasty: a systematic review

  • Review Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The projected increase in utilization rates of total hip arthroplasty (THA) has created an emphasis on novel technologies that can aid providers in maintaining historically positive outcomes. Widespread utilization of robotic assisted THA (RA-THA) is contingent upon achieving favorable outcomes compared to its traditional manual counterpart (mTHA). Therefore, the purpose of our systematic review was to compare RA-THA and mTHA in terms of the following: (1) functional outcomes and (2) complication rates. The PubMed, Embase, and Cochrane library databases were searched for articles published October 1994 and May 2021 comparing functional outcomes and complication rates between RA-THA and mTHA cohorts. When three or more studies evaluated certain PROMs and complications, a pooled analysis utilizing Mantel–Haenszel (M–H) models was conducted utilizing data from final follow-up. Our final analysis included 18 studies which reported on a total of 2811 patients [RA-THA: n = 1194 (42.48%); mTHA: n = 1617 (57.52%)]. No significant differences were demonstrated for a majority of pooled analyses and when segregating by robotic system. Only WOMAC scores were significantly lower among RA-THA patients (p = 0.0006). For outcomes without sufficient data for a pooled analysis, there were no significant differences reported among included studies. The growing utilization of RA-THA motivates comparisons to its manual counterpart. Collectively, we found comparable functional outcomes and complication profiles between RA-THA and mTHA cohorts. More randomized controlled trials of higher quality and larger sample sizes are necessary to further strengthen these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jonsson B, Larsson SE (1991) Functional improvement and costs of hip and knee arthroplasty in destructive rheumatoid arthritis. Scand J Rheumatol 20:351–357. https://doi.org/10.3109/03009749109096811

    Article  CAS  PubMed  Google Scholar 

  2. Liang MH, Cullen KE, Larson MG et al (1986) Cost-effectiveness of total joint arthroplasty in osteoarthritis. Arthritis Rheum 29:937–943. https://doi.org/10.1002/art.1780290801

    Article  CAS  PubMed  Google Scholar 

  3. Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg 89:780. https://doi.org/10.2106/JBJS.F.00222

    Article  Google Scholar 

  4. Singh JA (2011) Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop J 5:80–85. https://doi.org/10.2174/1874325001105010080

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maradit Kremers H, Larson DR, Crowson CS et al (2015) Prevalence of total hip and knee replacement in the United States. J Bone Jt Surg Am 97:1386–1397. https://doi.org/10.2106/JBJS.N.01141

    Article  Google Scholar 

  6. Sloan M, Premkumar A, Sheth NP (2018) Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Jt Surg 100:1455–1460. https://doi.org/10.2106/JBJS.17.01617

    Article  Google Scholar 

  7. Krushell R, Bhowmik-Stoker M, Kison C et al (2016) Characterization of patient expectations and satisfaction after total hip arthroplasty. J Long Term Eff Med Implants 26:123–132. https://doi.org/10.1615/JLongTermEffMedImplants.2016012621

    Article  PubMed  Google Scholar 

  8. Mancuso CA, Salvati EA, Johanson NA et al (1997) Patients’ expectations and satisfaction with total hip arthroplasty. J Arthroplast 12:387

    Article  CAS  Google Scholar 

  9. Mahomed NN, Barrett JA, Katz JN et al (2003) Rates and outcomers of primary and revision total hip replacement in the United States medicare population. J Bone Jt Surg Am 85:27–32. https://doi.org/10.2106/00004623-200301000-00005

    Article  Google Scholar 

  10. Abbas K, Murtaza G, Umer M et al (2012) Complications of total hip replacement. J Coll Physicians Surg Pak 22:575–578

    PubMed  Google Scholar 

  11. Zhan C, Miller MR (2003) Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization. JAMA 290:1868. https://doi.org/10.1001/jama.290.14.1868

    Article  CAS  PubMed  Google Scholar 

  12. Waters TM, Daniels MJ, Bazzoli GJ et al (2015) Effect of medicare’s nonpayment for hospital-acquired conditions. JAMA Intern Med 175:347. https://doi.org/10.1001/jamainternmed.2014.5486

