Skip to main content
Log in

A short review of supercritical fluid extraction of plant extracts

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Supercritical fluid extraction is a successful technique in the field of extraction of different bioactive compounds at the mild temperature conditions. This technique is frequently used for the extraction of plant extracts. In the review, supercritical fluid extraction is investigated from different aspects in regards to extraction from plants, including differences with classical and modern extraction methods, antioxidant and antibacterial strength of extracts obtained by supercritical fluids, representing the effectiveness of the extraction system, and various parameters affecting the extraction yield such as temperature, pressure, time, fluid flow rate, modifier, and sample size. Also, a number of studies concerning the modeling and optimizing of supercritical fluid extraction of plant extracts is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. A.A. Mostafa et al., Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 25(2), 361–366 (2018)

    Article  PubMed  Google Scholar 

  2. A. Gedikoğlu, M. Sökmen, A. Çivit, Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 7(5), 1704–1714 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. K. Zhang et al., Cinnamon extract reduces VEGF expression via suppressing HIF-1α gene expression and inhibits tumor growth in mice. Mol. Carcinog. 56(2), 436–446 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. C. Jalili et al., Effect of Falcaria vulgaris extracts on sperm parameters in diabetic rats. Andrologia 50(10), e13130 (2018)

    Article  PubMed  Google Scholar 

  5. O. Taofiq et al., Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci. Technol. 50, 193–210 (2016)

    Article  CAS  Google Scholar 

  6. !!! INVALID CITATION !!! .

  7. D.-L. Zou et al., Separation of three phenolic high-molecular-weight compounds from the crude extract of Terminalia chebula Retz. by ultrasound-assisted extraction and high-speed counter-current chromatography. J. Sep. Sci. 39(7), 1278–1285 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Z.-E. Huma et al., Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J. Food Process. Preserv. 42(2), e13450 (2018)

    Article  Google Scholar 

  9. K. Santos et al., Antiproliferative activity of neem leaf extracts obtained by a sequential pressurized liquid extraction. Pharmaceuticals 11(3), 76 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O. Gligor et al., Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends Food Sci. Technol. 88, 302–315 (2019)

    Article  CAS  Google Scholar 

  11. J. Vladić et al., Optimization of Satureja montana subcritical water extraction process and chemical characterization of volatile fraction of extracts. J. Sup. Fluids 120, 86–94 (2017)

    Article  Google Scholar 

  12. S. El Kantar et al., Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innov. Food Sci. Emerg. Technol. 46, 153–161 (2018)

    Article  Google Scholar 

  13. H. Scepankova et al., Enhancement of bioactivity of natural extracts by non-thermal high hydrostatic pressure extraction. Plant Foods Hum. Nutr. 73(4), 253–267 (2018)

    Article  PubMed  Google Scholar 

  14. P.A. Uwineza, A. Waśkiewicz, Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 25(17), 3847 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R. Gallego, M. Bueno, M. Herrero, Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae–An update. TrAC, Trends Anal. Chem. 116, 198–213 (2019)

    Article  CAS  Google Scholar 

  16. S.O. Essien, B. Young, S. Baroutian, Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 97, 156–169 (2020)

    Article  CAS  Google Scholar 

  17. H.-N. Wang et al., Plant extracts in prevention of obesity. Crit. Rev. Food Sci. Nutr. 62(8), 2221–2234 (2022)

    Article  CAS  PubMed  Google Scholar 

  18. M. Abotaleb et al., Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10(2), 221 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Michel, N.Z. Abd Rani, K. Husain, A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 11, 852 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Lee et al., Plant extracts for type 2 diabetes: from traditional medicine to modern drug discovery. Antioxidants 10(1), 81 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Dinan et al., 20-Hydroxyecdysone, from plant extracts to clinical use: therapeutic potential for the treatment of neuromuscular, cardio-metabolic and respiratory diseases. Biomedicines 9(5), 492 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Garcia-Oliveira et al., From tradition to health: chemical and bioactive characterization of five traditional plants. Molecules 27(19), 6495 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Zagórska-Dziok et al., Cosmetic and dermatological properties of selected ayurvedic plant extracts. Molecules 26(3), 614 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  24. M.M. Rahman et al., Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother. 150, 113041 (2022)

