Skip to main content
Log in

Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Natural extracts, like those obtained from medicinal herbs, dietary plants and fruits are being recognized as important sources of bioactive compounds with several functionalities including antioxidant, anticancer, and antimicrobial activities. Plant extracts rich in phenolic antioxidants are currently being successfully used for several pharmaceutical applications and in the development of new foods (i.e., functional foods), in order to enhance the bioactivity of the products and to replace synthetic antioxidants. The extraction method applied in the recovery of the bioactive compounds from natural materials is a key factor to enhance the bioactivity of the extracts. However, most of the extraction techniques have to employ heat, which can easily lead to heat-sensitive compounds losing their biological activity, due to changes caused by temperature. Presently, high hydrostatic pressure (HHP) is being increasingly explored as a cold extraction method of bioactive compounds from natural sources. This non-thermal high hydrostatic pressure extraction (HHPE) technique allows one to reduce the extraction time and increase the extraction of natural beneficial ingredients, in terms of nutritional value and biological activities and thus enhance the bioactivity of the extracts. This review provides an updated and comprehensive overview on the extraction efficiency of HHPE for the production of natural extracts with enhanced bioactivity, based on the extraction yield, total content and individual composition of bioactive compounds, extraction selectivity, and biological activities of the different plant extracts, so far studied by extraction with this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HPP:

High pressure processing

HHP:

High hydrostatic pressure

HHPE:

High hydrostatic pressure extraction

CE:

Conventional extraction

HRE:

Heat reflux extraction

LRT:

Leaching at room temperature

UE:

Ultrasonication extraction

References

  1. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614697/

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Premanath R, Lakshmidevi N (2010) Studies on anti-oxidant activity of Tinospora cordifolia (Miers.) leaves using in vitro models. J Am Sci 6:736–743

    Google Scholar 

  3. Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2:32–50. https://doi.org/10.3945/an.110.000117.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dany M, Madi N, Nemer N, Beyrouthy M, Abdoun S, Usta J (2012) Moringa oleifera: natural leaf extract with potential anti-cancerous effect on A549 lung cancel cells. Lung Cancer 77:521–527. https://doi.org/10.1016/j.lungcan.2012.05.035

    Article  Google Scholar 

  5. Djeridane A, Hamdi A, Bensania W, Cheifa K, Lakhdari I, Yousfi M (2015) The in vitro evaluation of antioxidant activity, α-glucosidase and α-amylase enzyme inhibitory of natural phenolic extracts. Diabetes Metab Syndr Clin Res Rev 9:324–331. https://doi.org/10.1016/j.dsx.2013.10.007

    Article  Google Scholar 

  6. Gambari R (2011) Predictive analyses of biological effects of natural products: from plant extracts to biomolecular laboratory and computer modeling properties relevant for alternative treatments of human diseases. Evid Based Complement Alternat Med 2011:1–4. https://doi.org/10.1093/ecam/nep096

    Article  Google Scholar 

  7. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352. https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  Google Scholar 

  8. Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170. https://doi.org/10.1021/jf010697n

    Article  CAS  PubMed  Google Scholar 

  9. Kähkönen MP, Hopia A, Vuorela HJ et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. https://doi.org/10.1021/jf990146l

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Marcone MF, Barbut S, Lim L (2012) Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Res Int 49:80–91. https://doi.org/10.1016/j.foodres.2012.07.023

    Article  CAS  Google Scholar 

  11. Piluzza G, Bullitta S (2011) Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol 49:240–247. https://doi.org/10.3109/13880209.2010.501083

    Article  CAS  PubMed  Google Scholar 

  12. Nuutila AM, Puupponen-Pimia R, Aarni M, Oksman-Caldentey K-M (2003) Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem 81:485–493. https://doi.org/10.1016/S0308-8146(02)00476-4

    Article  CAS  Google Scholar 

  13. Ismail T, Sestili P, Akhtar S (2012) Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol 143:397–405. https://doi.org/10.1016/j.jep.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  14. Guimarães R, Barros L, Calhelha RC, Carvalho AM, Queiroz MJRP, Ferreira ICFR (2014) Bioactivity of different enriched phenolic extracts of wild fruits from northeastern Portugal: a comparative study. Plant Foods Hum Nutr 69:37–42. https://doi.org/10.1007/s11130-013-0394-5

    Article  CAS  PubMed  Google Scholar 

  15. Veggi PC, Cavalcanti RN, Meireles MA (2014) Production of phenolic-rich extracts from Brazilian plants using supercritical and subcritical fluid extraction: experimental data and economic evaluation. J Food Eng 131:96–109. https://doi.org/10.1016/j.jfoodeng.2014.01.027

    Article  CAS  Google Scholar 

  16. Spigno G, Tramelli L, De Faveri DM (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 81:200–208. https://doi.org/10.1016/j.jfoodeng.2006.10.021