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duchman KR, Pugely AJ, Martin CT et al (2017) Operative time affects short-term complications in total joint arthroplasty. J Arthroplasty 32:1285–1291. https://doi.org/10.1016/j.arth.2016.12.003

    Article  PubMed  Google Scholar 

  14. Bargar WL, Bauer A, Börner M (1998) Primary and revision total hip replacement using the ROBODOC® system. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199809000-00011

    Article  PubMed  Google Scholar 

  15. Bargar WL (2007) Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res 463:31–36

    Article  Google Scholar 

  16. Lewinnek GE, Lewis JL, Tarr R et al (1978) Dislocations after total hip-replacement arthroplasties. J Bone Jt Surg Am 60:217–220

    Article  CAS  Google Scholar 

  17. Callanan MC, Jarrett B, Bragdon CR et al (2011) The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res 469:319–329. https://doi.org/10.1007/s11999-010-1487-1

    Article  PubMed  Google Scholar 

  18. Bargar WL, Bauer A, Borner M (1998) Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199809000-00011

    Article  PubMed  Google Scholar 

  19. Subramanian P, Wainwright TW, Bahadori S, Middleton RG (2019) A review of the evolution of robotic-assisted total hip arthroplasty. HIP Int 29:232

    Article  Google Scholar 

  20. Bargar WL, Parise CA, Hankins A et al (2018) Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplasty 33:810–814. https://doi.org/10.1016/j.arth.2017.09.066

    Article  PubMed  Google Scholar 

  21. Bukowski BR, Anderson P, Khlopas A et al (2016) Improved functional outcomes with robotic compared with manual total hip arthroplasty. Surg Technol Int 29:303–308

    PubMed  Google Scholar 

  22. Domb BG, Redmond JM, Louis SS et al (2015) Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty 30:2208–2218. https://doi.org/10.1016/j.arth.2015.06.059

    Article  PubMed  Google Scholar 

  23. Domb BG, El Bitar YF, Sadik AY et al (2014) Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study hip. Clin Orthop Relat Res 472:329–336. https://doi.org/10.1007/s11999-013-3253-7

    Article  PubMed  Google Scholar 

  24. El Bitar YF, Stone JC, Jackson TJ et al (2015) Leg-length discrepancy after total hip arthroplasty: comparison of robot-assisted posterior, fluoroscopy-guided anterior, and conventional posterior approaches. Am J Orthop (Belle Mead NJ) 44:265–269

    Google Scholar 

  25. Haddad FS, Kayani B, Huq SS et al (2019) Assuring the long-term total joint arthroplasty. Bone Jt J 101-B:11–18. https://doi.org/10.1302/0301-620x.101b1.bjj-2018-0377.r1

    Article  Google Scholar 

  26. Lim SJ, Ko KR, Park CW et al (2015) Robot-assisted primary cementless total hip arthroplasty with a short femoral stem: a prospective randomized short-Term outcome study. Comput Aided Surg 20:41–46. https://doi.org/10.3109/10929088.2015.1076044

    Article  PubMed  Google Scholar 

  27. Nakamura N, Sugano N, Nishii T et al (2010) A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res 468:1072–1081. https://doi.org/10.1007/s11999-009-1158-2

    Article  PubMed  Google Scholar 

  28. Kwon Y-M, Tsai T-Y, Dimitriou D, Li J-S (2016) Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy? Int J Med Robot Comput Assist Surg 12:288–295. https://doi.org/10.1002/rcs

    Article  Google Scholar 

  29. Peng Y, Arauz P, Desai P et al (2019) In vivo kinematic analysis of patients with robotic-assisted total hip arthroplasty during gait at 1-year follow-up. Int J Med Robot 15:e2021. https://doi.org/10.1002/rcs.2021

    Article  PubMed  Google Scholar 

  30. Kamara E, Robinson J, Bas MA et al (2017) Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty: Is acetabular positioning improved in the learning curve? J Arthroplast 32:125–130. https://doi.org/10.1016/j.arth.2016.06.039