    Article  CAS  PubMed  Google Scholar 

  25. S. Kumar et al., Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: a state-of-the-art review. Trends Food Sci. Technol. 112, 651–666 (2021)

    Article  CAS  Google Scholar 

  26. K. Zosel, Separation with supercritical gases: practical applications. Angew. Chem. Int. Ed. Engl. 17(10), 702–709 (1978)

    Article  Google Scholar 

  27. C.C. de La Tour, Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que léau, l’alcool, l’ether sulfurique et l’essence de pétrole rectifiée. Ann. Chim. Phys. 21, 127–132 (1822)

    Google Scholar 

  28. J. Hannay, I. Hogarth, On the solubility of solids in gases. Proc. Royal Soc. of London 30(200–205), 178–188 (1880)

    Google Scholar 

  29. Y. Ahn et al., Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 47(6), 647–661 (2015)

    Article  Google Scholar 

  30. K. Sharif et al., Experimental design of supercritical fluid extraction–A review. J. Food Eng. 124, 105–116 (2014)

    Article  CAS  Google Scholar 

  31. G.V. Amaral et al., Dairy processing using supercritical carbon dioxide technology: theoretical fundamentals, quality and safety aspects. Trends Food Sci. Technol. (2017). https://doi.org/10.1016/j.tifs.2017.04.004

    Article  Google Scholar 

  32. A.D.P. Sánchez-Camargo et al., Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J. Sep. Sci. 42(1), 243–257 (2019)

    Article  PubMed  Google Scholar 

  33. S.M. Pourmortazavi et al., Application of supercritical fluids in cholesterol extraction from foodstuffs: a review. J. Food Sci. Technol. 55(8), 2813–2823 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ž Knez et al., Are supercritical fluids solvents for the future. Chem. Eng. Proc.ssing-Process Intensif. (2019). https://doi.org/10.1016/j.cep.2019.107532

    Article  Google Scholar 

  35. M. Yousefi et al., Supercritical fluid extraction of essential oils. TrAC, Trends Anal. Chem. 118, 182–193 (2019)

    Article  CAS  Google Scholar 

  36. H. Ahangari et al., Supercritical fluid extraction of seed oils – A short review of current trends. Trends Food Sci. Technol. 111, 249–260 (2021)

    Article  CAS  Google Scholar 

  37. O. Wrona et al., Supercritical fluid extraction of bioactive compounds from plant materials. J. AOAC Int. 100(6), 1624–1635 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. S. Mahdi Pourmortazavi, M. Rahimi-Nasrabadi, S. Somayyeh Hajimirsadeghic, Supercritical fluid technology in analytical chemistry-review. Curr. Anal. Chem. 10(1), 3–28 (2014)

    Article  Google Scholar 

  39. G. Sodeifian et al., Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: experimental and modeling. J. Supercrit. Fluids 110, 265–274 (2016)

    Article  CAS  Google Scholar 

  40. M. Yousefi et al., Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Crit. Rev. Anal. Chem. (2020). https://doi.org/10.1080/10408347.2020.1743965

    Article  PubMed  Google Scholar 

  41. L.L.M. Marques et al., Guaraná (Paullinia cupana) seeds: selective supercritical extraction of phenolic compounds. Food Chem. 212, 703–711 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. I. Mackėla, T. Andriekus, P.R. Venskutonis, Biorefining of buckwheat (Fagopyrum esculentum) hulls by using supercritical fluid, Soxhlet, pressurized liquid and enzyme-assisted extraction methods. J. Food Eng. 213, 38–46 (2017)

    Article  Google Scholar 

  43. C.G. Pereira, M.A.A. Meireles, Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol. 3(3), 340–372 (2010)

    Article  CAS  Google Scholar 

  44. J.T. Paula et al., Scale-up study of supercritical fluid extraction process for Baccharis dracunculifolia. J. Supercrit. Fluids 107, 219–225 (2016)

    Article  CAS  Google Scholar 

  45. A.S. Zaini et al., Comparison of charantin extract from Momordica charantia using modified supercritical carbon dioxide and soxhlet extraction method. Malays. J. Fundam. Appl. Sci. 14(4), 462–466 (2018)

