Skip to main content
Log in

Investigation of the effect of temperature and electrolytes on the physicochemical parameters for the self-assembly of dodecyltrimethylammonium bromide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, we investigated the impact of different electrolytes (NaBr, Na2SO4, and Na3PO4) and temperatures on the aggregation behavior of dodecyltrimethylammonium bromide (DTAB) through the conductivity measurement technique. The measurements were conducted at a single fixed temperature (310.55 K) for different concentrations of electrolytes and a range of temperatures (300.55–320.55) K with a 5 K interval for one chosen concentration of all electrolytes. The critical micelle concentration (CMC) values decreased in attendance of salts as well but were found higher with the enhancement of temperature. In attendance of salts, the CMC values of DTAB at 310.55 K and ionic strength (I) of 1 mmol kg−1 followed the order: \({c}_{\mathrm{NaBr}}> {c}_{{\mathrm{Na}}_{2}{\mathrm{SO}}_{4}}>{c}_{{\mathrm{Na}}_{3}{\mathrm{PO}}_{4}}\). The ∆G0m values were found negative for DTAB aggregation in electrolytes solutions which indicates that the micellization process was spontaneous in nature. For DTAB in electrolytes media, the micellization processes is both enthalpy and entropy dominated which is revealed by the values of \({\Delta H}_{\mathrm{m}}^{0}\) & ∆S0m. The enthalpy–entropy compensation was determined from the linear relationship between ∆H0m and ∆S0m values in every circumstance. The compensation temperature and intrinsic enthalpy gain were determined and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamczyk Z, Para G, Warszy P (1999) Influence of ionic strength on surface tension of cetyltrimethylammonium bromide. Langmuir 15:8383–8387

    CAS  Google Scholar 

  • Aguiar J, Molina-Bolivar JA, Peula-Garcia JM, Ruiz CC (2002) Thermodynamics and micellar properties of tetradecyltrimethylammonium bromide in formamide-water mixtures. J Colloid Interface Sci 255:382–390

    CAS  PubMed  Google Scholar 

  • Aktar S, Molla MR, Mahbub S, Rub MA, Hoque MA, Islam DMS (2018) Effect of temperature and salt/alcohol on the interaction of tetradecyltrimethylammonium bromide/Triton X-100 with moxifloxacin hydrochloride: a multi-technique approach. J Dispers Sci Technol 40:574–586

    Google Scholar 

  • Alam MM, Mahbub S, Hosen MM, Kumar D, Hoque MA (2021) A conductivity and cloud point investigation of interaction of cationic and non-ionic surfactants with sodium carboxymethyl cellulose: effect of polyols and urea. Chem Pap 75:3457–3468

    CAS  Google Scholar 

  • Anacker EW, Ghose HM (1963) Counterions and micelle size. I. Light scattering by solutions of dodecyltrimethylammonium salts. J Phys Chem 67:1713–1716

    CAS  Google Scholar 

  • Ansari AA, Kamil M, Kabir-ud-Din (2013) Polymer-surfactant interactions and the effect of tail size variation on micellization process of cationic ATAB surfactants in aqueous medium. J Dispers Sci Technol 34:722–730

    CAS  Google Scholar 

  • Azum N, Naqvi AZ, Rub MA, Asiri AM (2017a) Multi-technique approach towards amphiphilic drug-surfactant interaction: a physicochemical study. J Mol Liq 240:189–195

    CAS  Google Scholar 

  • Azum N, Rub MA, Asiri AM (2017b) Self-association and micro-environmental properties of sodium salt of ibuprofen with BRIJ-56 under the influence of aqueous/urea solution. J Dispers Sci Technol 38:96–104

    CAS  Google Scholar 

  • Azum N, Ahmed A, Rub MA, Asiri AM, Alamery SF (2019) Investigation of aggregation behavior of ibuprofen sodium drug under the influence of gelatin protein and salt. J Mol Liq 290:111187

    CAS  Google Scholar 

  • Beesley A, Evans DF, Laughlin RG (1988) Evidence for the essential role of hydrogen bonding in promoting amphiphilic self-assembly: measurements in 3-methylsydnone. J Phys Chem 92:791–793

    CAS  Google Scholar 

  • Burks T, Uheida A, Saleemi M, Eita M, Toprak MS, Muhammed M (2013) Removal of chromium(VI) using surface modified superparamagnetic iron oxide nanoparticles. Sep Sci Technol 48:1243–1251