    Article  Google Scholar 

  31. Cochrane Training Cochrane Handbook for Systematic Reviews of Interventions | Cochrane Training. https://training.cochrane.org/cochrane-handbook-systematic-reviews-interventions. Accessed 23 Feb 2021

  32. Honl M, Dierk O, Gauck C et al (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement: a prospective study. J Bone Jt Surg Ser A 85:1470–1478. https://doi.org/10.2106/00004623-200308000-00007

    Article  Google Scholar 

  33. Kong X, Yang M, Jerabek S et al (2020) A retrospective study comparing a single surgeon’s experience on manual versus robot-assisted total hip arthroplasty after the learning curve of the latter procedure: a cohort study. Int J Surg 77:174–180. https://doi.org/10.1016/j.ijsu.2020.03.067

    Article  PubMed  Google Scholar 

  34. Kong X, Yang M, Li X et al (2020) Impact of surgeon handedness in manual and robot-assisted total hip arthroplasty. J Orthop Surg Res 15:1–8. https://doi.org/10.1186/s13018-020-01671-0

    Article  Google Scholar 

  35. Domb BG, Chen JW, Lall AC et al (2020) Minimum 5-year outcomes of robotic-assisted primary total hip arthroplasty with a nested comparison against manual primary total hip arthroplasty: a propensity score-matched study. J Am Acad Orthop Surg 28:847–856. https://doi.org/10.5435/JAAOS-D-19-00328

    Article  PubMed  Google Scholar 

  36. Hadley C, Grossman E, Mont M et al (2020) Robotic-assisted versus manually implanted total hip arthroplasty: a clinical and radiographic comparison - Pubmed. Surg Technol Int 28:371–376

    Google Scholar 

  37. Perets I, Walsh JP, Mu BH et al (2020) Short-term clinical outcomes of robotic-arm assisted total hip arthroplasty: a pair-matched controlled study. Orthopedics. https://doi.org/10.3928/01477447-20201119-10

    Article  PubMed  Google Scholar 

  38. Clement ND, Gaston P, Bell A et al (2020) Robotic arm-assisted versus manual total hip arthroplasty a propensity score matched cohort study. Bone Jt Res 10:22–30. https://doi.org/10.1302/2046-3758.101.BJR-2020-0161.R1

    Article  Google Scholar 

  39. Singh V, Realyvasquez J, Simcox T et al (2021) Robotics versus navigation versus conventional total hip arthroplasty: does the use of technology yield superior outcomes? J Arthroplasty. https://doi.org/10.1016/j.arth.2021.02.074

    Article  PubMed  Google Scholar 

  40. Nishihara S, Sugano N, Nishii T et al (2006) Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty. J Arthroplasty 21:957–966. https://doi.org/10.1016/j.arth.2006.01.001

    Article  PubMed  Google Scholar 

  41. Hananouchi T, Sugano N, Nishii T et al (2007) Effect of robotic milling on periprosthetic bone remodeling. J Orthop Res 25:1062–1069. https://doi.org/10.1002/jor.20376

    Article  PubMed  Google Scholar 

  42. Colgan G, Walsh M, Bennett D et al (2016) Gait analysis and hip extensor function early post total hip replacement. J Orthop 13:171–176. https://doi.org/10.1016/j.jor.2016.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  43. Middleton A, Fritz SL, Lusardi M (2015) Walking speed: the functional vital sign. J Aging Phys Act 23:314–322. https://doi.org/10.1123/japa.2013-0236

    Article  PubMed  Google Scholar 

  44. Brooker AF, Bowerman JW, Robinson RA, Riley LHJ (1973) Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Jt Surg Am 55:1629–1632

    Article  CAS  Google Scholar 

  45. Nakamura N, Sugano N, Sakai T, Nakahara I (2018) Does robotic milling for stem implantation in cementless THA result in improved outcomes scores or survivorship compared with hand rasping? results of a randomized trial at 10 years. Clin Orthop Relat Res 476:2169–2173. https://doi.org/10.1097/CORR.0000000000000467