    Article  Google Scholar 

  46. S.A. Jafarpour, Investiagtion of oil extracted from from common carp fish (Cyprinus carpio) by-products using wet rendering, Solvent, Soxtec and ultrasound method extraction. Fish. Sci. Technol. 6(2), 95–125 (2017)

    Google Scholar 

  47. M.S. Saleh et al., GC-MS analysis of metabolites from soxhlet extraction, ultrasound-assisted extraction and supercritical fluid extraction of Salacca zalacca flesh and its alpha-glucosidase inhibitory activity. Nat. Product Res. (2019). https://doi.org/10.1080/14786419.2018.1560295

    Article  Google Scholar 

  48. M. Hasan, B.P. Panda, Chemometric analysis of selective polyphenolic groups in Asparagus racemosus (Shatavar) root extracts by traditional and supercritical fluid (CO2) based extractions. Sep. Sci. Technol. 55(7), 1339–1355 (2020)

    Article  CAS  Google Scholar 

  49. T.C. Confortin et al., Extraction and composition of extracts obtained from Lupinus albescens using supercritical carbon dioxide and compressed liquefied petroleum gas. J. Supercrit. Fluids 128, 395–403 (2017)

    Article  CAS  Google Scholar 

  50. I.L.M. Barzotto et al., Supercritical extraction of Eugenia involucrata leaves: Influence of operating conditions on yield and α-tocopherol content. J. Supercrit. Fluids 143, 55–63 (2019)

    Article  CAS  Google Scholar 

  51. B. Damjanović et al., Extraction of fennel (Foeniculum vulgare Mill.) seeds with supercritical CO2: comparison with hydrodistillation. Food Chem. 92(1), 143–149 (2005)

    Article  Google Scholar 

  52. S. Ngamprasertsith, J. Menwa, R. Sawangkeaw, Caryophyllene oxide extraction from lemon basil (Ocimum citriodorum Vis.) straw by hydrodistillation and supercritical CO2. J. Supercrit. Fluids 138, 1–6 (2018)

    Article  CAS  Google Scholar 

  53. S. Xainhiaxang, N. Leksawasdi, T.I. Wirjantoro, Antimicrobial activities of some herb and spices extracted by hydrodistillation and supercritical fluid extraction on the growth of Escherichia coli, Salmonella typhimurium and Staphylococcus aureus in microbiological media. Food Appl. Biosci. J.. 6, 218–239 (2018)

    Google Scholar 

  54. I.M. Yusoff et al., A review of ultrasound-assisted extraction for plant bioactive compounds: phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 157, 111268 (2022)

    Article  CAS  PubMed  Google Scholar 

  55. S. Muchahary, S.C. Deka, Impact of supercritical fluid extraction, ultrasound-assisted extraction, and conventional method on the phytochemicals and antioxidant activity of bhimkol (Musa balbisiana) banana blossom. J. Food Process. Preserv. 45(7), e15639 (2021)

    Article  CAS  Google Scholar 

  56. K.A. Santos et al., Extraction of Morus alba leaves using supercritical CO2 and ultrasound-assisted solvent: evaluation of β-sitosterol content. J. Supercrit. Fluids 159, 104752 (2020)

    Article  CAS  Google Scholar 

  57. F. Ateş et al., A green valorisation approach using microwaves and supercritical CO2 for high-added value ingredients from Mandarin (Citrus deliciosa Tenore) Leaf Waste. Waste Biomass Valoriz. 10(3), 533–546 (2019)

    Article  Google Scholar 

  58. I. Vieitez et al., Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. J. Supercrit. Fluids 133, 58–64 (2018)

    Article  CAS  Google Scholar 

  59. M. Salazar et al., Chemical composition, antioxidant activity, neuroprotective and anti-inflammatory effects of cipó-pucá (Cissus sicyoides L.) extracts obtained from supercritical extraction. J. Supercrit. Fluids 138, 36–45 (2018)

    Article  CAS  Google Scholar 

  60. V. Pavić et al., Extraction of carnosic acid and carnosol from sage (Salvia officinalis L.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants 8(1), 16 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  61. E.E. Yilmaz, E.B. Özvural, H. Vural, Extraction and identification of proanthocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide. J. Supercrit. Fluids 55(3), 924–928 (2011)