    CAS  Google Scholar 

  • Chakraborty T, Chakraborty I, Ghosh S (2006) Sodium carboxymethylcellulose−CTAB interaction: a detailed thermodynamic study of polymer−surfactant interaction with opposite charges. Langmuir 22:9905–9913

    CAS  PubMed  Google Scholar 

  • Chauhan S, Kaur M, Kumar K, Chauhan MS (2014) Study of the effect of electrolyte and temperature on the critical micelle concentration of dodecyltrimethylammonium bromide in aqueous medium. J Chem Thermodyn 78:175–181

    CAS  Google Scholar 

  • Chauhan S, Kaur M, Rana DS, Chauhan MS (2016) Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts. J Chem Eng Data 61:3770–4377

    CAS  Google Scholar 

  • Chen LJ, Lin SY, Huang CC (1998) Effect of hydrophobic chain length of surfactants on enthalpy−entropy compensation of micellization. J Phys Chem 102:4350–4356

    CAS  Google Scholar 

  • Fendler JH, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Academic Press, New York

    Google Scholar 

  • Fuguet E, Rafols C, Roses M, Bosch E (2005) Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta 548:95–100

    CAS  Google Scholar 

  • Gelgec U, Iscan M (2010) Interactions of polyglycol ethers with anionic surfactants in water. J Dispers Sci Technol 31:1667–1672

    CAS  Google Scholar 

  • Hasan MZ, Mahbub S, Hoque MA, Rub MA, Kumar D (2020) Investigation of mixed micellization study of sodium dodecyl sulfate and tetradecyltrimethylammonium bromide mixtures at different compositions: Effect of electrolytes and temperatures. J Phys Org Chem 33:e4047

    CAS  Google Scholar 

  • Hassan KA, Ahmed MA, Hassanein KMA, Waly H (2016) Ameliorating effect of vitamin C and selenium against nicotine induced oxidative stress and changes of p53 expression in pregnant albino rats. J Adv Vet Anim Res 3:321–331

    Google Scholar 

  • Hooshyar H, Sadeghi R (2015) Influence of sodium salts on the micellization and interfacial behavior of cationic surfactant dodecyltrimethylammonium bromide in aqueous solution. J Chem Eng Data 60:983–992

    CAS  Google Scholar 

  • Hoque MA, Patoary MOF, Molla MR, Halim MA, Khan MA, Rub MA (2017a) Interaction between cetylpyridinium chloride and amino acids: a conductomertic and computational method study. J Dispers Sci Technol 38:1578–1587

    CAS  Google Scholar 

  • Hoque MA, Patoary MOF, Rashid MM, Molla MR, Rub MA (2017b) Physico-chemical investigation of mixed micelle formation between tetradecyltrimethylammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solutions of sodium chloride. J Sol Chem 46:682–703

    CAS  Google Scholar 

  • Hoque MA, Alam MM, Khan MA, Kumar D, Khan JM, Malik A, Ahmed MZ, Ahamed A (2021a) Interaction of metformin hydrochloride with ionic surfactants in aqueous and NaCl solution: effect of temperatures and compositions. J Phys Org Chem 34:e4166

    CAS  Google Scholar 

  • Hoque MA, Rahman MM, Alam MM, Mahbub S, Khan MA, Kumar D, Albaqami MD, Wabaidur SM (2021b) Interaction of cephalexin monohydrate with surfactants in aqueous and sodium chloride solution at variable temperatures: conductivity and spectroscopic measurements. J Mol Liq 326:115337

    CAS  Google Scholar 

  • Hossain MJ, Rahman MM, Amin MR, Ali MA, Rana S, Kumar D, Hoque MA, Khan JM, Ahamed M (2021) Clouding phenomena and thermodynamics of TX-100 + polyethylene glycol mixture: Influence of several electrolytes. Chem Pap 75:1363–1375

    CAS  Google Scholar 

  • Jia X, Bo H, He Y (2019) Synthesis and characterization of a novel surfactant used for aqueous film-forming foam extinguishing agent. Chem Pap 73:1777–1784

    CAS  Google Scholar 

  • Khan TA, Nazir M, Ali I, Kumar A (2013) Removal of Chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab J Chem 10:S2388–S2398