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Jt Surg Am 91:128–133. https://doi.org/10.2106/JBJS.H.00155

    Article  Google Scholar 

  47. Ulrich SD, Seyler TM, Bennett D et al (2008) Total hip arthroplasties: what are the reasons for revision? Int Orthop 32:597–604. https://doi.org/10.1007/s00264-007-0364-3

    Article  PubMed  Google Scholar 

  48. Kessler S, Kinkel S, Käfer W et al (2003) Influence of operation duration on perioperative morbidity in revision total hip arthroplasty. Acta Orthop Belg 69:328–333

    PubMed  Google Scholar 

  49. Namba RS, Inacio MCS, Paxton EW (2013) Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. J Bone Jt Surg Am 95:775–782. https://doi.org/10.2106/JBJS.L.00211

    Article  Google Scholar 

  50. Peersman G, Laskin R, Davis J et al (2006) Prolonged operative time correlates with increased infection rate after total knee arthroplasty. HSS J 2:70–72. https://doi.org/10.1007/s11420-005-0130-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horlocker TT, Hebl JR, Gali B et al (2006) Anesthetic, patient, and surgical risk factors for neurologic complications after prolonged total tourniquet time during total knee arthroplasty. Anesth Analg 102:950–955. https://doi.org/10.1213/01.ane.0000194875.05587.7e

    Article  PubMed  Google Scholar 

  52. Kurtz SM, Ong KL, Lau E et al (2010) Prosthetic joint infection risk after TKA in the medicare population. Clin Orthop Relat Res 468:52–56. https://doi.org/10.1007/s11999-009-1013-5

    Article  PubMed  Google Scholar 

  53. Pulido L, Ghanem E, Joshi A et al (2008) Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 466:1710–1715. https://doi.org/10.1007/s11999-008-0209-4

    Article  PubMed  PubMed Central  Google Scholar 

  54. O’Malley NT, Fleming FJ, Gunzler DD et al (2012) Factors independently associated with complications and length of stay after hip arthroplasty. J Arthroplasty 27:1832–1837. https://doi.org/10.1016/j.arth.2012.04.025

    Article  PubMed  Google Scholar 

  55. Russo MW, Macdonell JR, Paulus MC et al (2015) Increased complications in obese patients undergoing direct anterior total hip arthroplasty. J Arthroplasty 30:1384–1387. https://doi.org/10.1016/j.arth.2015.03.002

    Article  PubMed  Google Scholar 

  56. DeFrance M, Yayac M, Courtney PM, Squire M (2020) The impact of author financial conflicts on robotic-assisted joint arthroplasty research. J Arthroplasty. https://doi.org/10.1016/j.arth.2020.10.033

    Article  PubMed  Google Scholar 

  57. Lan RH, Bell JW, Samuel LT, Kamath AF (2021) Outcome measures in total hip arthroplasty: have our metrics changed over 15 years? Arch Orthop Trauma Surg 1:1–10. https://doi.org/10.1007/S00402-021-03809-Z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul F. Kamath.

Ethics declarations

Conflict of interest

A.F.K. reports the following disclosures: research support (Signature Orthopaedics), paid presenter or speaker (DePuy Synthes and Zimmer Biomet), paid consultant (DePuy Synthes and Zimmer Biomet), stock or stock options (Zimmer Biomet, Johnson & Johnson, and Procter & Gamble), IP royalties (Innomed), and board or committee member (AAOS, AAHKS, and Anterior Hip Foundation). A.J.A., L.T.S., B.M., and A.K.E. have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuel, L.T., Acuña, A.J., Mahmood, B. et al. Comparing early and mid-term outcomes between robotic-arm assisted and manual total hip arthroplasty: a systematic review. J Robotic Surg 16, 735–748 (2022). https://doi.org/10.1007/s11701-021-01299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-021-01299-0

Keywords

Navigation