    Article  CAS  Google Scholar 

  17. Liu C, Zhang S, Wu H (2009) Non-thermal extraction of effective ingredients from Schisandra chinensis Baill and the antioxidant activity of its extract. Nat Prod Res 23:1390–1401. https://doi.org/10.1080/14786410902726100

    Article  CAS  PubMed  Google Scholar 

  18. Borhan MZ, Ahmad R, Rusop M, Abdullah S (2013) Green extraction: enhanced extraction yield of asiatic acid from Centella asiatica (L.) nanopowders. J Appl Chem 2013:1–7. https://doi.org/10.1155/2013/460168

    Article  CAS  Google Scholar 

  19. Lee HS, Lee HJ, Yu HJ, Ju DW, Kim Y, Kim CT, Kim CJ, Cho YJ, Kim N, Choi SY, Suh HJ (2011) A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer). J Sci Food Agric 91:1466–1473. https://doi.org/10.1002/jsfa.4334

    Article  CAS  PubMed  Google Scholar 

  20. Dorta E, Lobo MG, González M (2013) Improving the efficiency of antioxidant extraction from mango peel by using microwave-assisted extraction. Plant Foods Hum Nutr 68:190–199. https://doi.org/10.1007/s11130-013-0350-4

    Article  CAS  PubMed  Google Scholar 

  21. Yan L, Xi J (2017) Micro-mechanism analysis of ultrahigh pressure extraction from green tea leaves by numerical simulation. Sep Purif Technol 180:51–57. https://doi.org/10.1016/j.seppur.2017.02.041

    Article  CAS  Google Scholar 

  22. Gil-Chávez GJ, Villa JA, Ayala-Zavala FJ et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12:5–23. https://doi.org/10.1111/1541-4337.12005

    Article  CAS  Google Scholar 

  23. Sousa SG, Delgadillo I, Saraiva J (2014) Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem 151:79–85. https://doi.org/10.1016/j.foodchem.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  24. Roldán-Marín E, Sánchez-Moreno C, Lloría R, de Ancos B, Cano MP (2009) Onion high-pressure processing: flavonol content and antioxidant activity. LWT-Food Sci Technol 42:835–841. https://doi.org/10.1016/j.lwt.2008.11.013

    Article  CAS  Google Scholar 

  25. Jun X (2013) High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit Rev Food Sci Nutr 53:837–852. https://doi.org/10.1080/10408398.2011.561380

    Article  CAS  PubMed  Google Scholar 

  26. Briones-Labarca V, Giovagnoli-Vicuña C, Figueroa-Alvarez P, Quispe-Fuentes I, Pérez-Won M (2013) Extraction of β-carotene, vitamin C and antioxidant compounds from Physalis peruviana (Cape Gooseberry) assisted by high hydrostatic pressure. Food Nutr Sci 4:109–118. https://doi.org/10.4236/fns.2013.48A014

    Article  CAS  Google Scholar 

  27. Huang HW, Hsu CP, Yang BB, Wang C (2013) Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Technol 33:54–62. https://doi.org/10.1016/j.tifs.2013.07.001

    Article  CAS  Google Scholar 

  28. Huang W-Y, Cai Y-Z, Zhang Y (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20. https://doi.org/10.1080/01635580903191585

    Article  CAS  PubMed  Google Scholar 

  29. Qadir SA, Kwon MC, Han JG, Ha JH, Chung HS, Ahn J, Lee HY (2009) Effect of different extraction protocols on anticancer and antioxidant activities of Berberis koreana bark extracts. J Biosci Bioeng 107:331–338. https://doi.org/10.1016/j.jbiosc.2008.11.021

    Article  CAS  PubMed  Google Scholar 

  30. Mota M, Lopes R, Delgadillo I, Saraiva J (2013) Microorganisms under high pressure - adaptation, growth and biotechnological potential. Biotechnol Adv 31:1426–1434. https://doi.org/10.1016/j.biotechadv.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  31. Balasubramaniam VMB, Martinez-Monteagudo S, Gupta R (2015) Principles and application of high pressure-based technologies in the food industry. Food Sci Technol 6:435–462. https://doi.org/10.1146/annurev-food-022814-015539

    Article  CAS  Google Scholar 

  32. Prasad KN, Yang B, Zhao M, Wei X, Jiang Y, Chen F (2009) High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp. Sep Purif Technol 70:41–45. https://doi.org/10.1016/j.seppur.2009.08.009

    Article  CAS  Google Scholar 

  33. Santos MC, Salvador ÂC, Domingues FM, Cruz JM, Saraiva JA (2012) Use of high hydrostatic pressure to increase the content of xanthohumol in beer wort. Food Bioprocess Technol 6:2478–2485. https://doi.org/10.1007/s11947-012-0952-0