    Google Scholar 

  • Khan F, Rub MA, Azum N, Asiri AM (2018) Mixtures of antidepressant amphiphilic drug imipramine hydrochloride and anionic surfactant: micellar and thermodynamic investigation. J Phys Org Chem 31:e3812

    Google Scholar 

  • Khan MAR, Amin MR, Patoary MOF, Rub MA, Hoque MA, Khan MA, Kumar D, Asiri AM, Khan F, Alfaifi SYM (2020) Influence of electrolytes on the clouding and thermodynamic nature of non-ionic surfactant in the presence of an antibiotic drug. Phys Chem Liq. https://doi.org/10.1080/00319104.2020.1815020

    Article  Google Scholar 

  • Kim HU, Lim KH (2004) A model on the temperature dependence of critical micelle concentration. Colloids Surf A 235:121–128

    CAS  Google Scholar 

  • Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins Struct Funct Bioinf 57:678–683

    CAS  Google Scholar 

  • Kumar D, Rub MA (2020a) Influence of dimeric gemini surfactant micelles on the study of nickel-glycylleucine dipeptide and ninhydrin. J Dispers Sci Technol 41:1559–1567

    CAS  Google Scholar 

  • Kumar D, Rub MA (2020b) Study of the interaction between ninhydrin and chromium(III)-amino acid in an aqueous-micellar system: Influence of gemini surfactant micelles. J Mol Liq 301:112373

    CAS  Google Scholar 

  • Kumar D, Rub MA (2020c) Influence of dicationic quaternary ammonium gemini surfactant system on metal-amino acid complex-ninhydrin reaction. Mater Chem Phys 248:122926

    CAS  Google Scholar 

  • Kumar D, Hidayathulla S, Rub MA (2018a) Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: effect of temperature and salt. J Mol Liq 271:254–264

    CAS  Google Scholar 

  • Kumar D, Rub MA, Azum N, Asiri AM (2018b) Mixed micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini). J Phys Org Chem 31:e3730

    Google Scholar 

  • Kumar D, Rub MA, Asiri AM (2020) Synthesis and characterization of geminis and implications of their micellar solution on ninhydrin and metal amino acid complex. R Soc Open Sci 7:200775

    PubMed  PubMed Central  Google Scholar 

  • Kumar D, Azum N, Rub MA, Asiri AM (2021) Interfacial and spectroscopic behavior of phenothiazine drug/bile salt mixture in urea solution. Chem Pap 75:3949–3956

    CAS  Google Scholar 

  • Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993

    CAS  Google Scholar 

  • Liu H-Z, Yang W-J, Chen J-Y (1998) Effects of surfactants on emulsification and secondary structure of lysozyme in aqueous solution. Biochem Eng J 2:187–196

    CAS  Google Scholar 

  • Loh W, Teixera LAC, Lee LT (2004) Isothermal calorimetric investigation of the interaction of poly(n-isopropylacrylamide) and ionic surfactants. J Phys Chem B 108:3196–3201

    CAS  Google Scholar 

  • Lu T, Huang JB, Liang DH (2008) Salt effect on microstructures in cationic gemini surfactant solutions as studied by dynamic light scattering. Langmuir 24:1740–1744

    CAS  PubMed  Google Scholar 

  • Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PD, Hamilton WA (1997) Effect of counterion competition on micellar growth horizons for cetyltrimethylammonium micellar surfaces: electrostatics and specific binding. J Phys Chem B 101:7919–7927

    CAS  Google Scholar 

  • Mahbub S, Rub MA, Hoque MA, Khan MA, Kumar D (2019) Micellization behavior of cationic and anionic surfactant mixtures at different temperatures: effect of sodium carbonate and sodium phosphate salts. J Phys Org Chem 32:e3967

    Google Scholar 

  • Mahbub S, Akter S, Luthfunnessa AP, Hoque MA, Rub MA, Kumar D, Alghamdi YG, Asiri AM, Džudžević-Čančar H (2020) Effects of temperature and polyols on the ciprofloxacin hydrochloride-mediated micellization of sodium dodecyl sulfate. RSC Adv 10:14531–14541

    CAS  Google Scholar 

  • Mahbub S, Ismail M, Masum A, Akter P, Hoque MA, Kumar D, Khan F, Rub MA, Asiri AM (2021) Role of carbonate electrolytes on interaction of quinolone drug with anionic surfactant at various temperatures: a conductometric study. J Phys Org Chem 34:e4121