    Article  CAS  Google Scholar 

  62. H. Bendif et al., Supercritical CO2 extraction of Rosmarinus eriocalyx growing in Algeria: chemical composition and antioxidant activity of extracts and their solid plant materials. Ind. Crops Prod. 111, 768–774 (2018)

    Article  CAS  Google Scholar 

  63. H. Sargiya, P.K. Goyal, B. Vyas, Antimicrobial drugs of herbal origin. Int. J. Pharm. Erud. 7(1), 1–10 (2017)

    Google Scholar 

  64. A.M. Pisoschi et al., An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 143, 922–935 (2018)

    Article  CAS  PubMed  Google Scholar 

  65. Y.-D. Cao et al., Study on the mechanism of Epigallocatechin gallate (EGCG) to the cell membrane of Escherichia coli. Sci. Adv. Mater. 11(2), 262–268 (2019)

    Article  CAS  Google Scholar 

  66. P.N. Cruz et al., Antioxidant and antibacterial potential of butia (Butia catarinensis) seed extracts obtained by supercritical fluid extraction. J. Supercrit. Fluids 119, 229–237 (2017)

    Article  CAS  Google Scholar 

  67. S. Singh, A. Moses, A. David, Antimicrobial activity of Emblica officinalis extracts against selected bacterial pathogens. Int. J. Basic Appl. Res. 9(1), 325–330 (2019)

    Google Scholar 

  68. R.M. Cordeiro et al., Supercritical CO2 extraction of Ucuúba (Virola surinamensis) seed oil: global yield, kinetic data, fatty acid profile, and antimicrobial activities. Chem. Eng. Commun. 206(1), 86–97 (2019)

    Article  CAS  Google Scholar 

  69. J. Ma et al., composition, antimicrobial and antioxidant activity of supercritical fluid extract of Elsholtzia ciliata. J. Essential Oil Bearing Plants 21(2), 556–562 (2018)

    Article  CAS  Google Scholar 

  70. H.A. Martinez-Correa et al., Integrated extraction process to obtain bioactive extracts of Artemisia annua L .leaves using supercritical CO2, ethanol and water. Industrial Crops Products 95, 535–542 (2017)

    Article  CAS  Google Scholar 

  71. J. Zhou et al., Comparison of different methods for extraction of Cinnamomi ramulus: yield, chemical composition and in vitro antiviral activities. Nat. Prod. Res. 31(24), 2909–2913 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. M.A. Souza et al., Supercritical CO2 extraction of Aloysia gratissima leaves and evaluation of anti-inflammatory activity. J. Supercrit. Fluids 159, 104753 (2020)

    Article  CAS  Google Scholar 

  73. Ê.R. Santos et al., Supercritical fluid extraction of Rumex acetosa L. roots: yield, composition, kinetics, bioactive evaluation and comparison with conventional techniques. J. Supercrit. Fluids 122, 1–9 (2017)

    Article  CAS  Google Scholar 

  74. N.F.S. Morsy, Production of thymol rich extracts from Ajwain (Carum copticum L.) and thyme (Thymus vulgaris L.) using supercritical CO2. Industrial Crops Products 145, 112072 (2020)

    Article  CAS  Google Scholar 

  75. H. Debbabi et al., The effect of pressure on the characteristics of supercritical carbon dioxide extracts from Calamintha nepeta subsp. nepeta. Biomed. Chromatogr. 34, e4871 (2020)

    Article  CAS  PubMed  Google Scholar 

  76. I. Lepojević et al., Solid-liquid and high-pressure (liquid and supercritical carbon dioxide) extraction of Echinacea purpurea L. J. Supercrit. Fluids 119, 159–168 (2017)

    Article  Google Scholar 

  77. A. Bogdanovic et al., Supercritical and high pressure subcritical fluid extraction from Lemon balm (Melissa officinalis L., Lamiaceae). J. Supercrit. Fluids 107, 234–242 (2016)

    Article  CAS  Google Scholar 

  78. M.G. Goleroudbary, S. Ghoreishi, Response surface optimization of Safranal and Crocin extraction from Crocus sativus L. via supercritical fluid technology. J. Supercrit. Fluids 108, 136–144 (2016)

    Article  CAS  Google Scholar 

  79. X.-F. Chi et al., Obtaining alantolactone and isoalantolactone from Inula racemose Hook f by optimized supercritical fluid extraction. Industrial Crops Products 79, 63–69 (2016)