    Article  CAS  Google Scholar 

  34. Kadam P, Jadhav B, Salve R, Machewad G (2011) Review on the high pressure technology (HPT) for food preservation. J Food Process Technol 3:1–5. https://doi.org/10.4172/2157-7110.1000135

    Article  CAS  Google Scholar 

  35. Stiles TK (2010) The effects of high pressure processing on peanut sauce inoculated with Salmonella. Dissertation & Theses in Food Science and Technology - University of Nebraska-Lincoln

  36. Jun X, Deji S, Ye L, Rui Z (2011) Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control 22:1473–1476. https://doi.org/10.1016/j.foodcont.2011.03.008

    Article  CAS  Google Scholar 

  37. Xi J, Luo S (2016) The mechanism for enhancing extraction of ferulic acid from Radix Angelica sinensis by high hydrostatic pressure. Sep Purif Technol 165:208–213. https://doi.org/10.1016/j.seppur.2016.04.011

    Article  CAS  Google Scholar 

  38. Pinela J, Prieto MA, Barros L, Carvalho AM, Oliveira MBPP, Saraiva JA, Ferreira ICFR (2017) Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: process modelling and optimization. Sep Purif Technol 192:501–512. https://doi.org/10.1016/j.seppur.2017.10.007

    Article  CAS  Google Scholar 

  39. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9:85–91. https://doi.org/10.1016/j.ifset.2007.06.002

    Article  CAS  Google Scholar 

  40. Xi J, Wang B (2013) Optimization of ultrahigh-pressure extraction of polyphenolic antioxidants from green tea by response surface methodology. Food Bioprocess Technol 6:2538–2546. https://doi.org/10.1007/s11947-012-0891-9

    Article  CAS  Google Scholar 

  41. Xi J, Shen D, Li Y, Zhang R (2011) Ultrahigh pressure extraction as a tool to improve the antioxidant activities of green tea extracts. Food Res Int 44:2783–2787. https://doi.org/10.1016/j.foodres.2011.06.001

    Article  CAS  Google Scholar 

  42. Briones-Labarca V, Plaza-Morales M, Giovagnoli-Vicuña C, Jamett F (2015) High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: effects of extraction conditions and methods. LWT-Food Sci Technol 60:525–534. https://doi.org/10.1016/j.lwt.2014.07.057

    Article  CAS  Google Scholar 

  43. Prasad NK, Hao J, Shi J et al (2009) Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov Food Sci Emerg Technol 10:413–419. https://doi.org/10.1016/j.ifset.2009.04.003

    Article  CAS  Google Scholar 

  44. Prasad KN, Yang B, Shi J, Yu C, Zhao M, Xue S, Jiang Y (2010) Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction. J Pharm Biomed Anal 51:471–477. https://doi.org/10.1016/j.jpba.2009.02.033

    Article  CAS  PubMed  Google Scholar 

  45. Prasad KN, Yang B, Zhao M et al (2010) Effects of high pressure or ultrasonic treatment on extraction yield and antioxidant activity of pericarp tissues of longan fruit. J Food Biochem 34:838–855. https://doi.org/10.1111/j.1745-4514.2010.00335.x

    Article  CAS  Google Scholar 

  46. Prasad NK, Yang B, Zhao M, Wang BS, Chen F, Jiang Y (2009) Effects of high-pressure treatment on the extraction yield, phenolic content and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit pericarp. Int J Food Sci Technol 44:960–966. https://doi.org/10.1111/j.1365-2621.2008.01768.x

    Article  CAS  Google Scholar 

  47. Corrales M, García AF, Butz P, Tauscher B (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J Food Eng 90:415–421. https://doi.org/10.1016/j.jfoodeng.2008.07.003

    Article  CAS  Google Scholar 

  48. Senanayake NSPJ (2013) Green tea extract: chemistry, antioxidant properties and food applications – a review. J Funct Foods 5:1529–1541. https://doi.org/10.1016/j.jff.2013.08.011

    Article  CAS  Google Scholar 

  49. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. https://doi.org/10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  50. Siripatrawan U, Vitchayakitti W, Sanguandeekul R (2013) Antioxidant and antimicrobial properties of Thai propolis extracted using ethanol aqueous solution. Int J Food Sci Technol 48:22–27. https://doi.org/10.1111/j.1365-2621.2012.03152.x

    Article  CAS  Google Scholar 

  51. Xi J, Shouqin Z (2007) Antioxidant activity of ethanolic extracts of propolis by high hydrostatic pressure extraction. Int J Food Sci Technol 42:1350–1356. https://doi.org/10.1111/j.1365-2621.2006.01339.x

    Article  CAS  Google Scholar 

  52. Prasad KN, Yang B, Zhao M et al (2009) Application of ultrasonication or high pressure extraction of flavonoids from litchi fruit pericarp. J Food Process Eng 32:828–843. https://doi.org/10.1111/j.1745-4530.2008.00247.x