    CAS  Google Scholar 

  • Malik NA, Ali A (2018) Interaction, thermodynamic, and solubilisation study of amino acid-tyrosine in aqueous anionic and cationic amphiphiles: electrical conductance and spectroscopic studies. Phys Chem Liq 56:69–79

    CAS  Google Scholar 

  • Medoš Z, Rogač MB (2015) Thermodynamics of the micellization process of carboxylates: a conductivity study. J Chem Thermodyn 83:117–122

    Google Scholar 

  • Mestri RS, Pratap AP, Panchal KH, Gamot K, Datir KA (2020) Synthesis of cleavable silicone surfactant for water-repellent application. Chem Pap 74:1407–1416

    CAS  Google Scholar 

  • Molla MR, Rana S, Rub MA, Ahmed A, Hoque MA (2018) Conductometric probe analysis of the effect of benzyldimethylhexadecylammonium chloride on the micellization behavior of dodecyltrimethylammonium bromide in aqueous/urea solution: investigation of concentration and temperature effect. J Surf Deterg 21:231–246

    CAS  Google Scholar 

  • Nerurkar MM, Ho NF, Burton PS, Vidmar TJ, Borchardt RT (1997) Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J Pharm Sci 86:813–821

    CAS  PubMed  Google Scholar 

  • Olad A, Ilghami F, Nosrati R (2012) Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity. Chem Pap 66:757–764

    CAS  Google Scholar 

  • Owoyomi O, Ige J, Soriyan OO (2011) Thermodynamics of micellization of n-alkyltriphenylphosphonium bromides: a conductometric study. Chem Sci J 25:1–13

    Google Scholar 

  • Para G, Jarek E, Warszynsky P, Adamczyk Z (2003) Effect of electrolytes on surface tension of ionic surfactant solutions. Colloids Surf A 222:213–222

    CAS  Google Scholar 

  • Para G, Jarek E, Warszynsky P (2005) The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions. Colloid Surf A 261:65–73

    CAS  Google Scholar 

  • Para G, Jarek E, Warszy P, Adamczyk Z (2006) The Hofmeister series effect in adsorption of cationic surfactants–theoretical description and experimental results. Adv Colloid Interface Sci 122:39–55

    CAS  PubMed  Google Scholar 

  • Rahim MA, Mahbub S, Ahsan SMA, Alam M, Saha M, Shahriar I, Rana S, Halim MA, Hoque MA, Kumar D, Khan JM (2021) Conductivity cloud point and molecular dynamics investigations of the interaction of surfactants with ciprofloxacin hydrochloride drug: Effect of electrolyte. J Mol Liq 322:114683

    CAS  Google Scholar 

  • Rahman M, Anwar SJ, Molla MR, Rana S, Hoque MA, Rub MA, Khan MA, Kumar D (2019) Influence of Alcohols and Varying Temperatures on the Interaction between Drug Ceftriaxone Sodium Trihydrate and Surfactant: A multi-techniques study. J Mol Liq 292:111322

    CAS  Google Scholar 

  • Rahman S, Navarathna CM, Das NK, Alchouron J, Reneau P, Stokes S, Thirumalai RV, Perez F, Hassan EB, Mohan D Jr, CUP, Mlsna T (2021) High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar. J Colloids Interface Sci 597:182–195

    CAS  Google Scholar 

  • Rashid MMM, Rahman M, Rahman MM, Mahbub S, Kumar D, Khan MZ, ALOthman ZA, Hoque MA, (2021) Aggregation, interaction and thermodynamic characteristics of cationic surfactant + moxifloxacin hydrochloride mixture in aquatic solutions of mono-/di-hydroxy compounds. Mol Phys 119:e1849839

    Google Scholar 

  • Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Google Scholar 

  • Rub MA, Azum N, Khan F, Asiri AM (2017) Surface, micellar, and thermodynamic properties of antidepressant drug nortriptyline hydrochloride with TX-114 in aqueous/urea solutions. J Phys Org Chem 30:e3676

    Google Scholar 

  • Sandomierski M, Poniedziałek K, Bielicka-Daszkiewicz K, Voelkel A (2020) Influence of diazonium and surfactant modification of the mesoporous material on its adsorption properties. Chem Pap 74:929–938

    CAS  Google Scholar 

  • Sein A, Engbert JBFN (1995) Micelle to lamellar aggregate transition of an anionic surfactant in dilute aqueous solution induced by alkali metal chloride and tetraalkylammonium chloride salts. Langmuir 11:455–465