    Article  CAS  Google Scholar 

  80. J. Shi et al., Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J. Food Eng. 93(4), 431–436 (2009)

    Article  CAS  Google Scholar 

  81. N. Hassim et al., Effect of static extraction time on supercritical fluid extraction of bioactive compounds from Phyllanthus niruri. J. Comput. Theor. Nanosci. 17(2–3), 918–924 (2020)

    Article  CAS  Google Scholar 

  82. M.B. Soquetta, L.D.M. Terra, C.P. Bastos, Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA-J. Food 16(1), 400–412 (2018)

    Article  CAS  Google Scholar 

  83. S. Pimentel-Moral et al., Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 147, 213–221 (2019)

    Article  CAS  Google Scholar 

  84. A.C. Gallo-Molina et al., Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. J. Supercrit. Fluids 146, 208–216 (2019)

    Article  CAS  Google Scholar 

  85. M.A. Mohd Ariff et al., Supercritical CO2 extraction of red butterfly wing leaves: process parametric study towards extraction yield. MATEC Web Conf. 154, 01015 (2018)

    Article  Google Scholar 

  86. T. Hatami, J.C.F. Johner, M.A.A. Meireles, Investigating the effects of grinding time and grinding load on content of terpenes in extract from fennel obtained by supercritical fluid extraction. Ind. Crops Prod. 109, 85–91 (2017)

    Article  CAS  Google Scholar 

  87. X.-Q. Bian et al., A five-parameter empirical model for correlating the solubility of solid compounds in supercritical carbon dioxide. Fluid Phase Equilib. 411, 74–80 (2016)

    Article  CAS  Google Scholar 

  88. H. Sovová, Modeling the supercritical fluid extraction of essential oils from plant materials. J. Chromatogr. A 1250, 27–33 (2012)

    Article  PubMed  Google Scholar 

  89. H. Mohd Nasir et al., Solubility correlation of gall (Quercus infectoria) extract in supercritical CO2 using semi-empirical equations. Asia-Pac. J. Chem. Eng. 12(5), 790–797 (2017)

    Article  CAS  Google Scholar 

  90. A.B. Ortega et al., Supercritical fluid extraction from Saw Palmetto berries at a pressure range between 300 bar and 450 bar. J. Supercrit. Fluids 120, 132–139 (2017)

    Article  Google Scholar 

  91. M.H. Pouya, B.K. Moghadas, A.S. Rad, Supercritical extraction of Heracleum persicum plant and mathematical modeling. Nat. Products J. 10(3), 298–311 (2020)

    Article  CAS  Google Scholar 

  92. N.R. Putra et al., Formulation and evaluation of a new semi-empirical model for solubility of plant extracts in supercritical carbon dioxide assisted by ethanol as co-solvent. Chem. Eng. Commun. (2020). https://doi.org/10.1080/00986445.2020.1771324

    Article  Google Scholar 

  93. A.R.C. de Souza et al., Extraction of Arctium lappa leaves using supercritical CO2+ ethanol: kinetics, chemical composition, and bioactivity assessments. J. Supercrit. Fluids 140, 137–146 (2018)

    Article  Google Scholar 

  94. A.R. Guedes et al., Extraction of citronella grass solutes with supercritical CO2, compressed propane and ethanol as cosolvent: kinetics modeling and total phenolic assessment. J. Supercrit. Fluids 137, 16–22 (2018)

    Article  CAS  Google Scholar 

  95. J.S. García-Pérez et al., Thermodynamics and statistical correlation between supercritical-CO2 fluid extraction and bioactivity profile of locally available Mexican plants extracts. J. Supercrit. Fluids 122, 27–34 (2017)

    Article  Google Scholar 

  96. V.H. Rodrigues et al., Supercritical fluid extraction of Eucalyptus globulus. leaves experimental and modelling studies of the influence of operating conditions and biomass pretreatment upon yields and kinetics. Sep. Purif. Technol. 191, 173–181 (2018)

    Article  CAS  Google Scholar 

  97. F.A. Reyes, C.S. Sielfeld, J.M. del Valle, Effect of high-pressure compaction on supercritical CO2 extraction of Astaxanthin from Haematococcus pluvialis. J. Food Eng. 189, 123–134 (2016)