    Article  Google Scholar 

  53. Rocha-Santos TAP, Rodrigues D, Freitas ANAC et al (2017) Bioactive polysaccharides exctracts from Sargassum muticum by high hydrostatic pressure. J Food Process Preserv 41:1–12. https://doi.org/10.1111/jfpp.12977

    Article  CAS  Google Scholar 

  54. Li L, Xu J, Mu Y, Han L, Liu R, Cai Y, Huang X (2015) Chemical characterization and anti-hyperglycaemic effects of polyphenol enriched longan (Dimocarpus longan Lour.) pericarp extracts. J Funct Foods 13:314–322

    Article  CAS  Google Scholar 

  55. Huang G, Wang B, Lin W et al (2012) Antioxidant and anti-inflammatory properties of Longan (Dimocarpus longan Lour.) pericarp. Evid Based Complement Alternat Med 2012:1–10. https://doi.org/10.1155/2012/709483

    Article  Google Scholar 

  56. Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, Yu Y (2013) A potential anti-tumor herbal medicine, corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Altern Med 13:1–11. https://doi.org/10.1186/1472-6882-13-33

    Article  CAS  Google Scholar 

  57. Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S (2016) Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 15:1–12. https://doi.org/10.1186/s12937-016-0167-8

    Article  CAS  Google Scholar 

  58. Salla S, Sunkara R, Ogutu S, Walker LT, Verghese M (2016) Antioxidant activity of papaya seed extracts against H2O2 induced oxidative stress in HepG2 cells. LWT-Food Sci Technol 66:293–297. https://doi.org/10.1016/j.lwt.2015.09.008

    Article  CAS  Google Scholar 

  59. Mi L, Wang X, Govind S, Hood BL, Veenstra TD, Conrads TP, Saha DT, Goldman R, Chung FL (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non – small lung cancer cells. Cancer Res 67:6409–6417. https://doi.org/10.1158/0008-5472.CAN-07-0340

    Article  CAS  PubMed  Google Scholar 

  60. Alexandre E, Araujo P, Duarte M et al (2017) High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product. J Food Sci Technol 54:2519–2531. https://doi.org/10.1007/s13197-017-2697-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palaniyandi SA, Damodharan K, Lee KW, Yang SH, Suh JW (2015) Enrichment of ginsenoside Rd in Panax ginseng extract with combination of enzyme treatment and high hydrostatic pressure. Biotechnol Bioprocess Eng 20:608–613. https://doi.org/10.1007/s12257-014-0857-z

    Article  CAS  Google Scholar 

  62. Palaniyandi SA, Suh J-W, Yang SH (2017) Preparation of ginseng extract with enhanced levels of ginsenosides Rg1 and Rb1 using high hydrostatic pressure and polysaccharide hydrolases. Pharmacogn Mag 13:124–147. https://doi.org/10.4103/0973-1296.203992

    Article  Google Scholar 

  63. Kim JH, Park Y, Yu KW, Imm JY, Suh HJ (2014) Enzyme-assisted extraction of cactus bioactive molecules under high hydrostatic pressure. J Sci Food Agric 94:850–856. https://doi.org/10.1002/jsfa.6317

    Article  CAS  PubMed  Google Scholar 

  64. Parvez S, Malik K, Ah Kang S, Kim H-Y (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x

    Article  CAS  PubMed  Google Scholar 

  65. Lee H-Y, He X, Ahn J (2010) Enhancement of antimicrobial and antimutagenic activities of Korean barberry (Berberis koreana Palib.) by the combined process of high-pressure extraction with probiotic fermentation. J Sci Food Agric 90:2399–2404. https://doi.org/10.1002/jsfa.4098

    Article  CAS  PubMed  Google Scholar 

  66. He X, Kim S-S, Park S-J, Seong DH, Yoon WB, Lee HY, Park DS, Ahn J (2010) Combined effects of probiotic fermentation and high-pressure extraction on the antioxidant, antimicrobial, and antimutagenic activities of deodeok (Codonopsis lanceolata). J Agric Food Chem 58:1719–1725. https://doi.org/10.1021/jf903493b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Foundation for Science and Technology (FCT) of Portugal for the PhD grants attributed to H. Scepankova (SFRH/BD/88133/2012) and M. Martins (SFRH/BD/122220/2016) and to FCT/MEC for the financial support to the QOPNA research Unit (FCT UID/QUI/00062/2013), through national funds and where applicable co-financed by the FEDER, within the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Saraiva.

Ethics declarations

Permission to used material already published was carried out and granted.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scepankova, H., Martins, M., Estevinho, L. et al. Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction. Plant Foods Hum Nutr 73, 253–267 (2018). https://doi.org/10.1007/s11130-018-0687-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-018-0687-9

Keywords

Navigation