    CAS  Google Scholar 

  • Sergey AK, Volodymyr OD, Natalia AG (2010) Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol. Chem Pap 64:91–97

    Google Scholar 

  • Sharma KS, Rakshit AK (2004) Investigation of the properties of decaoxyethylene n-dodecyl ether, C12E10, in the aqueous sugar-rich region. J Surfactants Deterg 7:305–316

    CAS  Google Scholar 

  • Sharma C, Desai MA, Patel SR (2019) Effect of surfactants and polymers on morphology and particle size of telmisartan in ultrasound-assisted anti-solvent crystallization. Chem Pap 73:1685–1694

    CAS  Google Scholar 

  • Srinivasan V, Blankschtein D (2003) Effect of counterion binding on micellar solution behavior: 2 prediction of micellar solution properties of ionic surfactant−electrolyte systems. Langmuir 19:9946–9961

    CAS  Google Scholar 

  • Sugihara G, Hisatomi M (1999) Enthalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J Colloid Interface Sci 219:31–36

    CAS  PubMed  Google Scholar 

  • Umlong IM, Ismail K (2006) Micellization behaviour of sodium dodecylsulfate and dioctyl sulfosuccinate in the presence of sodium salicylate. J Surface Sci Technol 22:101–117

    CAS  Google Scholar 

  • Vamvaca K, Jelesarov I, Hilvert D (2008) Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 382:971–977

    CAS  PubMed  Google Scholar 

  • Wei X, Chang Z, Liu H (2003) Influence of sodium dodecyl sulfate on the characteristics of bovine serum albumin solutions and foams. J Surfactants Deterg 6:107–112

    CAS  Google Scholar 

  • Xu S, Zhu Q, Lin X, Lin W, Qin Y, Li Y (2020) The phase behavior of n-ethylpyridinium tetrafluoroborate and sodium-based salts ATPS and its application in 2-chlorophenol extraction. Chin J Chem Eng 33:76–82

    Google Scholar 

  • Yu D, Huang X, Deng M, Lin Y, Jiang L, Huang JL, Wang Y (2010) Effects of inorganic and organic salts on aggregation behavior of cationic gemini surfactants. J Phys Chem B 114:14955–14964

    CAS  PubMed  Google Scholar 

  • Zhao GX, Zhu BY (2003) Principles of surfactant action [M]. China Light Industry Press, Beijing, p 264

    Google Scholar 

  • Zhou Z, Zhu S, Gong J, Zhu M, Luo W (2018) Experimental study on methane solubilization by organic surfactant aggregates. Chem Pap 72:1467–1475

    CAS  Google Scholar 

  • Zhou L, Dai S, Xu S, She Y, Li Y, Leveneur S, Qin Y (2021) Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Appl Catal B Enviro 291:120019

    CAS  Google Scholar 

  • Zielinski R, Ikeda S, Nomura H, Kato S (1987) Adiabatic compressibility of alkyltrimethylammonium bromides in aqueous solutions. J Colloid Interface Sci 119:398–408

    CAS  Google Scholar 

  • Zielinski R, Ikeda S, Nomura H, Kato S (1988a) Temperature dependence of adiabatic compressibility of aqueous solutions of alkyltrimethylammonium bromides. J Chem Soc Faraday Trans 84:151–163

    CAS  Google Scholar 

  • Zielinski R, Ikeda S, Nomura H, Kato S (1988b) The salt-induced sphere-rod transition of micelles of dodecyltrimethylammonium bromide in aqueous NaBr solutions as studied by the ultrasound velocity measurements. J Colloid Interface Sci 125:497–507

    CAS  Google Scholar 

  • Zielinski R, Ikeda S, Nomura H, Kato S (1989) Effect of temperature on the salt-induced sphere–rod transition of micelles of dodecyltrimethylammonium bromide in aqueous NaBr solutions. J Chem Soc Faraday Trans 185:1619–1629

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Researchers Supporting Project Number (RSP-2021/360), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Amin Hossain, M., Sultana, M.N., Khan, J.M. et al. Investigation of the effect of temperature and electrolytes on the physicochemical parameters for the self-assembly of dodecyltrimethylammonium bromide. Chem. Pap. 76, 1501–1511 (2022). https://doi.org/10.1007/s11696-021-01952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01952-w

Keywords

Navigation