    Article  CAS  Google Scholar 

  98. S.C. Kupski et al., Mathematical modeling of supercritical CO2 extraction of hops (Humulus lupulus L.). J. Supercrit. Fluids 130, 347–356 (2017)

    Article  CAS  Google Scholar 

  99. M. Sökmen, E. Demir, S.Y. Alomar, Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. J. Supercrit. Fluids 133, 171–176 (2018)

    Article  Google Scholar 

  100. S.C. Yim et al., Chapter 15 - Supercritical extraction of value-added compounds from empty fruit bunch: an optimization study by response surface methodology, in Advances in feedstock conversion technologies for alternative fuels and bioproducts. ed. by M. Hosseini (Woodhead Publishing, Cambridge, 2019), pp.281–298

    Chapter  Google Scholar 

  101. S.R. Pour Hosseini, O. Tavakoli, M.H. Sarrafzadeh, Experimental optimization of SC-CO2 extraction of carotenoids from Dunaliella salina. J. Supercrit. Fluids 121, 89–95 (2017)

    Article  CAS  Google Scholar 

  102. M. He et al., Bioactive assay and hyphenated chromatography detection for complex supercritical CO2 extract from Chaihu Shugan San using an experimental design approach. Microchem. J. 142, 394–402 (2018)

    Article  CAS  Google Scholar 

  103. Jerković, I., et al. Supercritical CO2 extraction of Salvia officinalis L. leaves targeted on oxygenated monoterpenes, α-humulene, viridiflorol, and manool. in 10th International Scientific and Professional Conference „With food to health “. 2017.

  104. B. Oyejola, J. Nwanya, Selecting the right central composite design. Int. J. Stat. Appl 5, 21–30 (2015)

    Google Scholar 

  105. J.F. Soares et al., Supercritical CO2 extraction of black poplar (Populus nigra L.) extract: experimental data and fitting of kinetic parameters. J. Supercrit. Fluids 117, 270–278 (2016)

    Article  CAS  Google Scholar 

  106. M.A. Mohd Ariff et al., Optimization of supercritical fluid extraction for Mariposa Christia vespertilionis leaves towards yield by using response surface methodology. Recent. Innov. Chem. Eng. (Former. Recent. Pat. Chem. Eng.) 13(2), 170–178 (2020)

    CAS  Google Scholar 

  107. Valizadehderakhshan, M., (2022) Extraction and Purification of Cannabinoids from Hemp–Experimentation and Process Modeling, North Carolina Agricultural and Technical State University.

  108. S.V. Luca, T. Kittl, M. Minceva, Supercritical CO2 extraction of hemp flowers: a systematic study to produce terpene-rich and terpene-depleted cannabidiol fractions. Ind. Crops Prod. 187, 115395 (2022)

    Article  CAS  Google Scholar 

  109. H. Boumghar et al., Optimization of supercritical carbon dioxide fluid extraction of medicinal cannabis from quebec. Processes 11(7), 1953 (2023)

    Article  CAS  Google Scholar 

  110. S. Qamar et al., Fractional factorial design study for the extraction of cannabinoids from CBD-dominant cannabis flowers by supercritical carbon dioxide. Processes 10(1), 93 (2022)

    Article  CAS  Google Scholar 

  111. S. Li et al., Natural antimicrobials from plants: recent advances and future prospects. Food Chem. 432, 137231 (2024)

    Article  CAS  PubMed  Google Scholar 

  112. P. Kuś et al., Extraction of bioactive phenolics from black poplar (Populus nigra L.) buds by supercritical CO2 and its optimization by response surface methodology. J. Pharm. Biomed. Anal. 152, 128–136 (2018)

    Article  PubMed  Google Scholar 

  113. Y.H. Chai et al., Supercritical fluid extraction and solubilization of Carica papaya linn. leaves in ternary system with CO2 + ethanol solvents. Chem. Eng. Res. Des. 156, 31–42 (2020)

    Article  CAS  Google Scholar 

  114. L.C. Soto-Armenta et al., Extraction yield and kinetic study of Lippia graveolens with supercritical CO2. J. Supercrit. Fluids 145, 205–210 (2019)

    Article  CAS  Google Scholar 

  115. S.E. Quintana et al., Antioxidant and antimicrobial assessment of licorice supercritical extracts. Ind. Crops Prod. 139, 111496 (2019)

    Article  CAS  Google Scholar 

  116. O. Basa’ar et al., Supercritical carbon dioxide extraction of Triognella foenum graecum Linn seeds: determination of bioactive compounds and pharmacological analysis. Asian Pac. J. Trop. Biomed. 7(12), 1085–1091 (2017)

    Article  Google Scholar 

  117. M.A.M. Ariff et al., Effect of CO2 flow rate, co-solvent and pressure behavior to yield by supercritical CO2 extraction of Mariposa Christia vespertilionis leaves. AIP Conf. Proc. 2045(1), 020072 (2018)

    Article  Google Scholar 

  118. R. Yan et al., Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography. J. Sep. Sci. 41(9), 2092–2101 (2018)

    Article  CAS  PubMed  Google Scholar 

  119. V. Kraujalienė, A. Pukalskas, P.R. Venskutonis, Multi-stage recovery of phytochemicals from buckwheat (Fagopyrum esculentum Moench) flowers by supercritical fluid and pressurized liquid extraction methods. Ind. Crops Prod. 107, 271–280 (2017)

    Article  Google Scholar 

  120. J.C. Fragoso-Jiménez et al., Effect of supercritical fluid extraction process on chemical composition of Polianthes tuberosa flower extracts. Processes 7(2), 60 (2019)

    Article  Google Scholar 

  121. D. Esquivel-Hernández et al., Effect of supercritical carbon dioxide extraction parameters on the biological activities and metabolites present in extracts from Arthrospira platensis. Mar. Drugs 15(6), 174 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  122. H. Zhang et al., Optimizing the supercritical carbon dioxide extraction of sweet cherry (Prunus avium L.) leaves and UPLC-MS/MS analysis. Analyti. Methods. 12(23), 3004–3013 (2020)

    Article  Google Scholar 

  123. B. Buszewski et al., Phytochemical analysis and biological activity of Lupinus luteus seeds extracts obtained by supercritical fluid extraction. Phytochem. Lett. 30, 338–348 (2019)

    Article  CAS  Google Scholar 

  124. I. Jerković et al., Supercritical CO2 extraction of Lavandula angustifolia Mill. Flowers: optimisation of oxygenated monoterpenes, coumarin and herniarin content. Phytochem. Anal. 28(6), 558–566 (2017)

    Article  PubMed  Google Scholar 

  125. D. Pinto et al., Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: a response surface methodology approach. J. CO2 Util. 40, 101194 (2020)

    Article  CAS  Google Scholar 

  126. O.N. Ciftci et al., Optimization of artemisinin extraction from Artemisia annua L. with supercritical carbon dioxide+ ethanol using response surface methodology. Electrophoresis 39(15), 1926–1933 (2018)

    Article  CAS  Google Scholar 

  127. V.H. Rodrigues et al., Simulation and techno-economic optimization of the supercritical CO2 extraction of Eucalyptus globulus bark at industrial scale. J. Supercrit. Fluids 145, 169–180 (2019)

    Article  CAS  Google Scholar 

  128. D. Kostrzewa, A. Dobrzyńska-Inger, A. Turczyn, Optimization of supercritical carbon dioxide extraction of sweet paprika (Capsicum annuum L.) using response surface methodology. Chem. Eng. Res. Des. 160, 39–51 (2020)

    Article  CAS  Google Scholar 

  129. M. de Andrade Lima, D. Charalampopoulos, A. Chatzifragkou, Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids 133, 94–102 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study is related to the project NO. 62185 From Student Research Committee, Shahid Beheshti University of Medical Sciences,Tehran,Iran. We also appreciate the “Student Research Committee” and “Research & Technology Chancellor” in Shahid Beheshti University of Medical Sciences for their financial support of this study.

Funding

This work is based upon research funded by Iran National Science Foundation (INSF) under project No.4021149.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Yousefi or Seyede Marzieh Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman Mohammadi, M., Safavizadeh, V., Yousefi, M. et al. A short review of supercritical fluid extraction of plant extracts. Food Measure 18, 3651–3664 (2024). https://doi.org/10.1007/s11694-024-02440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02440-x

Keywords

Navigation